Ultrafast deactivation of the electronic excited states of DNA bases and polynucleotides following 267 nm laser excitation explored using picosecond time-resolved infrared spectroscopy

Mike Towrie (m.towrie@rl.ac.uk)

Central Laser Facility Rutherford Appleton Laboratory

(Trinity, Dublin)

UV Excitation of DNA & Components

- DNA is remarkably photostable
- UV excitation of singlet leads to ps to sub-ps internal conversion $\Phi_f \leq 10^{-4}$

Low yield of potentially damaging triplets & photo-reactions

Photochemical reactions

UVB - Pyrimidine dimers

Photoionisation Base + $hv \rightarrow$ Base^{.+} + electron IP in solution:- 5 eV to 6 eV

Ultrafast Techniques
Transient absorption

Fluorescence up-conversion

2

The Broadband Pump-Probe TRIR Spectrometer

267 nm pump IR probe in C=O stretch region

5'-nucleotides (10 mM) in 50 mM phosphate D₂O buffer.

NUCLEOTIDES

AMP adenosine monophospate TMP thymidine monophosphate GMP guanosine monophosphate CMP cytidine monophosphate

Kinetics – e.g. 5' dGMP ~

Base	lifetime
5'-dGMP	2.9 (±0.2) ps
5'-dCMP	4.7 (±0. 3) ps
5'-dAMP	4.3 (±0.2) ps
5'-TMP	2.2 (±0.1) ps

Electronic state lifetime <1ps (see Kohler review)

What are the 2-5 ps dynamics?

Intramolecular Vibrational Relaxation, IVR

Using UV transient absorption Pecourt et al Reported ~2 ps IVR in nucleosides.

Cooling:- Temperature jump ~1000K Coupling of excited low frequency modes to the high frequency modes.

Hydrogen Bond Breaking? Would expect frequency upshift

<1 ps relaxation to ground state

One possibility:- Internal conversion through a conical intersection involving $\pi \pi^*$ or dark $n\pi^*$ and $\pi\sigma^*$ states?

A. T. Krummel, P. Mukherjee and M. Zanni, J. Phys. Chem. B., 2003, **107**, 9165. J.M. Pecourt, J. Peon, B. Kohler, J. Am. Chem. Soc **123** (2001) 10370

UV pump IR probe (poly-strands B-form)

ps-TRIR spectra (1-1000 ps) obtained following 300 fs, 267 nm excitation. 50mM Phosphate Buffer

Z-Form of polydGdC

CCLRC

9

http://www.albany.edu/~achm110/abzdna.html http://www.albany.edu/~achm110/abztopview.html

Expect TRIR spectroscopy to report on changes in

- •Base pairing & stacking
- •Tautomerism
- •Hydrogen bonding
- •Hydration (not like bulk water)
- Solvent Accessibility

Bases (Blue) Sugars (Red) Phosphates (Yellow)

Conclusions

- Demonstrated that fs-TRIR can be used to follow ultrafast dynamics in DNA and its constituent nucleobases
- Electronic excitation leads to rapid S₁ to S₀ relaxation *(in agreement with other workers)*
- We have directly observed the rapid formation and decay of vibrationally hot (S_ov≥1) ground state nucleobases after relaxation of their electronic excited states.
- Poly nucleotide strands give complex spectra with transients living rather longer than individual bases with differing IR spectral features
- Future work will help define role of base pairing, stacking, conformation, solvent interactions and H-bonding.

Acknowledgements

Tony Parker, Pavel Matousek

Marina Kuimova, Joanne Dyer, Mike George, David Grills, Xuo Zhong Sun

John Kelly, Aine Whelan

(Trinity, Dublin)

(Nottingham)

(CCLRC, RAL)

CCLRC

