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Problem: The Gross-Neveu model, symmetries,

mean-field approximation and Goldstone modes

The subject of the problem is the famous Gross-Neveu model. It has been studied a lot in
the 1970’s in the high energy physics community, as a theoretical laboratory to investigate non-
perturbative phenomena in strongly interacting quantum field theories. From a solid-state physics
standpoint, it appears as a rather natural generalization of the Luttinger model with spin, where the
global symmetry group SU(2) is replaced by SU(N), N arbitrary positive integer. A lot of attention
has been dedicated to the large N limit, for which a rather appealing physical picture has been
proposed by E. Witten in 1978, using an approach based on path-integrals. The following problem
aims at presenting this physics from the viewpoint and methods used in the course.

Before moving on to the Gross-Neveu model proper, we are going to review two technical points
related to second quantization in the continuum : fermion doubling, and normal ordering.

1 Fermion doubling

Consider a non-interacting, one-dimensional tight-binding model on N sites with periodic-boundary
conditions1.

H = −t
N∑
j=1

(
c†j+1cj + h.c.

)
, cN+j = cj

As we have seen in the tutorial about the Hubbard model, such a quadratic model is straightforward
to solve. We have

H =
∑
k

εkc̃
†
kc̃k, εk = −2t cos k

where

c̃†k =
1√
N

∑
j

eikjc†j, k =
2π

N
m, m = 0, 1, · · · , N − 1

At half-filling, all the states with a negative energy are filled.

� To simplify our analysis we will assume that the number of sites N is even. What is the ground
state ? Show that for N = 0 mod 4, the ground state is four-fold degenerate. This is due to
the presence of so-called zero modes (modes with an energy 0). Show that when N = 2 mod
4, the ground state is unique. Argue that the ground-state energy diverges when N →∞.

1The other natural boundary condition for fermions is anti-periodic : cN+j = −cj
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We are concerned with the thermodynamic limit of this simple model of one-dimensional
fermion. Before taking the thermodynamic limit, we first re-introduce the lattice spacing
a, so that sites are located at positions x = ja, and the total chain length is L = Na. The
thermodynamic limit is obtained by taking a→ 0, N →∞, keeping x and L constant.

The low energy/ long distance physics is dominated by the momenta close to the Fermi surface.
The relevant momenta values are k = ±π

2
+ aq, with q not to large2. It is then natural to drop

the fast moving degrees of freedom and only keep the low-energy terms in the Fourier expansion
of the fermion operator

cj =
1√
N

∑
k

c̃ke
ikj →

√
a

L

(
ei
π
2
j
∑
q

cπ
2
+aqe

iqx + e−i
π
2
j
∑
q

c−π
2
+aqe

iqx

)
, where x = ja

We get a left moving fermion around k = −π
2
, and a right moving one around k = π

2
. They are

called left (resp. right) moving because their (linearized) dispersion relation is ε(k) = −vFk
(resp ε(k) = vFk).

ΨR(x) =

√
1

L

∑
q

c̃π
2
+aq︸ ︷︷ ︸

cR(q)

eiqx, ΨL(x) =

√
1

L

∑
q

c̃−π
2
+aq︸ ︷︷ ︸

cL(q)

eiqx

we get

cj =
√
a
(
e−iπj/2ΨL(x) + eiπj/2ΨR(x)

)
, x = ja

� Argue that in the limit a → 0 the two fermions ΨL and ΨR become independent : the lattice
fermion operator cj yields two fermion fields in the continuum ! This phenomenon is due to
the fact that there are two momentum region in the low-energy limit. Are the fermions Ψη

periodic ? Show that we have

{Ψ†η(x),Ψη′(x
′)} = δη,η′δ(x− x′)

� Show that in the continuum limit, the non-interacting fermionic Hamiltonian becomes

H = vF

∫ L

0

dx i
(

Ψ†L(x)∂xΨL(x)−Ψ†R(x)∂xΨR(x)
)

= vF
∑
q

q
(
c†R(q)cR(q)− c†L(q)L(q)

)
What is the Fermi velocity vF ?

2Not too large meaning that we stay at low energy, in the regime where the dispersion relation can be linearized.
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2 Normal order

� Let us denote by |GS〉 the ground state (Fermi see) of the continuum model, which we are
going to call the vacuum. Show that for q > 0 we have

c†R(−q)|GS〉 = 0 and cR(q)|GS〉 = 0

c†L(q)|GS〉 = 0 and cL(−q)|GS〉 = 0

Comment on the energy of the ground-state.

The ground-state energy problem is typical of a field theory, and is due to the infinite number
of degrees of freedom. It is however very easy to circumvent. Before taking the continuum
limit, we can subtract the GS energy from the Hamiltonian, which amounts to put the GS
energy to 0. The Hamiltonian in the continuum becomes

HF = vF
∑
q

q
(

: c†R(q)cR(q) : − : c†L(q)L(q) :
)

where the normal ordered product : c†η(k)cη(k) : is defined as

: c†η(k)cη(k) := c†η(k)cη(k)− 〈GS|c†η(k)cη(k)|GS〉

� Show that

: c†L(k)cL(k) :=

{
−cL(k)c†L(k) if k > 0

c†L(k)cL(k) if k < 0
, : c†R(k)cR(k) :=

{
c†R(k)cR(k) if k > 0

−cR(k)c†R(k) if k < 0

So far we have defined the normal order of quadratic terms : c†αcβ :. For more general expression,
normal order is defined by moving all the c and c† that annihilate the ground state to the right,
with a global sign that account for how many c and c† have been permuted in the process. For
instance, assuming q1 < 0, q2 > 0, q1 + k > 0, q2 − k < 0, we have

: c†R(q2 − k)c†R(q1 + k)cR(q2)cR(q1) := −c†R(q1 + k)cR(q1)c
†
R(q2 − k)cR(q1)

because between these four operators, only cR(q1) and c†R(q2−k) annihilate the GS. The relative
order of the operators that annihilate the GS can be chosen freely (it just changes the sign).
Likewise for their hermitian conjugates. So we could just as well write

: c†R(q2 − k)c†R(q1 + k)cR(q2)cR(q1) : = cR(q1)c
†
R(q1 + k)c†R(q2 − k)cR(q1)

= −cR(q1)c
†
R(q1 + k)cR(q1)c

†
R(q2 − k)

3 Gross-Neveu model

The Gross-Neveu Hamiltonian reads:

HGN =
∑
k

N∑
σ=1

k(:c†Rσ(k)cRσ(k) : − :c†Lσ(k)cLσ(k) :)

+Ng1

∫ L

0

dx :O(x)O†(x) : +
g2
N

∫ L

0

dx :nR(x)nL(x) : (1)
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We use units in which ~ = 1. The system in one-dimensional with length L, and periodic
boundary conditions. The symbol :: stands for normal-ordering, R for right-moving fermions and L
for left-moving fermions. The generalized spin index σ runs now from 1 to N . The operator O(x) is
defined by:

O(x) =
1

N

N∑
σ=1

Ψ†Rσ(x)ΨLσ(x). (2)

The local charge densities nR(x) and nL(x) and the total charges NR and NL are:

nα(x) =
N∑
σ=1

Ψ†ασ(x)Ψασ(x), Nα =

∫ L

0

dx :nα(x) : (3)

In the sequel, it will be often made use of

J = NR −NL.

The conventions for the Fourier transforms of the fields Ψη(x) are fixed to:

Ψη(x) =
1√
L

∑
k

cη(k)eikx, cη(k) =
1√
L

∫ L

0

dx e−ikxΨη(x). (4)

1. What is the Fermi surface of the free model ? What is the Fermi velocity ?

2. The Luttinger model neglects some terms in the local density. Show that taking these terms
into account give the Gross-Neveu Hamiltonian.

4 Symmetries

3. What are the commutators [J,O(x)] and [J,O†(x)] ?

4. Check that J commutes with HGN. The associated symmetry is often called chiral symmetry
in the high energy physics literature.

5. It is interesting to see how this symmetry J acts on basic operators. Let us introduce

U(φ) = ei
φ
2
J .

Evaluate then U(φ)Ψ†Rσ(x)U(φ)−1, U(φ)Ψ†Lσ(x)U(φ)−1, U(φ)nR(x)U(φ)−1, U(φ)nL(x)U(φ)−1,
U(φ)O(x)U(φ)−1, and U(φ)O†(x)U(φ)−1.

6. Another symmetry of HGN is the particle-hole symmetry. It is implemented by the linear
operator C defined by:

C2 = 1, CΨ†Rσ(x)C = ΨRσ(x), CΨ†Lσ(x)C = −ΨLσ(x). (5)

What are the operators CO(x)C and CO†(x)C ?

7. Finally, we will also need reflection symmetry P . It is defined by:

P2 = 1, PΨ†Rσ(x)P = Ψ†Lσ(−x), PΨ†Lσ(x)P = Ψ†Rσ(−x). (6)

What are the operators PO(x)P and PO†(x)P ?
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5 Symmetries and response functions

For a system with an unperturbed Hamiltonian H0 and a time dependent perturbation δH(t) =
λ(t)B(t), the response function RAB(t− t′) is defined by:

δ 〈A〉 (t) =

∫
dt′RAB(t− t′)λ(t′), (7)

where δ 〈A〉 (t) denotes the change in the expectation value of the observable A at time t induced by
the perturbation. We recall that if the system is initially in its ground-state |Ψ0〉, we have:

RAB(t− t′) = −i 〈Ψ0| [A(t), B(t′)] |Ψ0〉 θ(t− t′), (8)

where A(t) and B(t′) are in the interaction picture with respect to H0. We suppose that there
is a symmetry operation, described by the unitary operator U , which leaves both H0 and |Ψ0〉
invariant, i.e. UH0 = H0U and U |Ψ0〉 = |Ψ0〉. We may also assume that A and B depend on a
spatial coordinate, in which case we will write A(x) and B(x). Then, it is possible to expand these
operators in Fourier modes:

A(x) =
∑
q

eiqxA−q, B(x) =
∑
q

eiqxB−q (9)

Here Aq and Bq carry momentum q. This means that the action of Aq or Bq on any state with
momentum k produces a state with momentum k + q.

8. If we denote A′ = UAU−1, and B′ = UBU−1, then show that RAB(t− t′) = RA′B′(t− t′).

9. Write down a spectral decomposition of the Fourier transform (with respect to both space and
time) of RA(x)A(0).

10. We suppose that the unitary symmetry operator U satisfies UAqU
−1 = τA−q, with τ = ±1.

Show that RAA(q, ω) is even in q, that =RAA(q, ω) is odd in ω and that <RAA(q, ω) is even in
ω.

6 Mean-field approximation

Using renormalization group analysis in the second part of this problem (in some weeks), we will
see that g1 is irrelevant for positive and relevant for negative values, giving rise to a strong coupling
phase. Anticipating this result, we will now attempt to understand better this strong coupling phase.

In this part, we set g2 = 0 to simplify the discussion, and we write g for g1. The mean-field
approximation amounts, as usual, to replace the quartic operator : OO† : by the combination

〈
O†
〉
O+

〈O〉O†, supposing that the average is independant of x.

11. Why is the mean-field approximation also called large-N approximation ?

12. Introducing ∆ = g 〈O〉 = |∆|eiφ, determine the energy spectrum of the mean-field Hamiltonian
HMF . What are its properties ?
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13. Check that HMF is diagonalized in the quasiparticle basis whose associated creation operators
are given by:

d†+σ(k) = sin
θk
2
e−iφ/2c†Rσ(k) + cos

θk
2
eiφ/2c†Lσ(k) (10)

d†−σ(k) = cos
θk
2
e−iφ/2c†Rσ(k)− sin

θk
2
eiφ/2c†Lσ(k) (11)

Here, we have introduced the angle θk defined by:

cos θk = − k√
k2 + |∆|2

, sin θk =
|∆|√

k2 + |∆|2
(12)

14. Write explicitely the self-consistency equation for the parameter ∆.

15. Does the phase φ enter in the self-consistency equation ? What can we say from the symmetries
of the mean-field ground state ? How is this related to the phase φ ?

16. Building from the previous question, by which physical argument are the mean-field solutions
discredited ?

17. For which values of g is there a non-trivial solution, i.e. with ∆ 6= 0 ? Evaluate |∆| in the
thermodynamical limit as a function of g using two hypothesis:

� we introduce an ultra-violet cut-off on allowed momenta:. we impose |k| ≤ Λ,

� we assume that the coupling is not too large, so that |∆| � Λ.

7 Collective modes

In this section, we shall consider the collective excitations of the system in the vicinity of the self-
consistent mean-field ground-state with φ = 0. This means that 〈O〉 is real. In the sequel, it will be
useful to distinguish between amplitude and phase fluctuations of the order-parameter 〈O〉. For this,
we define two hermitian components:

Oa(x) =
1

2
(O(x) +O†(x)), Ob(x) =

i

2
(O†(x)−O(x)) (15)

The a-direction in order parameter plane is then associated to amplitude fluctuations and the b-
direction to phase fluctuations.

18. Write the interaction term in HGN with Oa(x) and Ob(x). What is now the mean-field Hamil-
tonian ?

We will study collective modes in the spirit of the Random Phase Approximation (RPA).
For this, we impose to the system, initially in a mean-field ground-state of HGN, an external
perturbation:

δH(t) =

∫ L

0

dx (hext,a(x, t)Oa(x) + hext,b(x, t)Ob(x)) (16)

The perturbation will modify the expectations values of Oa and Ob. As usual in the RPA, we
take interactions into account by a space and time dependent deformation of the self-consistent
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field acting on the underlying particles. The RPA assumes then that the fermions respond as
if they followed the mean-field Hamiltonian HMF, in the presence of local fields hloc,a, hloc,b,
where:

hloc,i = hext,i + 2Ngδ 〈Oi(x)〉 . (17)

In order to relate δ 〈Oa(x)〉 and δ 〈Ob(x)〉 to local fields, we use response functions Rij(q, ω) ≡
ROi,Oj(q, ω), (i, j = a or b), evaluated in the ground-state of the spinless version of HMF. This
choice allows a simple tracking of the N -dependency of the order-parameter dynamics. In clear,
we assume:

δ 〈Oi(x)〉 (q, ω) =
1

N

∑
j=a,b

Rij(q, ω)hloc,j(q, ω) (18)

19. Explain the 1/N factor in the previous equation.

20. Give general expressions for the local fields hloc,i(q, ω) and the order parameter fluctuations
δ 〈Oi(x)〉 (q, ω) in terms of the external fields hext,j(q, ω). In particular, the latter relations will
serve to define dressed response functions RRPA

ij (q, ω) in the RPA.

21. What happens to RRPA
ij (q, ω) in the N →∞ limit ? Does this sound reasonable ?

22. What are the operators COa(x)C and COb(x)C ?

23. Show that HMF for φ = 0 commutes with the particle-hole symmetry operator C and that its
ground-state is invariant under C.

24. What can we infer from this for Rab(q, ω) ?

25. What are the resulting dressed response functions RRPA
ij (q, ω) ?

26. Another very interesting phenomenon appears: there is a pole in RRPA
bb (q, ω) at (q, ω) = (0, 0).

Show that this is not a coincidence and that the existence of this pole can be predicted.

27. Show that HMF for φ = 0 commutes with the reflection symmetry operator P and that its
ground-state is invariant under P .

28. Show that Raa(q, ω) and Rbb(q, ω) are even functions of q and even functions of ω.

29. Show that =Raa(q, ω) and =Rbb(q, ω) are identically zero for ω not too large.

30. The previous remarks show that the Taylor expansion of Raa(q, ω) and Rbb(q, ω) near (q, ω) =
(0, 0) has then the form Rii(q, ω) = Rii(0, 0)− λiω2 + µiq

2 + ..., i = a, b.

The coefficients Rii(0, 0), λi, µi are real numbers. Show that λi > 0.

31. We will assume that µi > 0. Show that it is the case if we neglect the variations of the matrix
elements of Oi,q with q, 〈0|Oi,q|αq〉, where |αq〉 is a particle-hole excited state of momentum q.

32. A complete calculation shows that Rbb(0, 0) < Raa(0, 0) < 0. Deduce from this informations
and from the previous questions the poles of Rii(q, ω) near (ω, q) = (0, 0).
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33. We define the symmetrized correlation function Cii(x, t)s by:

Cii(x, t)s ≡
1

2
(〈Oi(x, t)Oi(0, 0)〉+ 〈Oi(0, 0)Oi(x, t)〉) . (19)

The fluctuation-dissipation relation at zero temperature states that the Fourier transform of
this correlation function is related to the corresponding response function by:

Cii(q, ω)s = −=Rii(q, ω)sign(ω). (20)

Use it to estimate the qualitative behavior of the correlation functions Cii(x, t = 0)s. How do
these results precise the physical picture for the low energy dynamics in the large N limit ?
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