Molecular Dynamics Studied by Picosecond X-ray Diffraction

Experiments: Maciej Lorenc, Qingyu Kong, Manuela Lo Russo, Marco Cammarata, Michael Wulff

Theory:

Savo Bratos, Rodolphe Vuilleumier, Fabien Mirloup,

The two-step dissociation of iodine from $C_2H_4I_2$ in methanol(lhee et al.)

$$C_2H_4I_2 + hv \rightarrow C_2H_4I_2^* \rightarrow C_2H_4I + I \rightarrow C_2H_4 + I_2$$

Would like to know :

- Atomic composition and structure of intermediates
- •Their life times and decay mechanism
- •The interactions with the solvent(cage and bulk)

Spectrum from the mono-harmonic undulator U17

Diffracted Intensity S(q, t)

Molecular Dynamics Simulation of "static" $g_{\alpha\beta}(r)$ functions

We would like to measure the change in:

- 1) The solute structure(I₂)
- 2) The cage structure(I₂..Cl)
- 3) The bulk solvent structure(CCl₄)

Potential energy curves for I_2

The time to reach thermal equilibrium in a I_2 : CCl₄ solution(1: 675) < dist(I_2^* , I_2^*) > = 50 Å

Temperature locally uniform in ~ 100 ps

Energy dissipates out of x-ray volume in ~ 1 ms

Data collection with the CCD camera

CCD-frame

Radial diffraction patterns from I_2 in CCI₄ (1: 500) taken 100 ps after excitation. Exposure time : 5 s/image

The difference oscillations from $I_2^* + CCI_4^*$ 100 ps after excitation.

PRL, vol 92, no 12, p 125 505, 2004

Watching atoms move: the real-space transform of $\Delta S(q, \tau)$

$$\Delta S[r,\tau] \equiv \frac{1}{2\pi^2 r} \int_0^\infty dq \, q \, \Delta S(q,\tau) \sin(qr)$$

 $\Delta S[r, t]$ is a *measure*, biased by atomic formfactor, of the change in the radial-electron-density of an average excited atom

0.0035 Formation of Br₂*(A-state) **τ** = 100 ps 0.0030 δT = 2.3 K δP = 35 bar Br_2 0.0025 0.0020 Delta S[r] [a.u.] 0.0015 Br₂-hole CI CI 0.0010 I_2 0.0005 Cl..Cl(1) Cl..Cl(2) small molecule? 0.0000 -0.0005 -0.0010 l₂-hole Solute +(Solvent) Solvent only -0.0015 2 3 5 7 8 0 6 9 10 1 4

Radial maps of the recombination of Br_2 and I_2 in CCI_4 after 100 ps

r(Å)

The measured x-ray structure of liquid $CCI_4(E=88 \text{ keV})$

Visualising atomic motion by X-ray diffraction:

probing atom-atom pair correlations $g_{ab}(r, t)$ though the Bratos Equation:

$$S[r,\tau] = \frac{1}{2\pi^2 r} \int_0^\infty dq \left[\sum_{\alpha \neq \beta} f_\alpha(q) f_\beta(q) \right]^{-1} q S(q,\tau) \sin(qr) = const \frac{1}{V(\tau)} \left\{ \sum_{\alpha \neq \beta} w_{\alpha\beta} \left[g_{\alpha\beta}(r,\tau) - 1 \right] \right\}$$

Chemical Physics 304, 245 - 251, (2004)

In the "sub-molecular" range: (0 < r < 2 Å) : $g_{\alpha\beta}(r, \tau) = 0 \Rightarrow \Delta S[r, \tau]$ probes the inverse volume of the solvent.

$$\Delta S[r,\tau] \propto \frac{1}{V} - \frac{1}{V(\tau)}$$

probes the change in the bulk density

$$\frac{\Delta V}{V} = \frac{-\Delta \rho_M}{\rho_M}$$

Dissociation energy levels of C₂H₄I₂ in methanol

Calculating the q- and r-space signatures for a transition

 $C_2H_4I_2 + hv(267nm) \rightarrow C_2H_4I + I$

Difference oscillations from the transient state of $C_2H_4I_2^*$

Time delay: 100 ps, exposure time: 10s/CCD-frame

Radial map of $C_2H_4I_2^*$ in methanol(CH₃OH) at 100 ps

∆S[r] (a.u.)

Intermediates in the decay of $C_2H_4I_2 + hv(267nm) \rightarrow \dots \rightarrow C_2H_4 + I_2$

The $C_2H_4I_2$ model: combination of uni and bimolecular reactions incl hydrodynamics of CH_3OH .

Multilayer optics(cryogenically cooled)

(Ru / B₄C)₅₁: d = 39.20 Å, 10-20 keV, $\delta E/E = 3.1\%$ (Ir / Al₂O₃)₁₀₀: d = 25.66 Å, 20-30 keV, $\delta E/E = 1.9\%$

The effect of the asymmetric undulator spectrum

Leads to: phase shift and damping of oscillations

Solution: multilayer optics

Ultrafast Electron Diffraction(UED), Zewail, Caltech.

	UED (gas phase)	UXD(ESRF) (condensed phase)	XFEL (condensed phase)
Relative scattering power	106	1	1
Electron or photon flux	4×10^4 /pulse	1 x 10 ⁹ / pulse	1 x 10 ¹² / pulse
Repetition rate	1000 Hz	1000 Hz	10 Hz
Number of solute molecules	1011	5 x 10 ¹³	5 x 10 ¹³
Overall signal from solutes	1	10	100
Background from solvent	none	huge	huge
Pulse width	1 ps	100 ps	100 fs

Acknowledgments1

Friedrich Schotte(D)

Marco Cammarata(I)

Qinyu Kong(C)

Maciej Lorenc(PL)

Harry Ihee(Korea)

Acknowledgments2

Fabien Mirloup Rodolphe Vuilleumier

Technical support: Laurent Eybert Laurent Claustre Wolfgang Reichenbach ESRF staff and management

Philip Anfinrud(NIH, Bethesda, USA)

Anton Plech(Konstanz)

Savo Bratos(Paris)

Manuela Lo Russo(ESRF)