1 Optimizing the parallel tempering method

One considers a system of N identical point particles of mass m. The Hamiltonian of the system is given by

$$
\begin{equation*}
H=\sum_{i=1}^{N} \frac{\vec{p}_{i}^{2}}{2 m}+V\left(\vec{x}^{N}\right) \tag{1}
\end{equation*}
$$

where $V\left(\vec{x}^{N}\right)$ is the interaction potential, \vec{p}, the momentum of particle i, and $\vec{x}^{N}=$ $\left(\vec{x}_{1}, \vec{x}_{2}, \cdots, \vec{x}_{N}\right)$ is a short-hand notation for the particle positions. In order to study the phase diagram, one performs a Monte Carlo simulation using the tempering method. It consists in performing simulation with M different boxes. Each box is in contact with a thermostat at the inverse temperature β_{i}. The inverse temperatures β_{i} are given by a increasing sequence $\beta_{i-1}<\beta_{i}<\beta_{i+1}$. The stochastic evolution of the system is given by two kinds of Markovian processes : single moves in each box using a Metropolis rule and particle swaps between two nearest neighbor boxes following also a Metropolis rule.

Let us denote the configurational integral of the canonical partition function as

$$
\begin{equation*}
Q(\beta)=\int d \vec{x}^{N} \exp \left(-\beta V\left(\vec{x}_{N}\right)\right) \tag{2}
\end{equation*}
$$

where $d \vec{x}^{N}=\prod_{i=1}^{N} d \vec{x}_{i}$.

1. Express the joint probability distribution density of the particles $P\left(\beta, \beta^{\prime}, \vec{x}^{N}, \vec{x}^{N}\right)$ of two boxes at the inverse temperature β and β^{\prime} as a function of $Q(\beta) Q\left(\beta^{\prime}\right), \beta, \beta, V\left(\vec{x}_{i}\right)$ and $V\left(\vec{x}_{i}^{\prime}\right)$.

Solution: The joint probabilty of two boxes is given by

$$
P\left(\beta, \beta^{\prime}, \vec{x}^{N}, \vec{x}^{N}\right)=\frac{\exp \left(-\beta V\left(\vec{x}_{N}\right)\right) \exp \left(-\beta V\left(\vec{x}_{N}\right)\right)}{Q(\beta) Q\left(\beta^{\prime}\right)}
$$

satisfying

$$
\iint d \vec{x}^{N} d{\overrightarrow{x^{\prime}}}^{N} P\left(\beta, \beta^{\prime}, \vec{x}^{N}, \vec{x}^{\prime N}\right)=1
$$

2. Defining $P_{a}\left(\beta, \beta^{\prime}\right)$ the acceptance probability for particle swaps between neighboring boxes at the inverse temperatures β and β^{\prime}, justify that

$$
\begin{equation*}
P_{a}\left(\beta, \beta^{\prime}\right)=\iint d \vec{x}^{N} d{\overrightarrow{x^{\prime}}}^{N} P\left(\beta, \beta^{\prime}, \vec{x}^{N},{\overrightarrow{x^{\prime}}}^{N}\right) \operatorname{Min}\left(1, \exp \left(\left(\beta^{\prime}-\beta\right)\left(V\left({\overrightarrow{x^{\prime}}}_{N}\right)-V\left(\vec{x}_{N}\right)\right)\right)\right) \tag{3}
\end{equation*}
$$

Solution: $\operatorname{Min}\left(1, \exp \left(\left(\beta^{\prime}-\beta\right)\left(V\left({\overrightarrow{x^{\prime}}}_{N}\right)-V\left(\vec{x}_{N}\right)\right)\right)\right.$) is the probability of accepting a swap between two boxes. $P_{a}\left(\beta, \beta^{\prime}\right)$ is the average of this quantity over the equilibrium joint probability of two boxes.
3. Justify that $P_{a}\left(\beta, \beta^{\prime}\right)=P_{a}\left(\beta^{\prime}, \beta\right)$

Solution: $P_{a}\left(\beta, \beta^{\prime}\right)=P_{a}\left(\beta^{\prime}, \beta\right)$ is symmetric by definition. Hopefully, because if a box accepts exchange with a second box, the acceptance of the second box must be identical!
4. For the sake of simplicity, one now assumes that $\beta^{\prime}>\beta$, show that

$$
\begin{align*}
& \operatorname{Min}\left(1, \exp \left(\left[\beta^{\prime}-\beta\right]\left[\mathrm{V}\left(\tilde{\mathrm{x}}_{\mathrm{N}}^{\prime}\right)-\mathrm{V}\left(\tilde{\mathrm{x}}_{\mathrm{N}}\right)\right]\right)\right)=\exp \left(\frac{\left(\beta^{\prime}-\beta\right)}{2}\left(\mathrm{~V}\left(\tilde{\mathrm{x}}_{\mathrm{N}}^{\prime}\right)-\mathrm{V}\left(\tilde{\mathrm{x}}_{\mathrm{N}}\right)\right)\right) \\
& \exp \left(-\frac{\left(\beta^{\prime}-\beta\right)}{2}\left|V\left({\overrightarrow{x^{\prime}}}_{N}\right)-V\left(\vec{x}_{N}\right)\right|\right) \tag{4}
\end{align*}
$$

Solution: By using the property that $x / 2+|x| / 2=0$ if $x<0$ et $x / 2+|x| / 2=1$ if $x>0$, and taking the exponential of this property one obtains Eq. 4
5. Introducing the variables $R=\frac{\beta^{\prime}}{\beta}$ and $\bar{\beta}=\frac{\beta+\beta^{\prime}}{2}$, show that

$$
\begin{equation*}
P_{a}\left(\beta, \beta^{\prime}\right)=\frac{Q^{2}(\bar{\beta})}{Q(\beta) Q\left(\beta^{\prime}\right)} \iint d \vec{x}^{N} d{\overrightarrow{x^{\prime}}}^{N} P\left(\bar{\beta}, \bar{\beta}, \vec{x}^{N},{\overrightarrow{x^{\prime}}}^{N}\right) \exp \left(-\frac{R-1}{R+1} \bar{\beta}\left|V\left({\overrightarrow{x^{\prime}}}_{N}\right)-V\left(\vec{x}_{N}\right)\right|\right) \tag{5}
\end{equation*}
$$

Solution: One has $\beta-\beta=\frac{R-1}{R+1} \beta^{\prime}$ which gives the exponential factor of Eq.5. Similarly

$$
\exp \left(\frac{\left(\beta^{\prime}-\beta\right)}{2}\left(V\left(\vec{x}_{N}\right)-V\left(\vec{x}_{N}\right)\right)\right) P_{\beta} P_{\beta^{\prime}}=P_{\bar{\beta}^{\prime}} P_{\bar{\beta}^{\prime}} Q^{2}(\bar{\beta})
$$

which gives Eq. 5 .

One aims to obtain an asymptotic estimate of P_{a} when $\beta^{\prime}-\beta \ll 1$, namely $R-1 \ll 1$.
6. Using the thermodynamic relation $C_{v}(\beta)=-\beta^{2} \frac{\partial^{2} \beta F(\beta)}{\partial \beta^{2}}$ (where $F(\beta)$ is the excess free energy of the system), show that

$$
\begin{equation*}
\frac{Q^{2}(\bar{\beta})}{Q(\beta) Q\left(\beta^{\prime}\right)}=1-\left(\frac{R-1}{R+1}\right)^{2} C v(\bar{\beta})+O\left(|R-1|^{3}\right) \tag{6}
\end{equation*}
$$

where C_{v} is the specific heat of the system.

Solution: The expansion of the free energy gives

$$
\beta F(\beta)=\bar{\beta} F(\bar{\beta})+(\beta-\bar{\beta}) \frac{\partial \beta F(\beta)}{\partial \beta}+\frac{1}{2}(\beta-\bar{\beta})^{2}+\frac{\partial^{2} \beta F(\beta)}{\partial \beta^{2}}+\ldots
$$

By using $\beta F=-\ln (Q(\beta)$, one obtains Eq. 6
7. Show that

$$
\begin{align*}
\iint d \vec{x}^{N} d{\overrightarrow{x^{\prime}}}^{N} P\left(\bar{\beta}, \bar{\beta}, \vec{x}^{N},{\overrightarrow{x^{\prime}}}^{N}\right) \exp \left(-\frac{R-1}{R+1} \bar{\beta}\left|V\left({\overrightarrow{x^{\prime}}}_{N}\right)-V\left(\vec{x}_{N}\right)\right|\right)= & 1-\frac{R-1}{R+1} M(\bar{\beta}) \\
& +\left(\frac{R-1}{R+1}\right)^{2} C v(\bar{\beta})+\ldots \tag{7}
\end{align*}
$$

where $M(\bar{\beta})$ is expressed as a mean average of $\left|V\left({\overrightarrow{x^{\prime}}}_{N}\right)-V\left(\vec{x}_{N}\right)\right|$.

Solution: Expanding the exponential up to the second order in $\frac{R-1}{R+1}$ gives Eq. 7
8. Finally, by combining the above results, show that

$$
\begin{equation*}
P_{a}\left(\beta, \beta^{\prime}\right)=1-\frac{R-1}{R+1} M(\bar{\beta})+O\left(|R-1|^{3}\right) \tag{8}
\end{equation*}
$$

Solution: The ratio of the two quantities cancels the second term of the expansion in $R-1$.
9. Using the Cauchy-Schwarz inequality $\left.\langle | V\left({\overrightarrow{x^{\prime}}}_{N}\right)-V\left(\vec{x}_{N}\right)| \rangle^{2} \leq\langle | V\left({\overrightarrow{x^{\prime}}}_{N}\right)-\left.V\left(\vec{x}_{N}\right)\right|^{2}\right\rangle$, show that $\left.M^{2}(\bar{\beta}) \leq 2 C_{V} \bar{\beta}\right)$

Solution: Expanding the righ-hand side term of the inequality give $2 C_{v}$ and shows that $\left.M^{2}(\bar{\beta}) \leq 2 C_{V} \bar{\beta}\right)$
10. An optimal tempering Monte-Carlo method consists in having an equal acceptance between successive boxes. If the specific heat C_{v} (or M)is also constant in the range of $\left[\beta_{\text {Max }}, \beta_{\text {Min }}\right]$ show for N boxes that the inverse temperatures must be chosen as

$$
\begin{equation*}
R=\left(\frac{\beta_{\max }}{\beta_{\min }}\right)^{\frac{1}{N-1}} \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
\beta_{i}=R^{i-1} \beta_{\min } \tag{10}
\end{equation*}
$$

Solution: If R is constant, one has $\beta_{i+1}=R \beta_{i}$. The geometric series has a constraint $\beta_{\text {max }}=R^{N-1} \beta_{\text {min }}$
11. For the study of a first-order phase transition, can one assume a constant C_{v} ?

Solution: Except when the critical exponent $\alpha<0$ the specific heat has a huge variation close the phase transition, which explains that this assumption is not correct.

