PCS 2021-2022 Exercices: Introduction to OPENMP Numerical Simulation

1 Basic programs

The first example of an OPENMP program is

#include <stdio.h>

. #include <iostream>
#include<omp.h> ]
. . . #include<omp.h>
int main(void)

using namespace std;

L int main()
#pragma omp parallel {
{

#pragma omp parallel

rintf ("Hello, world.\n");
printf( world.\n") {cout<<"Hello, world!"<<endl;

3
X
rintf("Ciao mondo.\n"); .
Eeiurn(o-l mondo.An ') cout<<"Ciao, mondo!"<<endl;
} ’ }

1. Compile the (left) code with gee with the option -fopenmp and run it. Compile the
(right) code with g4+ with the same option and run it.
2. How many Hello World do you have ?

For Unix users, you can set the number of threads by setting the variable OMP_NUM_THREADS
to 2, 8, 20.( In a terminal you type export OMP__NUM__THREADS =4, for instannce.)

Do you observe some changes ?

3. Compile with the option -Ofast and run again. What happens? Conclude.
The second code illustrates the loop parallelization

#include <iostream>
#include <cmath>
#include<vector>
#include<omp.h>

using namespace std;
double essai(double x)
{ return(5.0+10.0*x+x*x*exp(x) *1log(x+0.1)+sqrt(fabs(x))) ; }

int main(){
const int NITER=200000000;
vector<double> a(NITER);
double startwtime = 0.0, endwtime;
#pragma omp parallel
if (omp_get_thread_num() == 0) {startwtime = omp_get_wtime();}
#pragma omp parallel for default(shared)
for (int j=0;j<NITER;j++){
aljl = essai(j*0.01);%}
if (omp_get_thread_num() == 0)
{ endwtime = omp_get_wtime();

1/4



PCS 2020-2021 OPENMP Numerical Simulation

cout<<"wall clock time = "<<endwtime-startwtime<<endl;

}
exit (0);
}

4. Compile (with g++) and run the code.

5. In order to measure the efficiency of the parallelization, type execute several times by
setting the variable OMP__NUM__THREADS by increasing values from 1 to 8.

Monitor the elasped time versus the number of threads in a file and plot (by using
matplotlib) the graph.

2 Internal functions

The following code is able to collect internal information

#include<iostream>
#include<ctime>
#include<vector>
#include<omp.h>
using namespace std;
const int NITER=40000;
vector <vector<double> > a(NITER,vector<double> (NITER));
double essai(double x,double y){

return(x*y) ;
}
int main(){

clock_t debut=clock();

double deb,end;
#pragma omp parallelTE3/matrice5.cpp
if (omp_get_thread_num() == 0) { deb=omp_get_wtime();}
#pragma omp parallel for default(shared)

for (int i=0;i<NITER;i++){

for (int j=0;j<NITER;j++){

alil[j] = essai((double) i, (double) j);2}
}
if (omp_get_thread_num() == 0) {end=omp_get_wtime();

cout<<"omp elasped time "<<end-deb<<endl;}

clock_t fin=clock();
cout<<"global elasped time "<<(double) (fin-debut)/CLOCKS_PER_SEC<<endl;
}

1. Compile and run the code by usinh different values of the variable OMP__NUM_ THREADS
from 1 to 8.

2. Compile with the addtional option -Ofast and run again.

2 /4



PCS 2020-2021 OPENMP Numerical Simulation

3 Reduction

The following code computes the m number by using a numerical evaluation of an
integral by a rectangle method. Each thread computes a part of the loop and a reduction
instruction is performed

#include <iostream>

#include <cmath>

#include<iomanip>

#include<omp.h>

using namespace std;

double f( double a ) { return (4.0 / (1.0 + a*a)); }

int main()

{

const int n= 1000000000;

double startwtime, pi, sum=0.0;

double pi_ex=acos(-1);

#pragma omp parallel

if (omp_get_thread_num() == 0) {startwtime = omp_get_wtime();}

#pragma omp parallel for reduction(+:sum)

for (int i = 0; i <= n; i ++)

{

double x = (i - 0.5)/ (double) n;

sum += f(x);

}

pi = sum/ (double) n;

if (omp_get_thread_num() == 0)

{

cout<<"pi is approximately " << setprecision(16)<<pi<<" Error is "<<fabs(pi -
— pi_ex)<<endl;

cout<<"wall clock time = "<<omp_get_wtime()-startwtime<<endl;

}

}

1. Compile and run the code.

2. Increase the thread number from 1 to 8 Collect data and plot the wall time versus the
number of threads

3. Open a second terminal and type top. Rerun the program for a thread number of 1, 2
and 4

A  Windows

For Windows users, you need to first install Mingw. Second, you install Codeblocks
In order to use the openmp library, you need to set in compiler option -fopenmp as
well as in the linker options.

3/4



http://www.mingw.org/
http://www.codeblocks.org/

PCS 2020-2021 OPENMP Numerical Simulation

B Linux

Use the package manager of your distribution for installing codeblocks. If you have a
recent distribution, gce is installed with openmp.

C MacOx

Codeblocks is longer supported for MacOx. You can use Xcode and gcc is already
installed with your Os system. When you are using the compiler clang, In the terminal,
the command is the following

clang(++) -Xpreprocessor -fopenmp filename.c(pp) -lomp -o nameforexec

Note : libraries libomp and llvm must both be installed and up to date. (thanks to
Matteo Butano for this information)

4/4



	Basic programs
	Internal functions
	Reduction
	Windows
	Linux
	MacOx

