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Salts are held together by Coulombic forces
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Ionic Liquids - Designing “Bad” Crystals

Anions:
BF4

-, PF6
-, NO3

-, CF3SO3-, (CF3SO2)2N-

CF3CO2
-, CH3CO2

-, CH3SO3
-, AlCl4-

Pick ions to pack poorly.
Disorder is our friend.

Size mismatch, bulky ions

Low molecular symmetry

Rotational disorder (R1 ≠ R2)

Mix-and-match as needed
Cations:

Separation of ions, r(Å)
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Electrostatic attraction is still strong 
enough to make vapor pressure ~0.

If it can’t evaporate, it can’t burn.
Combine specific ions to give desired 

properties.

Control solubility of solids and liquids:
Phase separation (like oil and water).
Easy separation of products.
Make liquid easy to reuse/recycle.

• Inherently safer.
• More economical.
• Less environmentally burdensome.
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Viscosities of Some Ionic Liquids
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Our measurements.

Reactivity in 
isolation.

Reactivity in isolation at room temperature.
Diffusion selectivity (size, charge).

Early events in radiolysis.

Diffusion 
and
solvation
phenomena.

Flow easily - Commercially practical.
Suitable for fastest radiolysis experiments.

Easy flow.
Commercial.
Fast 
kinetics.

Water and
common 
solvents
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Tg-Normalized Arrhenius Plot

Many ionic liquids are 
“fragile” glass formers.

Rule of thumb:
Tm < 1.5 Tg
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Black and white data:  Xu, Cooper, 
Angell; J. Phys. Chem. B, 2003, 107, 
p. 6174, fig. 6
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Photocathode Electron Gun Accelerators:
Laser-RF Synchronization at LEAF

e-

LASER

RF Feed

PLL 
2856 MHz

Master 
Oscillator 
81.60 MHz

Phase 
Adjust Klystron

2856 MHz microwave power: 15 MW

5 picosecond UV laser pulse

A picosecond-synchronized UV laser pulse generates photoelectrons,
which are accelerated to 9 MeV by high fields (80 MV/m)

in the one-foot long resonant-cavity structure.
Wishart, Cook, Miller   Rev. Sci. Inst. 75, 4359 (2004)
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LEAF Facility Layout
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Pulse-Probe Experiment
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Why Study Ionic Liquid Radiolysis?

Ionic liquids may be used to process nuclear fuel, waste, 
and radiological contamination.

Solvent properties, non-volatility and combustion resistance make them a 
good candidate for chemical transformations of radionuclides.

British Nuclear Fuels, Ltd. - electron transfer reactions in ILs to recycle 
spent nuclear fuel.  Several patents have been issued.

Calculations from Los Alamos indicate that the minimum critical 
concentration (above which a solution in a large container would go critical) for 
plutonium in representative tetrachloroaluminate and tetrafluoroborate ILs are 
20 to 100 times greater, respectively, than in water.

Use of such ILs could dramatically decrease the risk of criticality 
accidents such as the one that occurred in 1999.
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Why Study Ionic Liquid Radiolysis?

Ionic liquids provide a new environment to test theories 
of charge transfer and other reactions.

Characterization and reactivity of pre-solvated “dry” 
electron states.

Electron transfer: thermodynamics and reorganization 
energies as a function of distance in an ionic lattice 
environment, solvent dynamical control.

Radiolytic energy deposition in ionic lattices (liquid or 
solid): electron-hole distributions.
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Initial Events in Radiolysis

e-

solvent

High-energy electron

solvent*

Excitation
solvent

e-

thermalization
distance

High-energy electrons transfer 
energy to the medium, resulting 
in excitation and ionization of 
the constituents.

IonizationIonic liquid 
anion or cation

thermal electron

e-

presolvated
“dry” states

solvated electron
“hole” + energetic 
secondary electronhole

Products
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Early Reactions in Radiolysis

S

S+
X + Y

hole
thermal electron S

S

S-

Se-

e-
IL*

solvated electron

Ionization branch:
Electron thermalization and solvation

e-
hot → e-

th → e-
pre → e-

solv
Recombination of hole and electron

hole   +    e- → IL or IL*
Dissociation (bond breakage)

hole  → fragments (X + Y)
Scavenging by dissolved material

e- +    S    → S-

hole   +    S    → hole- +  S+

Radiation and laser techniques 
are complementary.

Radiolysis creates unique 
products that cannot be 
obtained via laser-induced 
photochemistry.
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Solvated Electron in MB3N+ NTf2
-
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e–
solv decay: ≤ 300 ns

Hole(?) decay: 50 ns

IL dielectric constants 
unknown. 

IL polarities have 
been ranked with 
solvatochromic dyes 
(e.g., betaine-30).
Alkylammoniums are 
similar to acetonitrile.
Imidazoliums appear 
more polar (due to H-
bonding C-2 proton).

Dosimetry
referenced to 
(SCN)2

- in water.

Z-Density corr: 1.16
Wishart and Neta, JPC B, 107, 7261 (2003).   Other spectra: Dorfman and Galvas (1975).
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Cation Effect on Solvated Electron Spectra

Constant anion (NTf2
-): Tetraalkyls
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Solvation can be slow in ionic liquids
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Observing slow solvation in ionic liquids

Pulse radiolysis: probe by absorption
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Radiation Solvation

Solvation of the electron in MB3N NTf2 is slow (~ 4 ns).
Ordinary liquids are on the order of picoseconds.

Can we observe solvated electron precursors in the near infrared?
Technical problem with digitizer experiments:

NIR diodes (InGaAs, Ge) have large secondary response at short times.
Solution: Pulse-probe transient absorption radiolysis

MB3N NTf2 is too viscous to flow (786 cP at RT).
We will study low-viscosity pyrolidinium ionic liquids.
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Observing Electron Solvation in an Ionic Liquid 
by NIR Pulse-Probe
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Pre-solvated electron reactivity
is important in ionic liquids
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Pre-solvated electrons are energetic and reactive.
In most normal solvents, they only last picoseconds.
In some ionic liquids, they last 1000x longer.

In ionic liquids, solvation can be so slow that even low 
scavenger concentrations compete effectively.

We have measured pre-solvated electron scavenging efficiencies 
well above those of normal liquids (5-10x).

Implications:
• Concentrations of solutes that are too low to react with e-

solv may 
still react with e-

pre. Complication for radiological use?
• Easier to generate intermediates for chemical reactivity studies.
• Solvation studies over a range of ionic liquids are necessary.
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Reaction of the electron with pyrene in MB3N+ NTf2
-

490 nm - Pyrene anion
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Observing slow solvation in ionic liquids

Pulse radiolysis: probe by absorption
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Radiation Solvation

Solvation of the electron in MB3N NTf2 is slow (~ 4 ns) but hard to observe.
Ordinary liquids take about one picosecond.

+
+

-
+
+

-
+

-
+
+

-

+
-
-

+
-

+
-
-

+
-
-

+
-

+
+

-
+
+

-
+

-
+
+

-

+
-
-

+
-

+
-
-

+
-
-+

- +
+

-
+
+

-
+

-
+
+

-

+
-
-

+
-

+
-

-
+

-
-

+
-

Laser photolysis: probe by fluorescence (Stokes shift, anisotropy decay)

Light Relaxation

Coumarin 153: MB3N NTf2 <τStokes> = 4.5 ns (Maroncelli),    P14 NTf2: <τ> = 220 ps
Detailed studies of micro vs. macro viscosity with E. Castner (Rutgers).
Theory (molecular dynamics simulations) with M. Kobrak (CUNY Brooklyn)
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Time Dependent Fluorescent Stokes Shift

• Resolve most of the Stokes Shift
• Complex, non-arrhenius broad distributions, β 0.2 – 0.6
• Consistent with viscosity, anisotropy measurements

ν (∞) + ∆ν exp[-(t/τo)β]

<τ >solv = (1/∆ν) ∫ [ν (t) - ν (∞)] dt =  τo/βΓ (β -1)
∞

0 0 < β ≤ 1
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Diffusion is not simple in ionic liquids

Poor packing in ionic liquids creates voids.
The voids should depend on the structure of the ionic liquid.
Small, uncharged molecules could move faster through the voids than 
the solvent itself can move.
Evidence:

• Rates for reaction of esolv
- with O2 and CO2 are the same for P14 NTf2 and 

HB3N NTf2 but the viscosities differ by 10x.
For diffusion-controlled reactions in normal liquids: Rate α 1/viscosity

• Neutral H• atoms react 10x faster than solvated electrons in ionic liquids. 
In normal liquids, the ratio is reversed.

• Diffusion rate of O2 is 30x higher than that of O2
- in HE3N NTf2 (220 cP). 

In emim NTf2 (32 cP) the factor is less than 3. (Buzzeo et al. JPC 2003)

Applications:
Controlled reactivity based on diffusion control.
Reduction-oxidation modulation of transport phenomena.
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Summary

• Solvated electron is an observable product of  ionic liquid radiolysis
Absorption maxima 1000 – 1600 nm (alcohols 700 nm)

• Electron solvation is relatively slow compared to molecular solvents
Blue-shift of  absorption due to relaxation (100 ps - 50 ns)

• Dry electron capture by aromatic acceptors can be significant. 

• Solvation dynamics studies will provide important data for 
understanding pre-solvated electron reactivity. 

• Reaction rates of solvated electrons with added solutes are also
slow compared to those of molecular solvents (diffusion controlled).

• Reaction rates do not correlate with viscosity.
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