
PCS 2020-2021 Exercices: Tempering Numerical Simulation

1 Optimizing the parallel tempering method
One considers a system of N identical point particles of mass m. The Hamiltonian of

the system is given by

H =
N∑
i=1

~p2
i

2m + V (~xN) (1)

where V (~xN) is the interaction potential, ~pi, the momentum of particle i, and ~xN =
(~x1, ~x2, · · · , ~xN) is a short-hand notation for the particle positions. In order to study the
phase diagram, one performs a Monte Carlo simulation using the tempering method. It
consists in performing simulation with M different boxes. Each box is in contact with a
thermostat at the inverse temperature βi. The inverse temperatures βi are given by a in-
creasing sequence βi−1 < βi < βi+1. The stochastic evolution of the system is given by
two kinds of Markovian processes : single moves in each box using a Metropolis rule and
particle swaps between two nearest neighbor boxes following also a Metropolis rule.

Let us denote the configurational integral of the canonical partition function as

Q(β) =
∫
d~xN exp (−βV (~xN)) (2)

where d~xN = ∏N
i=1 d~xi.

1. Express the joint probability distribution density of the particles P (β, β′, ~xN , ~x′N) of
two boxes at the inverse temperature β and β′ as a function of Q(β) Q(β′), β, β’ V (~xi)
and V (~x′i).

Solution: The joint probabilty of two boxes is given by

P (β, β′, ~xN , ~x′N) = exp (−βV (~xN)) exp (−βV (~xN))
Q(β)Q(β′)

satisfying ∫∫
d~xNd~x′

N
P (β, β′, ~xN , ~x′N) = 1

2. Defining Pa(β, β′) the acceptance probability for particle swaps between neighboring
boxes at the inverse temperatures β and β′, justify that

Pa(β, β′) =
∫∫

d~xNd~x′
N
P (β, β′, ~xN , ~x′N)Min

(
1, exp

(
(β′ − β)(V (~x′N)− V (~xN))

))
(3)

Solution: Min
(
1, exp

(
(β′ − β)(V (~x′N)− V (~xN))

))
is the probability of accep-

ting a swap between two boxes. Pa(β, β′) is the average of this quantity over the
equilibrium joint probability of two boxes.
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3. Justify that Pa(β, β′) = Pa(β′, β)

Solution: Pa(β, β′) = Pa(β′, β) is symmetric by definition. Hopefully, because if a
box accepts exchange with a second box, the acceptance of the second box must
be identical !

4. For the sake of simplicity, one now assumes that β′ > β, show that

Min
(
1, exp

(
[β′ − β][V(x̃′N)− V(x̃N)]

))
= exp

(
(β′ − β)

2 (V(x̃′N)− V(x̃N))
)

exp
(
−(β′ − β)

2 |V (~x′N)− V (~xN)|
)

(4)

Solution: By using the property that x/2 + |x|/2 = 0 if x < 0 et x/2 + |x|/2 = 1
if x > 0, and taking the exponential of this property one obtains Eq.4

5. Introducing the variables R = β′

β
and β = β+β′

2 , show that

Pa(β, β′) = Q2(β)
Q(β)Q(β′)

∫∫
d~xNd~x′

N
P (β, β, ~xN , ~x′N) exp

(
−R− 1
R + 1β|V (~x′N)− V (~xN)|

)
(5)

Solution: One has β − β = R−1
R+1β

′ which gives the exponential factor of Eq.5.
Similarly

exp
(

(β′ − β)
2 (V (~x′N)− V (~xN))

)
PβPβ′ = Pβ′Pβ′Q

2(β)

which gives Eq.5.

One aims to obtain an asymptotic estimate of Pa when β′− β � 1,namely R− 1� 1.
6. Using the thermodynamic relation Cv(β) = −β2 ∂2βF (β)

∂β2 (where F (β) is the excess free
energy of the system), show that

Q2(β)
Q(β)Q(β′) = 1−

(
R− 1
R + 1

)2
Cv(β) +O(|R− 1|3) (6)

where Cv is the specific heat of the system.
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Solution: The expansion of the free energy gives

βF (β) = βF (β) + (β − β)∂βF (β)
∂β

+ 1
2(β − β)2 + ∂2βF (β)

∂β2 + ...

By using βF = − ln(Q(β), one obtains Eq.6

7. Show that∫∫
d~xNd~x′

N
P (β, β, ~xN , ~x′N) exp

(
−R− 1
R + 1β|V (~x′N)− V (~xN)|

)
=1− R− 1

R + 1M(β)

+
(
R− 1
R + 1

)2
Cv(β) + ...

(7)

where M(β) is expressed as a mean average of |V (~x′N)− V (~xN)|.

Solution: Expanding the exponential up to the second order in R−1
R+1 gives Eq.7

8. Finally, by combining the above results, show that

Pa(β, β′) = 1− R− 1
R + 1M(β) +O(|R− 1|3) (8)

Solution: The ratio of the two quantities cancels the second term of the expansion
in R− 1.

9. Using the Cauchy-Schwarz inequality 〈|V (~x′N) − V (~xN)|〉2 ≤ 〈|V (~x′N) − V (~xN)|2〉,
show that M2(β) ≤ 2CV β)

Solution: Expanding the righ-hand side term of the inequality give 2Cv and shows
that M2(β) ≤ 2CV β)

10. An optimal tempering Monte-Carlo method consists in having an equal acceptance
between successive boxes. If the specific heat Cv (or M)is also constant in the range
of [βMax, βMin] show for N boxes that the inverse temperatures must be chosen as

R =
(
βmax
βmin

) 1
N−1

(9)

and
βi = Ri−1βmin (10)
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Solution: IfR is constant, one has βi+1 = Rβi.The geometric series has a constraint
βmax = RN−1βmin

11. For the study of a first-order phase transition, can one assume a constant Cv ?

Solution: Except when the critical exponent α < 0 the specific heat has a huge
variation close the phase transition, which explains that this assumption is not
correct.
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