Observation of sub-100 ps conformational changes in photolyzed carbonmonoxy-myoglobin probed by time-resolved circular dichroism.

Thibault Dartigalongue and François Hache

Laboratoire d'Optique et Biosciences - CNRS/INSERM - Ecole Polytechnique - 91128 Palaiseau France
Phone: (+33) 169334778 - Fax: (+33) 169333017 - francois.hache@polytechnique.fr http://www.lob.polytechnique.fr

Conformational changes in proteins, which are known to play a paramount role in biophysical processes, are attracting much attention. For example, the change in carboxymyoglobin (MbCO) after dissociation of the CO has recently been observed on a 100 ps timescale in a time-resolved X-Ray experiment ${ }^{1}$. Shorter time resolution is however out of reach of such experiments. In order to investigate these processes on an ultrashort timescale, we have set up a time-resolved circular dichroism (CD) experiment in MbCO. The principle of the experiment is the following: after excitation with a pump beam, the CO-heme link breaks and a deoxy-heme structure appears very rapidly $(<1 \mathrm{ps})^{2}$. As the heme CD in the Soret region is very sensitive to the geometrical arrangement of the surrounding aromatic residues 3 (figure 1), measuring the change in the CD spectrum with time allows one to gain insight into the first steps of these conformational changes.
The experiment is carried out on a $10^{-4} \mathrm{M} \mathrm{MbCO}$ sample excited with a 400 nm pulse. The CD is measured across the Soret band as a function of time with a sub-picosecond resolution (figure 2). After the initial drop in the CD due to the instantaneous electronic change of the heme, we observe a variation of the signal on a sub-100 picosecond timescale. In order to analyze these results, we have developed a calculation after Applequist's normal mode CD theory ${ }^{4}$. Calculation of the contribution of the main residues to the rotational strength allows us to assert the origin of the signal: in the first $10-20 \mathrm{ps}$, the CD change comes from the rearrangement of the heme whereas the 100 ps evolution results from the movement of more distant helices.

Figure 1

Figure 2

[^0]
[^0]: ${ }^{1}$ F. Schotte, et al., Science 300, 1944-1947 (2003).
 ${ }^{2}$ M. H. Vos and J. L. Martin, Biochimica et Biophysica Acta 1411, 1-20 (1999).
 ${ }^{3}$ M. C. Hsu and R. W. Woody, J. Am. Chem. Soc. 93, 3515-3525 (1971).
 ${ }^{4}$ F. Hache and T. Dartigalongue, Chem. Phys. 303, 197-293 (2004).

