
Tutorial: parallel coding
OPENMP

Pascal Viot

September 19, 2021

Pascal Viot Tutorial: parallel coding OPENMP September 19, 2021 1 / 18

Generalities

Processors has a number of cores (or calculation units) which increases with
time: initially, only one, then two, now often 4, or even 6 or 8 up to 48 for
computing servers.

Compared to a parallelism where calculations are done on different machines,
we can use the fact that on a single machine, the memory used by all
computing units is the same and can be accessible theoretically simply by all.

We can calculate on the different units at the same time, provided that you
do not want to walk on your feet (that is, not to write at the same time at
the same memory locations).

The OPENMP library contained in both Gnu and Intel compilers allows
these operations to be performed.

Pascal Viot Tutorial: parallel coding OPENMP September 19, 2021 2 / 18

Outline

OPENMP: definition

Compiling and running an OPENMP program, environment variables

Parallel loop

Internal functions

Reduction

Conclusion and references.

Pascal Viot Tutorial: parallel coding OPENMP September 19, 2021 3 / 18

OPENMP: definition and several versions

OPENMP:The current version is 5.1 and dated November 2020.

Website: http://www.openmp.org/.

https:

//www.openmp.org/wp-content/uploads/openmp-examples-5.1.pdf

hhttps://www.openmp.org/wp-content/uploads/

OpenMP-API-Specification-5-1.pdf

The compilers contain the OPENMP library, i.e. the Gnu compiler and the
Intel compiler

OPENMP is a library for Fortran, C,C ++..

Programming with OPENMP can be simple. It consists in inserting
directives into an existing sequential program. This means that the program
can still operate sequentially or by using calculation units associated with a
memory single center.

Since computer centers are made up of many computers, the ideal solution
consists in combining OPENMP and MPI.

Pascal Viot Tutorial: parallel coding OPENMP September 19, 2021 4 / 18

http://www.openmp.org/
https://www.openmp.org/wp-content/uploads/openmp-examples-5.1.pdf
https://www.openmp.org/wp-content/uploads/openmp-examples-5.1.pdf
hhttps://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5-1.pdf
hhttps://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5-1.pdf

Computing world: definition

Memory

Unit

Code

Network

Pascal Viot Tutorial: parallel coding OPENMP September 19, 2021 5 / 18

Computing world: definition(2)

#include <iostream >

#include <omp.h>

using namespace std;

int main()

{

#pragma omp parallel

{cout <<"Hello , world!"<<endl;

}

cout <<"Ciao , mondo!"<<endl;

}

Pascal Viot Tutorial: parallel coding OPENMP September 19, 2021 6 / 18

Compiling and running a program OPENMP, environment
variables

the #pragma omp parallel and the following braces indicate that the code of
this block must be parallelized.

Thus the Hello, World print will appear as many times as calculation
(virtual) units have been solicited

To compile this program with g++: g++ hello.cpp -fopenmp -o hello

To build and run with codeblocks. To ensure the openmp functionality, open
”Compiler and debugger settings”, put ”-fopenmp” in ”other options”, and
”-lgomp” in ”Other linker options”.

If you run this program, it chooses the number of units available.

To fix the number of units, the environment variable in the terminal window
must be set before launching the program

export OMP NUM THREADS = 20

Pascal Viot Tutorial: parallel coding OPENMP September 19, 2021 7 / 18

Compiling and running a program OPENMP, environment
variables (2)

The number of units is virtual, and does not necessarily correspond to the
physical number of cores. However, for a simulation code, the number of
units number should not be less ot equal to the number of cores. Indeed, in
many cases, the running time can not decrease if you exceed this limit (to
subtleties with multithreading).

The pragma instruction leads to execute N times the same group of
instructions. It is therefore necessary to code properly for a calculation to be
distributed and not executed N times.

Physical Limitations of an OMP Program So that part of the code is
executed by doing N units of computation, the system has to create threads,
and finally destroy them. The time required is not always negligible.

The time associated with this process is in the order of 0.1µs. Again very
much faster than clock time of the processor.

Pascal Viot Tutorial: parallel coding OPENMP September 19, 2021 8 / 18

Parallel loop

In order to have a parallel loop, one adds #pragma omp parallel for

The compiler will split the loop into different parts executed on virtual units.
Once executed, the program destroys the threads.

One can look at what happens with the unix instruction top in another
terminal window that the percentage is greater than 100 %. This illustrates
the fact that the program mobilizes multiple computing units at runtime.

Additional instructions can be added to the previous statement that specify
which variables are common to all threads and those that are internal. By
default, the compiler is supposed to guess, but nothing prevents you from
guiding it to make the right choices.

For a loop with a loop index called i, we can write
pragma omp parallel for default (shared), private (i)

By changing the OMP NUM THREADS statement, you can change the
default number of threads used.

Pascal Viot Tutorial: parallel coding OPENMP September 19, 2021 9 / 18

Internal functions

There are several internal functions that allow to have information about
parallel processes and / or modifies inside of the program how the
parallelization is carried out.

Among these functions, let’s mention omp get num threads () which
gives the number of threads, omp get thread num () which gives the
thread label and omp get wtime which gives the time in decimal value

Pascal Viot Tutorial: parallel coding OPENMP September 19, 2021 10 / 18

Internal functions (2)

#include <iostream >

#include <cmath >

#include <vector >

#include <omp.h>

using namespace std;

double essai(double x)

{ return (5.0+10.0*x+x*x*exp(x)*log(x+0.1)+sqrt(fabs(x)));}

int main(){

const int NITER =200000000;

vector <double > a(NITER);

double startwtime = 0.0, endwtime;

#pragma omp parallel

if (omp_get_thread_num () == 0) {startwtime = omp_get_wtime ();}

#pragma omp parallel for default(shared)

for (int j=0;j<NITER;j++){

a[j] = essai(j*0.01) ;}

if (omp_get_thread_num () == 0)

{ endwtime = omp_get_wtime ();

cout <<"wall clock time = "<<endwtime -startwtime <<endl;

}

exit (0);

}

Pascal Viot Tutorial: parallel coding OPENMP September 19, 2021 11 / 18

Reduction

Data can be collected on each computing unit and operations performed
elementary addition and multiplication.

the statement is added as argument of a pragma like reduction (operator:
list)

In addition to the usual operations, you can also search for the largest or
smallest item in a list

Pascal Viot Tutorial: parallel coding OPENMP September 19, 2021 12 / 18

Reduction

Data can be collected on each computing unit and operations performed
elementary addition and multiplication.

the statement is added as argument of a pragma like reduction (operator:
list)

In addition to the usual operations, you can also search for the largest or
smallest item in a list

Pascal Viot Tutorial: parallel coding OPENMP September 19, 2021 12 / 18

Reduction

Data can be collected on each computing unit and operations performed
elementary addition and multiplication.

the statement is added as argument of a pragma like reduction (operator:
list)

In addition to the usual operations, you can also search for the largest or
smallest item in a list

Pascal Viot Tutorial: parallel coding OPENMP September 19, 2021 12 / 18

First scientific program

#inc l u d e <i o s t r eam>
#inc l u d e <iomanip>
#inc l u d e <cmath>
#inc lude<ct ime>
#inc lude<vec to r>
#inc lude<omp . h>
us ing namespace s t d ;
double f (double a) { r e t u r n (4 . 0 / (1 . 0 + a∗a)) ; }
i n t main ()
{

const i n t ITER= 1000000000;
double pi , sum=0.0 , h ;
h=1.0 / (double) ITER ;
double s t a r tw t ime = 0 . 0 , endwtime ;

#pragma omp p a r a l l e l
i f (omp get thread num () == 0) { s t a r tw t ime = omp get wtime () ;}

#pragma omp p a r a l l e l f o r r e d u c t i o n (+:sum)
f o r (i n t i = 0 ; i <= ITER ; i ++)
{ double x = h ∗ (i − 0 . 5) ;
sum += f (x) ;

}
p i = h ∗ sum ;
i f (omp get thread num () == 0)
{ endwtime = omp get wtime () ;

cout<<” wa l l c l o c k t ime = ”<<endwtime−s t a r twt ime<<end l ;
cout<<” p i i s a pp r o x ima t e l y ”<<s e t p r e c i s i o n (15)<<pi<<” , E r r o r i s ”<< f a b s (p i − M PI)<<

end l ;
}
e x i t (0) ;

}

Pascal Viot Tutorial: parallel coding OPENMP September 19, 2021 13 / 18

OPENMP clauses

OpenMP is a shared memory library, so most code variables are visible, by
default, by all threads.

Sometimes, private variables are needed to avoid conflicts in memory and it
is necessary to pass values between the sequential part and in the parallel
region. Data management is done through data attribute sharing clauses by
adding them to the OpenMP instructions.

Pascal Viot Tutorial: parallel coding OPENMP September 19, 2021 14 / 18

OPENMP clauses

OpenMP is a shared memory library, so most code variables are visible, by
default, by all threads.

Sometimes, private variables are needed to avoid conflicts in memory and it
is necessary to pass values between the sequential part and in the parallel
region. Data management is done through data attribute sharing clauses by
adding them to the OpenMP instructions.

Pascal Viot Tutorial: parallel coding OPENMP September 19, 2021 14 / 18

OPENMP clauses (2)

The different types of clauses are

shared : data within a parallel region is shared, which means visible and
accessible by all threads simultaneously. By default, all variables in the
sharing region are shared except for the loop counter.

private: the data within a parallel region is specific to each thread, which
means that each thread will have a local copy and use it as a temporary
variable.

1 a private variable is not initialized and the value is not retained for use
outside the parallel region.

2 by default, loop iteration counters in OpenMP loop constructs are
private.

3 default Allows the programmer to specify that the default value for
data in a region
The different options are either shared, private, firstprivate or none.

4 none The none option imposes to the programmer to declare each
variable in the parallel region using the data attribute sharing clauses.

Pascal Viot Tutorial: parallel coding OPENMP September 19, 2021 15 / 18

Synchronisation clauses

The fine surgery of OPENMP programming is done with synchronization
guidelines

critical : the code block will be executed by one thread at a time, and not
executed simultaneously by several threads. It is often used to protect
shared data to avoid conflict writings in memory.

atomic : update in memory (write or read-modify-write) in the next
instruction will be executed atomically.

ordered : the structured block is executed in the order in which the iterations
will be executed in a sequential loop

barrier Each thread waits for all other threads until the team reaches this
instruction. (Very useful!)

Pascal Viot Tutorial: parallel coding OPENMP September 19, 2021 16 / 18

Synchronization clause: an instance

Pascal Viot Tutorial: parallel coding OPENMP September 19, 2021 17 / 18

Conclusion and References

The OPENMP library has been developed for several languages (Fortran, C,
C++)

Developing an OPENMP program is easier than the one with the MPI
library, but the number of cores (sharing the same memory) is generally less
than ten, but significantly lower than by using many computers with the
MPI library.

Pascal Viot Tutorial: parallel coding OPENMP September 19, 2021 18 / 18

Conclusion and References

The OPENMP library has been developed for several languages (Fortran, C,
C++)

Developing an OPENMP program is easier than the one with the MPI
library, but the number of cores (sharing the same memory) is generally less
than ten, but significantly lower than by using many computers with the
MPI library.

Pascal Viot Tutorial: parallel coding OPENMP September 19, 2021 18 / 18

