Time-resolved X-Ray Scattering Experiments at the ALS, SPPS, and Beyond

Roger Falcone UC Berkeley, LBNL and SLAC

and ALS and SPPS Collaborations

TCSDM Meeting Paris March 2005

Short-pulse-lasers and synchrotron x-ray sources can create and probe transient states

Solid-to-liquid melt transition is initiated by large lattice vibrations

A.M. Lindenberg et al., Phys Rev. Lett. 84, 111 (2000)

Mode selective excitation is observable using multiple pump pulses

Single-pulse excitation

Multiple pulse excitation: constructive interference $(\Delta t \sim 35 \text{ ps})$

Multiple pulse excitation: mode cancellation mode $(\Delta t \sim 18 \text{ ps})$

A.M. Lindenberg et al. Optics Letters, 27, 869 (2002)

Perturbed liquid state structure and dynamics can be probed by small angle x-ray scattering

X-ray scattering as a function of angle indicates local structure of perturbed matter

- High Q reflects hard-core region, short length-scales
- Intermediate Q reflects lattice spacing; can be compared with EXAFS pair correlation function
- Low Q reflects long-range, mesoscopic properties

Time-resolved structural changes are seen in H₂O upon charge injection

 Implies molecular re-orientation around injected charge with similarities to thermally induced changes

A.M. Lindenberg, et al, J. Chem. Phys. (to be published)

X-ray absorption spectroscopy probes bonding in transient states

e.g., supports calculations indicating that the low-density phase of liquid carbon is predominately sp-bonded S.L. Johnson, *et al* Silicon: PRL **91**, 157403 (2003) Carbon: PRL **94**, 057407 (2005)

Ultrafast x-ray streak camera detectors enable ultrafast x-ray science

... but detection quantum efficiency is typically low

Unity Pulsed Quantum Efficiency demonstrated at 1 keV. Near-unity at 500 eV.

- Angular dependence of PQE different to TEY:
 - Batch escape probability compared to single electron escape probability
- No significant field dependence observed.

Next-generation x-ray sources will play an important role in HED studies

Proposed by Zholents and Zolotorev, Phys. Rev. Lett., 76, 916,1996

★ HHG flux from F. Krausz, laser: 10 fs, 3 mJ/pulse, 60 W

🛨 Plasma source flux in mrad² from Rose-Petruck, laser: 40 fs, 1 mJ/pulse, 60 W (continuum includes projected 10⁵ improvement)

Cu K_{α} - 10¹⁰ ph/s/4 π (proj. 10¹² with Hg target) cont. 6x10⁷ ph/s/4 π (integ. from 7-8 keV)

typical average ALS x-ray flux undulator ~10¹⁵ ph/s/0.1% BW bend-magnet ~10¹³ ph/s/0.1% BW

From R.W. Schoenlein LBNL

2008-09 Expected commissioning

Spectral properties of SASE FEL

Stanford Synchrotron Radiation Laboratory

Possible Layout: X-ray Transport, Optics, and Experiments

Stanford Synchrotron Radiation Laboratory

Nanoscale Dynamics in Condensed Matter

31st SSRL User Meeting

galayda@slac.stanford.edu

Center

X-ray FEL will create excitation levels of high energy density material that are observable in emission

Scattering of the XFEL will provide data on free, tightly, and weakly bound electrons

• Weakly-bound and tightly-bound electrons depend on their binding energy relative to the Compton energy shift

- For a 25 eV, 4x10²³ cm⁻³ plasma the XFEL produces10⁴ photons from the free electron scattering
- Can obtain temperatures, densities, mean ionization, velocity distribution from the scattering signal

Single molecule imaging has been proposed using short pulse FELs

Implementation limited by radiation damage:

In crystals limit to damage tolerance is about 200 x-ray photons/Å² For single protein molecules need about 10¹⁰ x-ray photons/Å² (for 2Å resolution)

Coulomb explosion modeling (lysozyme)

50 fs 3x10¹² photons 100 nm spot 12 keV

from Neutze, Wouts, van der Spoel, Weckert, & Hajdu, Nature 406, 752 (2000)

Stanford Synchrotron Radiation Laboratory

Emittance spoiling is a possible way to produce ultrashort pulses

22 October 2004 31st SSRL User Meeting John N. Galayda galayda@slac.stanford.edu

Enhanced SASE scheme may benefit LCLS users

ESASE offers advantages

- 1) Shorter gain length, high peak power, comparable average power.
- 2) Easy tunability for a duration of x-ray pulse by laser pulse shaping.
- Nearly temporally coherent and Fourier transform limited radiation within the spike with random carrier phase between spikes; a <u>solitary</u> <u>attosecond x-ray pulse</u>.
- 4) Absolute synchronization between laser pulse and x-ray pulse.
- 5) Relaxed emittance requirement.
- 6) Shorter x-ray wavelengths.

ESASE Proposal: John Corlett, Sasha Zholents, et al, LBNL CBP

Stanford Synchrotron Radiation Laboratory

Basedline LCLS Design Parameters

FEL Radiation Wavelength	<u>1.5</u>	<u>15</u>	Å
Electron Beam Energy	14.3	4.5	GeV
Normalized RMS Slice Emittance	1.2	1.2	mm-mrad
Peak Current	3.4	3.4	kA
_ Parameter	4x10 ⁻⁴	8x10 ⁻⁴	
Bunch/Pulse Length (FWHM)	≤230	≤ 230	fs
Relative Slice Energy Spread @ Entrance	<0.01	0.025	%
Saturation Length	87	25	m
FEL Fundamental Saturation Power @ Exit	8	17	GW
FEL Photons per Pulse	1	29	10 ¹²
Peak Brightness @ Undulator Exit	0.8	0.06	10 ³³ *
Transverse Coherence	Full	Full	
RMS Slice X-Ray Bandwidth	0.06	0.24	%
RMS Projected X-Ray Bandwidth	0.13	0.47	%
* photons/sec/mm²/mrad²/ 0 1%-BW			

Storage Ring *vs.* Linac *vs.* Recirculating Linac X-Ray Sources

- Storage rings provide ~ 100 -ps duration pulses
 - of spontaneous x-ray radiation
 - with high average brightness at high repetition rate
 - and can be "sliced" to provide ultrashort pulses at moderate repetition rate
 - Linacs provide ultrashort pulses
 - of soft and hard x-ray FEL radiation
 - with high peak brightness
 - at low repetition rate
 - Recirculating Linacs provide ultrashort pulses
 - of soft x-ray FEL or HGHG radiation, and hard x-ray spontaneous radiation
 - at moderate repetition rate

A 2m undulator delivers 80 fs duration hard x-ray pulses

Electro-Optical Sampling for timing at the SPPS

 e^- temporal information is encoded on transverse profile of laser beam

A.W. Cavalieri, et al., Phys.Rev. Lett. 94, 114801 (2005)

Crossed-Beam Topography for timing at the SPPS

Jitter of synchronized laser with respect to x-rays at SPPS: EO / melting

- 30 shots recorded at 1Hz rate
- EO timing accuracy: ~ 30 fs
- Melting timing accuracy: ~ 50 fs
- Agreement between two measurements ~ 60 fs RMS

ALS BL 6 Collaboration

R. Abela T.K. Allison A. Belkacem C. Bressler A. Cavalleri M. Chergui A. Correa **R.W. Falcone** T.E. Glover C.M. Greaves P.A. Heimann M. Hertlein S.L. Johnson M. Kaiser J. Larsson R.W. Lee A.M. Lindenberg D. Lowney A.G. MacPhee T. Mathews F. van Mourik M. Saes **R.W. Schoenlein** H.A. Padmore J.S. Wark D. Weinstein A.A. Zholents M.S. Zolotorev

SPPS Collaboration

DESY

UC Berkeley

Roger W. Falcone Aaron Lindenberg Donnacha Lowney Andrew MacPhee

APS Argonne Nat'l Lab

Dennis Mills

MSD Argonne National Lab

Paul Fuoss Brian Stephenson Juana Rudati U. of Michigan

> David Reis Philip H. Bucksbaum Adrian Cavalieri Soo Lee David Fritz Matthew F. DeCamp

NSLS

D. Peter Siddons Chi-Chang Kao

Uppsala University

Janos Hajdu David van der Spoel Richard W. Lee Henry Chapman Carl Calleman Magnus Bergh Gosta Huldt

Jochen Schneider

Thomas Tschentscher Horst Schulte-Schrepping

BioCARS

Keith Moffat Reinhard Pahl

ESRF Francesco Sette Olivier Hignette

SLAC

Paul Emma Patrick Krejcik Holger Schlarb John Arthur Sean Brennan Roman Tatchyn Jerome Hastings Kelly Gaffney

Copenhagen University

Jens Als-Nielsen

Lund University Jörgen Larsson Ola Synnergren Tue Hansen

Chalmers University of Technology Richard Neutze

LCLS Collaboration

Five science teams