

Electronic and Molecular Structure Changes of Excited Polypyridyl Complexes from Picosecond X-Ray Absorption Spectroscopy

Christian Bressler

Ecole Polytechnique Fédérale de Lausanne (EPFL)

Laboratoire de Spectroscopie Ultrarapide

Faculté des Sciences de Base

Electron transfer reactions

- Fundamental in Chemistry and Biology
- Rates depend critically on the coupling of the electron motion to the nuclear motions within the molecule and/or with the solvents
- Short-lived reaction intermediates

GOAL:

 \rightarrow Create a molecular movie of the chemical reaction including the transition state(s) (need structural tools)

XAFS: X-Ray Absorption Fine Structure

Element Specific
 Symmetry Specific
 Electronic Structure
 Geometric Structure

Single Scattering

Multiple Scattering

Photochemistry of Aqueous [Ru(bpy)₃]²⁺

- H-atom of coordination chemistry
- Photosensitizer
- Solar Cells
- Catalyst in Redox-Reactions
- Marker in Biology,...

2+

Photochemical Cycle of [Ru^{II}(bpy)₃]²⁺

ISC Time

ca. 40 fs (Bhasikuttan et al., 2002)

Photochemical Cycle of [Ru^{II}(bpy)₃]²⁺

EXPERIMENTAL SETUP AT BEAMLINE 5.3.1 (ADVANCED LIGHT SOURCE)

→ work in *disordered/dilute* systems

 \rightarrow sample refreshed every shot \rightarrow non-reversible systems

Data Acquisition Strategy

- synchronize two independent sources
- maintain control of chosen time delay

Information about the Electronic Structure XANES - Region

$$L_3$$
-edge ($2p_{3/2} \rightarrow ..$) L_2 -edge ($2p_{1/2} \rightarrow ..$)

depends on Ru-N distance !!

Static Electronic Structure (DOS, Symmetry)

Transient Electronic Structure (DOS, Symmetry)

Information about the Transient Structure

 ΔE (10Dq) (ground - excited) = -0.15 eV $\rightarrow \Delta R = -0.02 \text{ Å}$

Information about the Transient Symmetry

 D_3 : N – Ru - N angle: 79°

Static Structure from EXAFS

...better rely on x-ray diffraction data... (for static spectra)

Transient Structure from EXAFS

Transient Structure from EXAFS ($\Delta t = 50 \text{ ps}$)

Structural Information via Time-Resolved XAFS

Structural Information via Time-Resolved XAFS

<u>Summary</u>

•*Electronic* and *Atomic* Structure of Reaction Intermediates ($\Delta t = 50 \text{ ps}$)

- Precise chemical data via transient measurements

∆E (B-B') = 0.95 eV

 $\Delta E (IP_{val}) = 1.0 \text{ eV}$

 $\Delta E (IP_{2p}) = 2.0 \text{ eV}$

∆*R (D-D'*) = -0.03 Å

 \rightarrow important input into EXAFS analysis

- XANES Comparison with Multiplet Calculations (DOS)

Ru(bpy)₃ dominantly D_3 symmetry ΔR (10Dq) = -0.02 Å

- EXAFS analysis reveals nearest neighbor structural changes

 ΔR (FEFF) = -0.037 (0.02) Å (Δk (EXAFS) = 6 Å⁻¹)

<u>Summary</u>

• Picosecond XAFS in the Condensed Phase !

XANES useful for

- *symmetry* (*O*_h, *D*₃, ...)
- **structure** (Ligand-field)
- charge transfer (+1e, even fractions)
 EXAFS useful for
- structure

 Universal method for detecting ultrafast (non) reversible structural and electronic changes

Members and Collaborators:

ÉCOLE POLYTECHNIQUE Fédérale de Lausanne

EPF-Lausanne (LSU): Bartosz Sobanek Wojciech Gawelda Maik Kaiser Alexander Tarnovsky Yuri Zaushitsyn Majed Chergui

Utrecht University Frank M. F. deGroot Swiss Light Source: Rafael Abela Daniel Grolimund Steven Johnson

EPF Lausanne (LCBC) Marc-Etienne Moret Ivano Tavernelli Ursula Röthlisberger

Université de Genève Andreas Hauser Advanced Light Source Philip Heimann Robert Schoenlein

rerer

UC Berkeley Roger Falcone Andrew MacPhee Donnacha Lowney

INFN Frascati Maurizio Benfatto

CHF: Swiss NSF,