LABORATOIRE DE PHYSIQUE THEORIQUE DE LA MATIERE CONDENSEE



Research interest: condensed-matter theory; strongly-correlated quantum fluids, cold atoms.



Research interest: condensed-matter theory; strongly-correlated quantum fluids, cold atoms.

CV



Nicolas Dupuis
Directeur de Recherche at CNRS
Laboratoire de Physique Théorique de la Matière Condensée, CNRS UMR 7600
Université Pierre et Marie Curie,
4 Place Jussieu,
75252 Paris Cedex 05,  France
Phone/Fax: +33 1 4427 2904/5100  
E-mail: firstname dot lastname at upmc.fr

2010-: Directeur de Recherche at CNRS.
Sept. 2007-: Laboratoire de Physique Théorique de la Matière Condensée, Université Pierre et Marie Curie, Paris.
Sept. 2004 - Sept. 2007: Visiting scientist at Imperial College, London (contact: A. Hewson).
Janv. 1996 - Dec. 1998: Visiting scientist at university of Maryland, USA (contact: V. Yakovenko).
1993-: Researcher at CNRS (Chargé de Recherche), Laboratoire de Physique des Solides, Université Paris-Sud.
1990-1993: Ph.D thesis at Laboratoire de Physique des Solides, Université Paris-Sud (advisor: G. Montambaux).
1989-1990: military obligations as scientist at École Normale Supérieure, Paris.
1988-1989: DEA in condensed-matter physics, Université Paris-Sud.
1985-1988: Engineering school: Télécom ParisTech. 

 

 

Publications


Publications on arXiv

Publications in refereed journals

61- Quantum criticality at the superconductor to insulator transition revealed by specific heat measurements.
S. Poran, T. Nguyen-Duc, A. Auerbach, N. Dupuis, A. Frydman, and O. Bourgeois, Nature Communications 8, 14464 (2017).

60- Nonperturbative functional renormalization-group approach to transport in the vicinity of a (2+1)-dimensional O(N)-symmetric quantum critical point
F. Rose and N. Dupuis, Phys. Rev. B 95, 014513 (2017)

59- First-order phase transitions in spinor Bose gases and frustrated magnets
T. Debelhoir and N. Dupuis,  Phys. Rev. A 94, 053623 (2016).

58- Critical Casimir forces from the equation of state of quantum critical systems.
A. Rançon, L.-P. Henry, F. Rose, D. Lopes Cardozo, N. Dupuis, P. C. W. Holdsworth and T. Roscilde,  Phys. Rev. A 94, 140506(R) (2016).

57- Simulating frustrated magnetism with spinor Bose gases.
T. Debelhoir and N. Dupuis, Phys. Rev. A 93, 051603(R) (2016).

56- Critical region of the superfluid transition in the BCS-BEC crossover.
T. Debelhoir and N. Dupuis, Phys. Rev. A 93, 023642 (2016).

55- Higgs amplitude mode in the vicinity of a (2+1)-dimensional quantum critical point: a nonperturbative renormalization-group approach.
F. Rose, F. Léonard and N. Dupuis, Phys. Rev. B 91, 224501 (2015).

54- Reexamination of the nonperturbative renormalization-group approach to the Kosterlitz-Thouless transition.
P. Jakubczyk, N. Dupuis, and Delamotte, Phys. Rev. E 90, 062105 (2014).

53- Higgs amplitude mode in the vicinity of a (2+1)-dimensional quantum critical point.
A. Rançon and N. Dupuis, Phys. Rev. B 89, 180501(R) (2014).

52- Nonperturbative renormalization-group approach to fermion systems in the two-particle-irreducible effective action formalism.
N. Dupuis, Phys. Rev. B 89, 035113 (2014).

51- Quantum XY criticality in a two-dimensional Bose gas near the Mott transition.
A. Rançon and N. Dupuis, Europhys. Lett.  104, 16002 (2013).

50- Thermodynamics in the vicinity of a relativistic quantum critical point in 2+1 dimensions.
A. Rançon, O. Kodio, N. Dupuis,, and P. Lecheminant, Phys. Rev. E 88, 012113 (2013).

49- Thermodynamics of a Bose gas near the superfluid--Mott-insulator transition.
A. Rançon and N. Dupuis, Phys. Rev. A 86, 043624 (2012).

48- Universal thermodynamics of a two-dimensional Bose gas.
A. Rançon and N. Dupuis, Phys. Rev. A 85, 063607 (2012).

47- Quantum criticality of a Bose gas in an optical lattice near the Mott transition.
A. Rançon and  N. Dupuis,Phys. Rev. A 85, 011602(R) (2012).

46- Nonperturbative renormalization-group approach to strongly correlated lattice bosons.
A. Rançon and N. Dupuis, Phys. Rev. B 84, 174513 (2011).

45- Nonperturbative renormalization-group approach to the Bose-Hubbard model.
A. Rançon and N. Dupuis, Phys. Rev. B 83, 172501 (2011).

44- Infrared behavior in systems with a broken continuous symmetry: classical O(N) model vs interacting bosons.
N. Dupuis, Phys. Rev. E 83, 031120 (2011).

43- From local to critical fluctuations in lattice models: a non-perturbative renormalization-group approach.
T. Machado and N. Dupuis, Phys. Rev. E 82, 041128 (2010).

42- Infrared behavior and spectral function of a Bose superfluid at zero temperature.
N. Dupuis, Phys. Rev. A 80, 043627 (2009).
 
41- DMFT-NRG for superconductivity in the attractive Hubbard model.
J. Bauer, A.C. Hewson, and N. Dupuis, Phys. Rev. B 79, 214518 (2009).
 
40- Unified picture of superfluidity: from Bogoliubov's approximation to Popov's hydrodynamic theory.
N. Dupuis, Phys. Rev. Lett. 102, 190401 (2009).
 
39- Non-perturbative renormalization-group approach to lattice models.
N. Dupuis and K. Sengupta, Eur. Phys. J. B  66, 271 (2008).
 
38- Non-perturbative renormalization-group approach to zero-temperature Bose systems.
N. Dupuis and K. Sengupta, Europhys. Lett.  80, 50007 (2007).

37- Bose-Fermi mixtures in an optical lattice.
K. Sengupta, N. Dupuis, and P. Majumdar, Phys. Rev. A  75, 063625 (2007).

36- Variational Cluster Perturbation Theory for Bose-Hubbard models.
W. Koller and N. Dupuis, J. Phys.: Condens. Matter  18, 9525-9540 (2006).

35- Superconducting pairing and density-wave instabilities in quasi-one-dimensional conductors.
J. C. Nickel, R.  Duprat, C. Bourbonnais, and N. Dupuis, Phys. Rev. B  73, 165126 (2006).

34- Comment on ``Universal Spin-Flip Transition in Itinerant Antiferromagnets" by G. Varelogiannis.
N. Dupuis, Phys. Rev. Lett.  96, 209701 (2006).

33- Renormalization group approach to interacting fermion systems in the two-particle-irreducible formalism.
N. Dupuis, Eur. Phys. J. B  48, 319 (2005).

32- Triplet superconducting pairing and density-wave instabilities in organic conductors.       
J. C. Nickel, R.  Duprat, C. Bourbonnais, and N. Dupuis, Phys. Rev. Lett.  95, 247001 (2005).

31- Effective action for superfluid Fermi systems in the strong-coupling limit.
N.  Dupuis, Phys. Rev. A  72, 013606 (2005).

30- Mott insulator to superfluid transition in the Bose-Hubbard model: a strong-coupling approach.
K. Sengupta and N. Dupuis, Phys. Rev. A  71, 033629 (2005).

29- Mott insulator to superfluid transition of ultracold bosons in an optical lattice near a Feshbach resonance.
K. Sengupta and N. Dupuis, Europhys. Lett. 70, 586 (2005).

28- Berezinskii-Kosterlitz-Thouless transition and BCS-Bose crossover in the two-dimensional attractive Hubbard model.
N. Dupuis, Phys. Rev. B  70, 134502 (2004).

27- Antiferromagnetism and single-particle properties in the two-dimensional half-filled Hubbard model: a non-linear sigma model approach.  
K. Borejsza and N. Dupuis, Phys. Rev. B  69, 085119 (2004).

26- Field-induced spin-density-wave phases in TMTSF organic conductors: quantization versus non-quantization.
K. Sengupta and N. Dupuis,  Phys. Rev. B  68, 094431 (2003).

25- Antiferromagnetism and single-particle properties in the two-dimensional half-filled Hubbard model: Slater vs Mott-Heisenberg.   
K. Borejsza and N. Dupuis, Europhys. Lett.  63, 722 (2003).

24- Spin fluctuations and pseudogap in the two-dimensional half-filled Hubbard model at weak coupling.
N. Dupuis, Phys. Rev. B  65, 245118 (2002).

23- Spin-density-wave instabilities in the organic conductor (TMTSF)2ClO4: Role of anion ordering.
K. Sengupta and N. Dupuis, Phys. Rev. B  65, 035108 (2002)
 
22- A new approach to strongly correlated fermion systems: the spin-particle-hole coherent-state  path integral.
N. Dupuis, Nucl. Phys. B  618, 617 (2001).
 
21-  Effect of nearest- and next-nearest neighbor interactions on the spin-wave velocity of one-dimensional quarter-filled spin-density-wave conductors.
Y. Tomio, N. Dupuis and Y. Suzumura, Phys. Rev. B  64, 125123 (2001)

20- A strong-coupling expansion for the Hubbard model.
N. Dupuis and S. Pairault, Int. J. of Mod. Phys. B  14, 2529 (2000). 

19- Effective action and collective modes in quasi-one-dimensional spin-density-wave systems.
K. Sengupta and N. Dupuis, Phys. Rev. B.  61, 13493 (2000).

18- Collective modes in a system with two spin-density waves: the `Ribault' phase of quasi-one-dimensional organic conductors.
N. Dupuis and V.M. Yakovenko, Phys. Rev. B  61, 12888 (2000)

17- A unified description of static and dynamic properties of Fermi liquids.
N. Dupuis, Int. J. Mod. Phys. B  14, 379 (2000).

16- Quantum Hall effect anomaly and collective modes in the magnetic-field-induced spin-density-wave phases of quasi-one-dimensional conductors.
N. Dupuis and V.M. Yakovenko, Europhys. Lett. 45, 361 (1999).

15- Effect of umklapp scattering on the magnetic-field-induced spin-density waves in quasi-one-dimensional organic conductors.
N. Dupuis and V.M. Yakovenko, Phys. Rev. B  58, 8773 (1998)

14- Fermi liquid theory: a renormalization group approach.
N. Dupuis, Eur. Phys. J. B 3, 315 (1998).

13- Sign reversal of the Quantum Hall Effect and helicoidal field-induced spin density waves in quasi-one-dimensional organic conductors.
N. Dupuis and V.M. Yakovenko, Phys. Rev. Lett.  80, 3618 (1998).

12- Dimensional crossover and metal-insulator transition in quasi-two-dimensional disordered conductors.
N. Dupuis, Phys. Rev. B  56, 9377 (1997).

11- Metal-insulator transition in highly conducting oriented polymers.
N. Dupuis, Phys. Rev. B  56, 3086 (1997).

10- Renormalization Group approach to Fermi liquid theory.
N. Dupuis and G. Chitov, Phys. Rev. B  54, 3040 (1996).

9- Mean-field theory of a quasi-one-dimensional superconductor in a high magnetic field.
N. Dupuis, J. Phys. I (France)  5 1577 (1995).

8- Larkin-Ovchinnikov-Fulde-Ferrell state in quasi-one-dimensional superconductors.
N. Dupuis, Phys. Rev. B  51 9074 (1995).

7- Thermodynamics and excitation spectrum of a quasi-one-dimensional superconductor in a high magnetic field.   
N. Dupuis, Phys. Rev. B  50, 9607 (1994).

6- Superconductivity of quasi-one-dimensional conductors in a high magnetic field. 
N. Dupuis and G. Montambaux,Phys. Rev. B  49, 8993 (1994).

5- Quasi-one dimensional superconductors in strong magnetic field.
N. Dupuis, G. Montambaux, and C.A.R. Sà de Melo, Phys. Rev. Lett.  70, 2613 (1993).

4- Localization and magnetic field in a strongly anisotropic conductor.
N. Dupuis and G. Montambaux, Phys. Rev. B  46, 9603 (1992).

3- Magnetic field induced Anderson localization in a strongly anisotropic conductor.
N. Dupuis and G. Montambaux,  Phys. Rev. Lett.  68, 357 (1992).
 
2- Aharonov-Bohm flux and statistics of energy levels in metals.
N. Dupuis and G. Montambaux, Phys. Rev. B  43, 14390 (1991).

1- Electron minibands and Wannier-Stark quantization in an In0.15Ga0.85As-GaAs strained layer superlattice.
B. Soucail, N. Dupuis, R. Ferreira, P. Voisin, A.P. Roth, D. Morris, K. Gibb and C. Lacelle, Phys. Rev. B 41, 8568 (1990).
 

Other publications (proceedings, etc.)

14- Infrared behavior of interacting bosons at zero temperature [Proceedings of the International Conference on frustrated spin systems, cold atoms and nanomaterials (Hanoi, Vietnam, July 14-16, 2010)].
N. Dupuis, Mod. Phys. Lett. B 25, 963 (2011).

13- Infrared behavior of interacting bosons at zero temperature [Proceedings of the 19th International Laser Physics Workshop, LPHYS'10 (Foz do Iguaçu, Brazil, July 5-9, 2010)].
N. Dupuis and A. Rançon, Laser Physics 21, 1470 (2011).

12- Superfluid to Mott-insulator transition of cold atoms in optical lattices [Proceedings of the 5th International Workshop on Electronic Crystals, ECRYS 2008 (Cargèse, Corsica, France, August 24-30, 2008)].
N. Dupuis and K. Sengupta, Physica B  404, 517 (2009).

11- Superconductivity and Antiferromagnetism in Quasi-one-dimensional Organic Conductors [Invited paper for a special issue of Journal of Low Temperature Physics dedicated to the 20th anniversary of high-temperature superconductors].      
N. Dupuis, C. Bourbonnais, and J. C. Nickel, Fizika Nizkikh Temperatur  32, 505 (2006) (cond-mat/0510544).

10- Antiferromagnetism and single-particle properties in the two-dimensional half-filled Hubbard model: Slater vs. Mott-Heisenberg [Proceedings of the International Conference on Magnetism, ICM 2003, Roma, July 27-August 1, 2003] .
K. Borejsza and N. Dupuis, J. of Magnetism and Magnetic Materials  272-276, 946 (2004).

9- Field-induced spin-density-wave phases in TMTSF organic conductors: quantization versus non-quantization [Proceedings of the fifth International Symposium on Crystalline Organic Metals, Superconductors and Ferromagnets (ISCOM 2003) (September 21-36, 2003, Port-Bourgenay, France)].
N. Dupuis and K. Sengupta, J. Phys. IV (France)  114, 61 (2004).

8- Spin waves in the spiral phase of a dopped antiferromagnet: a strong-coupling approach.
N. Dupuis, cond-mat/0105063.

7- Sign Reversal of the Quantum Hall Effect and Helicoidal Magnetic-Field-Induced Spin-Density Waves in Organic Conductors [Proceedings of the International Workshop on electronic crystals (ECRYS99) (May 31-June 5, 1999, La Colle-sur-Loup, France)].
N. Dupuis and V.M. Yakovenko, J. Phys. IV (France)  9, Pr10-199 (1999).

6- Quasi-one-dimensional superconductors: from weak to strong magnetic field [Proceedings of the workshop Exactly Aligned Magnetic Field Effects in Low-Dimensional Superconductors (November 15-18, 1998, Kyoto, Japan)].
N. Dupuis, J. of superconductivity  12, 475 (1999).

5- Sign reversal of the quantum Hall effect and helicoidal magnetic-field-induced spin-density waves in organic conductors [Proceedings of the conference on Strongly correlated systems (SCES98) (July 15-18, 1998, Paris, France)].
N. Dupuis and V.M. Yakovenko, Physica B 259-261, 1013 (1999).

4- Quasi-one-dimensional superconductor at high magnetic field [Proceedings of the Conference on Physical Phenomena at High Magnetic Field II (PPHMF-II) (Tallahassee, USA, May 1995), edited by Z. Fisk, L.P. Gor'kov, D. Meltzer, and R. Schrieffer (World Scientific, 1996)].
N. Dupuis

3- Quasi-one dimensional superconductors in strong magnetic field [Proceedings of the 20th International Conference on low temperature physics (LT-20) (Eugene, USA, 1993)]. 
G. Montambaux, N. Dupuis and C.A.R. Sà de Melo, Physica B  194-196, 1383 (1994).

2- Quasi-one dimensional superconductors in strong magnetic field. [Proceedings of the International Workshop on Electronic Crystals (ECRYS-93) (Carry Le Rouet, France, 1993)]
N. Dupuis, G. Montambaux, and C.A.R. Sà de Melo, J. Phys. I (France)  3, 311 (1993).

1- Localization, superconductivity and magnetic field in a quasi-1D conductor. [Proceedings of the International Conference on Science and Technology of Synthetic Metals (ICSM'92) (Goteborg, Suède, 1992)]
N. Dupuis and G. Montambaux, Synthetic Metals  55, 2853 (1993).
 

Notes on the many-body problem

 

Notes on the many-body problem

          - Functional integrals (pdf)
          - Fermi liquid theory (pdf)
          - The electron liquid (pdf)
          - Magnetism in lattice fermion systems (pdf)
          - Quantum magnetism (pdf)
          - Renormalization group and critical phenomena (pdf)
          - Interacting bosons
(pdf)
          - The Bose-Hubbard model
(pdf)

 

Teaching

Quantum physics: from atom to solid state

Broken symmetries and quantum phase transitions (2008-2015)

Philippe Lecheminant (lectures) et Nicolas Dupuis (tutorial class) 

Course description: This course aims at introducing, within the functional integral formalism, the methods of the many-body problem and their applications to condensed matter and ultracold atomic gases. In particular, we will study spontaneous symmetry breaking (magnetism, superfluidity and superconductivity) and quantum phase transitions (quantum antiferromagnetism, superfluid—Mott-insulator transition, etc.).

Requirements: A good knowledge of the second-quantization formalism as well as notions on the Landau theory of phase transitions.

Course plan:

1) Functional approach to the many-body problem

  • Coherent states (bosons/fermions)
  • Functional integrals

2) Spontaneous symmetry breaking (magnetism, superfluidity and superconductivity)

  • General notions on spontaneous symmetry breaking
  • Spontaneous breaking of global continuous symmetry
  • Superfluidity and superconductivity

3) Quantum phase transitions

  • Phase transitions and critical phenomena
  • Zero-temperature phase transitions, effect of temperature
  • Examples of quantum phase transitions

Detailed program and suggested bibliography

Notes on the many-body problem:

In addition to the books mentioned above (suggested bibliography), students may read the lecture  notes "Functional integrals" and "Renormalization group and critical phenomena" available in the section "Notes on the  many-body problem " of this web page. Although these notes go far beyond the scope of the course, some parts can be used as supplementary materials.

Tuturiol classes:
                   Gaussian integration (pdf) 
                   Response and correlation functions (pdf)
                   Fourier transforms (pdf)

Archive 2011-2012 (in French) (pdf)
Archive 2013-2014 (pdf)