
PCS 2021-2022 Exercices: TASEP Numerical Simulation

A modified TASEP model for molecular motors
One considers a 1D lattice of N sites. Each site is characterized by an occupation

number ni which is equal to 0 (empty) or 1 (occupied by one particle). Particles can jump
on the right neighboring site if the site is empty, otherwise the particle does not move. In
addition, the bulk sites are in contact to particle reservoirs, namely, particles can adsorb
with a rate ωA and desorb with a rate ωD. At the boundaries, the situation is slightly
different : on the site 1, the adsorption rate is α and on the site N , the desorption rate is
β. (0 < α < 1 and 0 < β < 1)
1. Denoting the mean particle density 〈ni〉 on the site i, show that

d〈ni〉
dt

= 〈ni−1(1− ni)〉 − 〈ni(1− ni+1)〉+ ωA〈(1− ni)〉 − ωD〈ni〉 (1)

for i ∈ [2, N − 1].

Solution: The time derivative of the mean occupation number of the site i gas
four contributions
— hopping of a particle from site i− 1 to i 〈ni−1ni〉 (gain term)
— hopping of a particle from site i to i+ 1 〈nini+1〉 (loss term)
— adsorption on the site i if the site is empty ωA〈(1− ni)〉 (gain term)
— desorption of the site i if the site is occupied ωD〈ni〉 (loss term)

2. Write the two kinetic equations for the boundaries, i = 1 and i = N .

Solution: Boudary terms
— For the site 1, one has two terms : a gain term coming from the insertion of

a particle and a loss term due to a hop of a particle from site 1 to site 2.

d〈n1〉
dt

= −〈n1(1− n2)〉+ α〈(1− n1)〉 (2)

—
— For the site N , one has two terms : a losse term coming from the exit of a

particle and a gain term due to a hop of a particle from site N − 1 to site N .

d〈nN〉
dt

= 〈nN−1(1− nN)〉 − βD〈nN〉 (3)

3. In order to simulate, this system, one proposes the following algorithm (for the bulk
of the system) : One chooses randomly and uniformly a site i0
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— if the site i0 is occupied, one chooses a uniform random number η between 0 and
1. If η < P1, the particle is removed, else if the right neighboring site is empty ,
the particle is moved otherwise it stays here.

— if the site i0 is empty. one chooses a uniform random number η between 0 and 1.
If η < P2, a particle is adsorbed on the site i0, else if the left neighboring site is
occupied, the particle is moved otherwise nothing happens.

Give the values of P1 and P2 as a function of ωA and ωD.

Solution:

— If the site is occupied, we have two possible events, hopping and desorption
with respective rates 1 and ωD. Therefore

P1 = ωD
1 + ωD

eginitemize
— If the site is empty, we have two possible events, hopping and adsorption with

respective rates 1 and ωA. Therefore

P2 = ωA
1 + ωA

4. Modify the previous algorithm to include the two boundary conditions.

Solution: By choosing at random the site i, the previous algorithm is modified
for site 1 and N where
— For the site 1. If empty, one chooses a random number η between 0 and 1. if

η < α a site is inserted if not no insertion. If occupied, the particle hops on
the left if the site is empty.

— For the site N . If empty and the site N − 1 is occupied, the particle hops on
N . If the site is occupied, one chooses a random number η between 0 and 1.
if η < beta the particle exits the lattice

5. To obtain an approximate treatment of this model, one performs a mean-field approxi-
mation (〈nini+1〉 = 〈ni〉〈ni+1〉). Moreover, one considers the large N limit (ΩA = NωA
and ΩD = NωD are constants) to have a continuous description of the model. One sets
〈ni〉 = ρ(x, t) where x=i/N . Keeping the leading order terms in 1/N ,

〈ni±1〉 = ρ(x, t)± 1
N

∂ρ(x, t)
∂x

(4)

Show that the bulk kinetic equation obeys
∂ρ(x, τ)
∂τ

= A(ρ)∂ρ(x, τ)
∂x

+ (C −Dρ) (5)
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where τ = t/N , A(ρ) is a function of ρ and C and D two constants to be determined.

Solution: Expanding the discrete equations at first order gives
—

d〈ni〉
dt
→ ∂ρ(x, t)

dt
—

〈(ni(1− ni+1)〉 → ρ(x, t)(1− ρ(x, t) + 1
N

∂ρ

∂x
)

—
〈(ni−1(1− ni)〉 → (ρ(x, t)− 1

N

∂ρ

∂x
)(1− ρ(x, t))

—
ωA〈1− ni〉 → ωA(1− ρ(x, t))

—
ωD〈ni〉 → ωDρ(x, t)

Combining all terms give

∂ρ

∂t
= 1
N

∂ρ

∂x
(2ρ− 1) + ωA − (ωA + ωD)ρ(x, t) (6)

By using the change of variable τ = t
N
, one obtains Eq. with C = ΩA and D =

ΩA + ΩD.

6. One considers the case where ΩD = ΩA = Ω. Show that the steady-state of mean-field
kinetic equation is given by

(2ρ− 1)
(
∂ρ

∂x
− Ω

)
= 0 (7)

Solution: By using that the time derivative cancels and that ΩD = ΩA = Ω on
obtains Eq.7

7. Determine two simple solutions of Eq.(7).

Solution:
— First solution ρ = 1/2
— second solution ρ = Ωx+ ρ0.

In the following, we restrict the study to the region of the phase space where α < 1/2
and β < 1/2.
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8. At the boundaries, the densities are given by ρ(0) = α and ρ(1) = 1 − β. Show there
exits a value Ωc, for which a continuous solution for ρ(x) is possible.

Solution:
— On the left, one has ρ = α + Ωx (because ρ(0) = α)
— On the right,one has 1− β = α + Ω which gives

ΩC = 1− α− β

9. In general, one expects a shock formation in the system. Moreover, in order to observe
a shock in a stationary state, it is necessary that the shock velocity vanishes, namely
the mass currents through the shock must be equal. Denoting ρl(xs) the local density
on the left of the shock and ρr(xs) the local density on the right (where xs is the
position of the shock), show that the mass current conservation gives

(ρl(xs)− ρr(xs))(1− ρl(xs)− ρr(xs)) = 0 (8)

Solution: The flux on the left is given by ρl(1 − ρl) and on the right ρr(1 − ρr).
Equating the two terms gives Eq.8

10. By using Eq.(8), show that the shock position is given

xs = 1
2 + β − α

2Ω (9)

Solution:
— On the left, one has ρ = α + Ωx (because ρ(0) = α)
— On the right,one has =1− β + Ω(x− 1) (because ρ(1) = 1−β)

At the shock location ρl = 1− ρR which gives

xs = 1
1 + β − α

2Ω (10)

11. Show that the discontinuity of the density at the shock, ∆ = ρr(xs)− ρl(xs), is given
by

∆ = Ωc − Ω (11)
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Figure 1 – Simulation results and mean-field predictions : α = 0.2, β = 0.1 (left) Ω = 0.1
(right) Ω = 2

Solution: The discontinuity is

∆ = ρR − ρL = ΩC − Ω (12)

12. Fig.(1) shows that for Ω > Ωc, there is no shock, but the density profile is a continuous
piece wise function where the central region has a density equal to 1/2. Determine
the positions xl and xr as function of α, β and Ω corresponding to the bounds of the
interval where the density is constant.

Solution: Following the simulation results, one has ρL = α + Ωx and ρL = 1/2,
which gives

xL = (1
2 − α) 1

Ω
Similarly, on the right, one obtains

xR = 1− (1
2 − β) 1

Ω

13. What happens when Ω = Ωc? .

Solution: When Ω = Ωc, xL = xR, one recovers the continuous solution

14. In Fig.(1), mean-field prediction seems in a very good agreement with simulation re-
sults. Is it always the case for a phase transition ? Justify your answer by giving some
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examples.

Solution: Generally, the mean-field approximation overestimates the critical tem-
perature for systems at equilibrium (For instance Ising model on a square lattice
Tmf = 4J and Tex = 2.26.., on a cubic lattice Tmf = 6 and Tex = 4.51). For this
model, the mean-field is based on the mass conservation which explains that the
critical phenomenon is not overestimated
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