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Photodissociation of Iodine
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α: non geminate recombinaison

β, γ: geminate recombinaison
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General formula for pump-probe x-ray diffraction

At second order in perturbation theory:
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Separation of time scales – slow variables

inst 〈 〉~ ( )s q S=S(t)∆

At long times:

• slow variables are still correlated 

• fast variables are assumed to be at equilibrium at fixed value of the 

slow variables

S(t) ×∆ S ( )q t ≈,

Identification of the slow variables:

• concentrations of the species: I2*(A/A’) (nβ) and I+I (nα)

• but also hydrodynamics modes: T[k], ρ[k], P[k], j[k] for k>kc

fed by heating of the solvent following the chemical reactions
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Model signal for I2 in CCl4 – phenomenological equations

• Assuming a separation of time-scales and a quasistatic limit

• β (geminate recombinaison) and α (non-geminate recombinaison) :

simple kinetic models
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(τβ = 2.7 ns) (kα = 0.72 10-2 M-1.ps-1)
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∆ ( )SCCl 4 ,q t : change in solvent form-factor due to heating
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Solvent response - pressure relaxation
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• The induced chemical reaction releases heat, δQ(t), into the solvent

• Leads to an increase of temperature

• From linearized hydrodynamics equations:

Pressure relaxes with a time-scale of L/c = 60 ns (Acoustic horizon)

Propagation of a pressure front:



Validity of hydrodynamics

• Hydrodynamics probably valid for length scales of about 10 molecular radius

• kc
-1 ≈ 40 Å, while variations of density and temperature is over length scales 

of 50 to 100 µm

• However modes at 40 Å relax in about 100-200 ps (thermal diffusion)

• Other modes also relax in about 100 ps (vibrational relaxation)

delay times larger than 100 ps



Liquid structure factors

• The structure is described by the partial radial distribution functions

• One pure iodine term: gI-I(r)

• Three solvent terms: C-C, Cl-Cl and C-Cl 

• Two mixed terms: I-C and I-Cl (cage effects)



Molecular Dynamics simulations

Solvent:

• rigid molecules (tetrahedrons)

• point charges and Lennard-Jones
potentials (OPLS)

Iodine:

• flexible I2 molecule (Morse potentials)

• no charges, Lennard-Jones potentials
(same for all electronic states)

512 molecules



Results of least square fitting: nα(0) = 7 %, nβ(0) = 12 %, nγ(0) = 34 %
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Thermodynamics cycle



Conclusions

• We have reproduced the time-dependent radial distribution functions 
∆g(r,τ)

• Determination of the thermodynamical cycle of the solvent

• What happens at very fast time scales when hydrodynamics does not 
apply? (towards tracking the solvent motion during solvation or 
energy redistribution?)

• More complex systems


