
PCS 2020-2021 Exercices: Rattle Algorithm and Two T Numerical Simulation

1 Molecular Dynamics in curved spaces
Molecular Dynamics is a simulation method for computing trajectories of interacting

particles. It consists in solving differential equations coming in most cases from Hamil-
tonian dynamics. The space in which particles evolve is an Euclidean space in two or
three dimensions. Let us denote the position ~xi and the momentum ~pi of particle i. The
Hamiltonian of the system is given by

H =
N∑
i

~p2
i

2m + 1
2
∑
i 6=j

v(xij) (1)

where m is the particle mass and xij = |~xi − ~xj|
1. Write the Hamiltonian equations associated with Eq.1.
2. Write the Velocity Verlet algorithm of the equations of motion. The time step will be

denoted by ∆t. The position and momentum at time t and t+∆t will be denoted ~xi(t),
~pi(t), ~pi(t) ~xi(t+ ∆t), respectively.

3. Show that Velocity Verlet algorithm can be rewritten as

~pi(t+ ∆t/2) = ~pi(t) + ∆t
2
~fi(t) (2)

~xi(t+ ∆(t) = ~xi(t) + ∆t
m
~pi(t+ ∆t/2) (3)

~pi(t+ ∆t) = ~pi(t+ ∆t/2) + ∆t
2
~fi(t+ ∆t) (4)

where ~fi is a function of ∇~xi
v(xij) to be determined.

It is possible to perform simulation in curved spaces by adding the holonomic constraints
to the original Hamiltonian system with appropriate Lagrangian multipliers. For the
sake of simplicity, we consider here the case of particles moving on a sphere. The
Hamiltonian of the system is then given by

H =
N∑
i

~p2
i

2m + 1
2
∑
i 6=j

v(xij) +
N∑
i

λi(t)g(xi) (5)

where m is the particle mass, g(~xi) = ~x2
i −R2, λi(t) the Lagrangian multipliers and R

the radius of the sphere.
4. Write the Hamiltonian equations associated with the modified Hamiltonian, Eq.5.
5. By using the same method given in Eqs.(2-4), write the Velocity Verlet algorithm of

the modified Hamiltonian. Due to the discretization, the Lagrangian mulitpliers cannot
be identical for the computation of the position updates and the velocity updates. For
the position and velocity updates, they will be denoted as µi(t) and κi(t), respectively.
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The Lagrangian mulitpliers do not have analytical expressions and must be obtained
numerically in general. In order to obtain these numbers, one introduces 4D vectors

~ri =
(
~ri,x
ri,g

)

where

~ri,x = ~xi(t)− ~xi(t+ ∆t) + ∆t
m

(~pi(t) + ∆t
2 (~fi(t)− 2µi(t)~xi(t)) (6)

ri,g = g(xi(t+ ∆t)) (7)

We have to determine µi(t) and the position ~xi(t+∆t) such that the 4D vector becomes
equal to 0 (or numerically less than an absolute value less than 10−6). Let us define
the 4D vector

~yi =
(
~xi(t+ ∆t)
µi(t)

)
(8)

To obtain µi(t) and ~xi(t+ ∆t), one uses a Newton-method and the iterative procedure
is obtained as follows :

~yi,j+1 = ~yi,j − J−1
i ~ri (9)

where Ji is the Jacobian matrix defined as

Ji = ∂~ri
∂~yi

=



∂r1,i

∂y1,i

∂r1,i

∂y2,i

∂r1,i

∂y3,i

∂r1,i

∂y4,i
∂r2,i

∂y1,i

∂r2,i

∂y2,i

∂r2,i

∂y3,i

∂r2,i

∂y4,i
∂r3,i

∂y1,i

∂r3,i

∂y2,i

∂r3,i

∂y3,i

∂r3,i

∂y4,i
∂r4,i

∂y1,i

∂r4,i

∂y2,i

∂r4,i

∂y3,i

∂r4,i

∂y4,i

 (10)

6. Compute the Jacobian matrix Ji
For the velocity updates, one introduces 4D vectors

~si =
(
~si,x
si,g

)
where

~si,x = ~pi(t+ ∆t/2)− ~pi(t+ ∆t) + ∆t
2 (~fi(t+ ∆t)− 2κi(t)~xi(t)) (11)

si,g = ∂g(xi(t+ ∆t))
∂t

= 2~xi
~pi
m

(12)

We have to determine κi(t) and the momentum ~pi(t+ ∆t) such that the 4D vector ~si
becomes equal to 0 (or numerically less than an absolute value less than 10−6). Let us
define the 4D vector

~zi =
(
~pi(t+ ∆t)
κi(t)

)
(13)
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To obtain κi(t) and ~pi(t+ ∆t), one uses a Newton-method and the iterative procedure
is obtained as follows :

~zi,j+1 = ~zi,j −K−1
i ~si (14)

where Ki is the Jacobian matrix defined as

Ki = ∂~si
∂~zi

(15)

7. Compute the Jacobian matrix Ki

8. This algorithm, called RATTLE algorithm, is implemented in LAMMPS. What is
LAMMPS? Is it suitable for parallel computing ?

2 A bound particle coupled to two thermostats
One considers a particle of mass m in one dimension subjected to a harmonic force and

coupled to two heat reservoirs. The equations of motion are given by
dx

dt
= v (16)

m
dv

dt
= −(γ1 + γ2)v − kx+ ξ1(t) + ξ2(t) (17)

where γi are the viscosity coefficients and the two Gaussian white noises are given by
〈ξi(t)〉 = 0 (18)

〈ξi(t)ξj(t′)〉 = 2γiTiδijδ(t− t′) (19)
with δij is the Kronecker symbol. (δij = 1 for i = j and δij = 0 for i 6= j) and δ(t)
is the Dirac distribution. At t = 0, one has v(0) = 0 and x(0) = 0. Let us define the
Laplace transform f̃(u) =

∫∞
0 dte−utf(t) (see Glossary for additional properties of Laplace

transforms).
1. Show that the Laplace transform of the velocity ṽ(u) can be expressed as

ṽ(u) = G̃(u)[ξ̃1(u) + ξ̃2(u)] (20)
where G̃(u) is a function to be determined.

Solution: Taking the Laplace transforms of the differential equations one has
ux̃ = ṽ (21)
uṽ = −(γ1 + γ2)ṽ − kx̃+ ξ̃1 + ξ̃2 (22)

Consequently, one has

G̃(u) = u

k + (γ1 + γ2)u+mu2 (23)
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2. Show that G̃(u) can be written as

G̃(u) = 1
m(u1 − u2)

(
u1

u− u1
− u2

u− u2

)
(24)

where u1 and u2 are functions of γ1 ,γ2 and k.

Solution:
G̃(u) = u

(u− u10(u− u2)) (25)

The algebraic equation is

u2 + (γ1 + γ2)
m

u+ k

m
= 0 (26)

The solutions are

u1,2 = 1
2

−(γ1 + γ2)
m

±

√√√√((γ1 + γ2)
m

)2

− 4 k
m

 (27)

3. Determine the values of k for which the system is overdamped and for which one has
a damped oscillatory behavior

Solution: When the roots are real the motion is overdamped, namely (γ1+γ2)
m

≥
2
√

k
m
. When the roots are complex, the motion is underdamped, namely (γ1+γ2)

m
<

2
√

k
m
.

4. By taking the inverse Laplace transform, give the velocity v(t).

Solution:
v(t) = 1

m

∫ t

0
dt′
u1e

u1t′ − u2e
u2t′

u1 − u2
(ξ1(t′) + (ξ2(t′)) (28)

5. Express the rates of heat dQ1
dt

and dQ2
dt

received by the reservoir 1 and 2, respectively.

Solution:
dQi

dt
= −γiv2(t) + v(t)ξi(t) (29)

6. Calculate 〈v(t)2〉.
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Solution: For calculating the mean square of the velocity one uses that the cross
correlations of the noise are equal to 0.

〈(ξ1(t) + ξ2(t))(ξ1(t′) + ξ2(t′))〉 = 2γ1δ(t′ − t) + 2γ2δ(t′ − t) (30)

Expanding the square velocity and using the property of the delta function , one
obtains

〈v2(t)〉 =
(2γ1T1

m2 + 2γ2T2

m2

) ∫ t

0

(
u1e

u1t′ − u2e
u2t′

u1 − u2

)2

(31)

Once integrated one obtains a lengthy formula with a constant term and trois
decaying exponetials.

7. Calculate 〈ξi(t)v(t)〉.

Solution: Once again, one uses that the cross correlations of the noise cancel.
Finally one obtains a constant term and two decaying exponentials.

8. Show that the two above quantities converge to stationary values when t is larger than
a typical time to be determined.

Solution: When t is large, one obtains

〈v2〉 = γ1T1 + γ2T2

m(γ1 + γ2) (32)

and similarly, one has
〈vξi〉 = γiTi

m
(33)

The inverse characteristic time 1/u1

9. Show that the mean stationary value of d〈Qi〉
dt

is given by

d〈Qi〉
dt

= γ1γ2

m(γ1 + γ2)(Ti − Tj) (34)

where j = 2 for i = 1 and j = 1 for i = 2.

Solution: By combining the results of the above questions, one obtains

d〈Q1〉
dt

= γ1γ2

m(γ1 + γ2)(T1 − T2) (35)
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and
d〈Q2〉
dt

= γ1γ2

m(γ1 + γ2)(T2 − T2) (36)

10. Why is the heat transport independent of the spring constant ?

Solution: One can accumulate energy in the spring !

Glossary
— The inverse Laplace tranform of 1

u−u1
is eu1t

— The inverse Laplace transform of a product of two Laplace transforms f̃(u)g̃(u) is
given by ∫ ∞

0
dτf(t− τ)g(τ) (37)

—
∫ t

0 dt
′f(t′)δ(t′ − t) = f(t)/2
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