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Outline

• Radiation Chemistry

• Photochemistry Studies

• Development of ultrafast electron source
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The interaction between ionizing 
radiation and molecules/atoms 
is the leading cause of chemical 
reactions in our universe

Radiation Chemistry
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Here on Earth

Radiation Chemistry

Condensed Phase
Chemical Physics

Secondary Effects 
(yields etc.) known
Cause?

Nuclear Energy
Radio Therapy

Technology

Waste/Environment



5

Pioneering 
Science and
Technology

Office of Science
U.S. Department 

of Energy

• Understanding of high energy (radiation) chemistry in the 
condensed phase

• Primary (ultrafast) events are very important, determine 
secondary events

• Primary events in radiation chemistry virtually unknown, 
except for theoretical models

• We are developing a laser based subps source of ionizing 
radiation and x-rays

Ultrafast Radiation Chemistry
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The Spur – where it all begins

As ionizing radiation passes through 
condensed matter it produces 
secondary electrons (spurs) along  its 
track.  The secondary electrons are 
responsible for most of the resultant 
chemistry.

Several energetic and reactive 
species are produced in close 
proximity leading to complicated first 
and second order chemical reactions.

The lack of selection rules combined with 
the high local concentration of energetic 
species and energy deposition makes 
radiolysis very different (much more 
complex) than photochemistry

In water each spur 
contains ~2-3 secondary 
electrons.  Spurs are 
~100nm apart, 1-5nm 
diameter
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• Use a combination of ultrafast pulse radiolysis, x-ray, and ultrafast 
laser techniques to dissect the spur

• The most important primary processes that we wish to study are –
energy deposition, thermalization, solvation, pre-thermalization 
chemistry, initial distribution of products

• We start with photoionization studies

Primary processes in radiation chemistry
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Radiolysis vs Photolysis – e-
aq in Water
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 Electron Radiolysis
 12.4eV Photolysis

Different electron recombination kinetics due to intra 
and inter-spur recombination

Photolysis isolated ionization events
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Fs Laser Spectroscopy – dynamics of photejected electrons

Solvation/thermalization

geminate recombination

eaq
- + H3O+ → H + H2O

eaq
- + OH → OH-

12.4 eV Photolysis
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Water Photoionization
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Water Power Spectrum

CTTS or
Dissociation?

Bandgap

Conduction Band?

This is a very significant result

-Mechanism(s)for electron production 
above and below the bandgap, 
electronic structure

-Spectroscopic identification of the 
various forms of e-

pre

-Chemical reactivity of e-
pre , which 

forms are more reactive? e.g., H2
production

-Role of the solvent in electron 
thermalization/solvation

The Issues

The Solution

Map out the spectral evolution of e-
aq

as a function of ionization energy
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Probing the Liquid Conduction Band

• Spectral evolution (500nm-1700nm) of the electron 
spectrum following 2x6.2eV (12.4eV) ionization of 
H2O and D2O

• ~3eV above the bandgap

• Geminate kinetics → σ ~ 25Å (similar to radiolysis 
~35Å)
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Scheme

e-
cb→→ e-

NE(hot) → e-
aq

Nonradiative relaxation-> vibrations of 
solvent appear to play a role in both 
thermalization and solvation

Need theory

12.4 eV (2x6.2eV) Water Photoionization
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Geminate Kinetics 12.4eV Isotope Effect
• H2O vs D2O
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• No isotope on the shape of the geminate recombination 
kinetics

• Using independent pairs model
escape distance for H2O=2.4nm

D2O=2.1nm

Expect longer distance in heavy water because of smaller energy 
of accepting OD modes

The narrower distribution in heavy water suggests that there is 
some competition between autoionization and direct ionization

Geminate Kinetics 12.4eV Isotope Effect
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Generation of Ultrahigh Peak Powers:  
Chirped Pulse Amplification
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Mode locking
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Bound electrons

Nonlinear relativistic optics
(large pondermotive forces)

Laser intensity limit Recent advances in laser 
technology that have opened 
up new areas of research in 
physics and chemical physics

and radiation chemistry?

K. Yamanouchi Science, 295 1659 (2002)
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In the relativistic regime it becomes
possible to generate subps e- pulses

Requires

- >1018W/cm2

⇒ terawatt laser system
e.g., .5J in 50fs = 10TW

Pulse charges as high 1-5nC have 
been achieved using T3
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Terawatt Ultrafast High Field Facility

Control Room

Amplifier
#3

Amplifier
#2

Pulse
Stretcher

Oscillator

Amplifier
#1

Amplifier
#1

Vacuum
Pulse

Compressor

Vacuum
Interaction
Chamber

Radiation shielding

Single- Shot
Detection

E- Beam
Diagnostics

LI
N

A
C

5-20MeV
30ps



18

Pioneering 
Science and
Technology

Office of Science
U.S. Department 

of Energy

T3 Specifications

Wavelength Rep. Pulsewidth Energy

Oscillator 780nm 100MHz 15fs 2nJ

Amp 1 800nm 10Hz ~350ps 2mJ

Amp 2 805nm 10Hz ~350ps .35J

30fs .15J  (5TW)
Amp 3 805nm 10Hz ~350ps 1.3J

30fs .6J ( 20TW )

Future upgrade will increase 
the power to 50TW



19

Pioneering 
Science and
Technology

Office of Science
U.S. Department 

of Energy

TUHFF

Sometime ago

Present
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The full angle beam divergence goes from ~15º at low 
power (2TW) to ~3º at higher power (7TW).  At the 
highest laser power (23TW) the divergence is 
expected to be on the order of 1º.

2TW

Electron Beam Spatial Profile
2TW 7TW
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Measurement of Charge
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The typical charges that we have measured are 400-600pC 
enough to start experiments with 2-5ps resolution!
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ThThElectron Energy Spectrum

Malka et. Al, Science 298 (2002) 1596

Large energy dispersion is a definite disadvantage
Dispersion = .5ps/cm

Monochromatic e- beam, low divergence - V. Malka
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Pulse Radiolysis with T3

• Have enough charge  to do electron pump optical probe 
measurements, but…….

• Current S/N is not good enough interpret quantitatively

• Long acquisition times are difficult because the sample is 
close to the jet

• Need to set-up an easier experiment to optimize picosecond 
measurements
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Optimization of detection 

Diode Laser

Terawatt
Laser in

Detector
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Charge pC

Statistics

Need to normalize pump-probe

measurements to the pulse charge  

e-
aq + O2 → O2

-



28

Pioneering 
Science and
Technology

Office of Science
U.S. Department 

of Energy

Summary
• Primary processes in high energy chemistry are important 

have not been studied experimentally-also need theory

• Photoionization Experiments => primary events are fast, 
complex, do not reproduce spurs,  but provide some insight

• TUHFF laser system (>20TW) has been constructed in the 
Chemistry Division and has successfully accelerated electrons 
to energies of several MeV

• Currently, pump/probe measurements on water
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