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Problem: Landau theory of Fermi liquids

We start from a system of non-interacting electrons (a Fermi gas) at zero temperature, with Hamiltonian

H =
∑
p,σ

ε0pc
†
p,σcp,σ

with ε0p = p2/2m and σ = ±1/2. We suppose that the system is isotropic and set ~ = 1. In the Fermi
gas, infinitely long lived particle-hole excitations are constructed from the one-particle spectrum ε0p. The
ground state is characterized by the Fermi-Dirac step function n0p,σ = θ(pF − p), and excited states by
δnp,σ = np,σ − n0p,σ. For instance a particle excitation of momentum p′ (p′ > pF ) and spin σ′ corresponds
to δnp,σ = δp,p′δσ,σ′ , while a hole excitation of momentum p′ (p′ < pF ) and spin σ′ is described by
δnp,σ = −δp,p′δσ,σ′ .

1. For a periodic system of N non-interacting electrons of mass m in a large volume V , what is the Fermi
surface? Compute the Fermi momentum pF and Fermi energy ε0F . What is the energy of a generic
excited state δnp,σ? Show that the chemical potential is equal to the energy of a particle on the Fermi
surface.

2. What is the density of state ν0(ε)?

3. We set kB = 1. Show that the entropy S of the Fermi gas in the state np,σ is

S[n] = −
∑
p,σ

[np,σ lnnp,σ + (1− np,σ) ln(1− np,σ)] (1)

4. The thermodynamic potential is given by

Ω[n] = E[n]− µN [n]− TS[n] (2)

where E[n] =
∑

p,σ ε
0
p np,σ and N [n] =

∑
p,σ np,σ. The equilibrium distribution neq is obtained as

δΩ[n]/δnp,σ = 0. Recover the Fermi-Dirac distribution.

1 The quasiparticle concept

Upon adding interactions, the property of a Fermi gas can change drastically (phase transition, for example
to a superconducting state) but in a normal Fermi liquid, many properties of the non-interacting gas
are unchanged. Landau Fermi liquid theory is an effective theory describing the low-energy properties of
normal Fermi liquids. The main idea underlying this construction is adiabaticity : slowly switching on the
interactions, Landau argued that the ground state adiabatically transforms into the ground state of the
interacting system. During this adiabatic process, conserved quantities such as spin, charge or momentum
remain unchanged, while dynamical properties such as mass, magnetic moment, etc are renormalized to new
values.

With interactions, a non-interacting excited state δnp,σ gets dressed and becomes an eigenstate of the
interacting system. Excitations of the Fermi liquid are no more particule or hole excitations, but are fully

M2 ICFP Theoretical Condensed Matter 1



Tutorials 2020–2021

interacting dressed states called quasi-particles or quasi-holes, with a finite lifetime. Moreover, they now
interact with each other. In the interacting system, np,σ describes the distribution of quasiparticles, and is
measured by the departure from the ground state distribution δnp,σ = np,σ − n0p,σ. We will only consider
low energy excitations for which δnp,σ is small, and non zero only for p close to the FS. In this regime the
energy can be developed in δnp,σ:

E[n] = E0 +
∑
p,σ

εpδnp,σ +
1

2V

∑
p,p′,σ,σ′

fσ σ
′

pp′ δnp,σδnp′,σ′ +O(δn3), (3)

where fσ σ
′

pp′ are the Landau parameters.

The quasiparticle dispersion relation εp can be expanded around the Fermi surface as

εp ∼ εF + v∗F (|p| − pF ), v∗F =
pF
m∗

(4)

which defines the (renormalized) Fermi velocity v∗F and effective mass m∗. By analogy with the non-
interacting case, we define the quasiparticle density at the Fermi surface as

ν∗(εF ) =
V m∗ pF
π2

.

5. What describes the quadratic term of equation (3)?

6. If V is the total volume, what is the order of fσ σ
′

pp′ in V ? Give a physical justification.

7. Suppose that δnp,σ is only significant for |p − pF | < δ. Show that both the linear term and the
quadratic term are of the same order in δ.

8. What is the energy ε̃p of an additional quasiparticle with momentum p in the excited state δnp,σ?

We can fix fσ σ
′

pp′ = fσ
′ σ

p′ p . For a time-reversal invariant system, we can split the Landau parameters into
symmetric and antisymmetric coefficients:{

fσσpp′ = fspp′ + fapp′

fσ−σpp′ = fspp′ − fapp′ .

As only wave vectors near the Fermi surface are considered in our isotropic system, we can set |p| = |p′| = pF ,
and only the relative angle θ between p and p′ is important. p̂ denotes a unit vector in the direction of p.
We can expand the coefficients in term of Legendre polynomials:

f
s(a)
pp′ =

∞∑
l=0

f
s(a)
l Pl(cos θ), f

s(a)
l = (2l + 1)

∫
dp̂′

4π
f
s(a)
pp′ Pl(cos θ) (5)

We recall that P0(x) = 1 and P1(x) = x and the orthogonality relation:∫ 1

−1
Pn(x)Pm(x)dx =

2

2n+ 1
δmn.

We introduce the dimensionless parameters

F
s(a)
l =

1

V
ν∗(εF )f

s(a)
l =

m∗ pF
π2

f
s(a)
l

Now, we will determine the properties of Fermi liquids and compare them with those of the Fermi gas.
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2 Effective mass

We consider the system from a moving frame at an infinitesimal velocity v with respect to the laboratory
frame.

9. Let |Ψ〉 be an eigenstate of H with energy E and total momentum P. What is the energy E′ in
the moving frame as a function of v, of the initial energy E, of the total mass M and of the total
momentum P? * Figure out how to implement Galilean transformations using a (time-dependent)
unitary transformation.

10. We take as our reference (excited) state the ground state of H viewed from the moving frame. Show
that

δnp = − m

m∗
p · vδ(εp − εF ).

11. We add a quasiparticle of momentum p (in the moving frame) to the system. Calculate its energy ε′p
in the moving frame firstly as a function of εp, v · p, m and m∗ and secondly from the energy of Q.8.
Show that:

m∗

m
= 1 +

1

3
F s1 . (6)

3 Magnetic susceptibility

We now determine the spin susceptibility χ of a Fermi liquid. χ = 1
V

dM
dB

∣∣
B→0

, where B is the external
magnetic field in the z direction. The Zeeman coupling causes an energy change for a particle of −γσB,
where γ is the gyromagnetic ratio. Our reference state is the equilibrium state of the Fermi liquid without
magnetic field and we note δnp,σ the difference of occupation in the presence of B.

12. Is the chemical potential µ affected by B to first order in B (for a constant number of particles)?
Why? Relate δnp,σ to δnp,−σ.

13. What is the energy ε̃pσ of a quasiparticle near the Fermi surface for a state under a magnetic field B?
Express it as a function of ∆nσ =

∑
p δnpσ.

14. Calculate ∆nσ and deduce that

χ =
γ2ν∗(εF )

4V (1 + F a0 )
(7)

4 Compressibility

15. The compressibility is given by κ = 1
ρ2

∂ρ
∂µ where ρ is the particule density N/V . Show that

κ =
pFm

∗

ρ2π2(1 + F s0 )
. (8)

As an intermediate step, you can calculate the energy of a quasiparticle at the new Fermi energy.
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5 Stability of the ground state and Pomeranchuk instabilities

We consider an excited state where all state inside some spin dependent surface near the Fermi surface
are filled. In the p direction, the Fermi surface is displaced by uσ(p̂).

(a) Calculate the difference of free energy at zero temperature for infinitesimal uσ(p̂) and put it under
the form:

∆(E − µN) =
ν∗(εF )v2F

4

∑
σ,σ′

(
δσ,σ′

∫
dΩp

4π
uσ(p̂)2 +

1

2

∫
dΩp

4π

∫
dΩp′

4π
F σ σ

′
p̂,p̂′ uσ(p̂)uσ′(p̂′)

)
(9)

Using the expansion in spherical harmonics:

uσ(p̂) =
∞∑
l=0

l∑
m=−l

(uslm + σualm)Y m
l (p̂), (10)

and the fact that for any u, the difference of free energy must be positive to insure the stability of the
ground state, we get the Pomeranchuk inequalities:

F sl > −2l − 1, F al > −2l − 1. (11)
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