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Low energy properties of Graphene : tight-binding model

Graphene is a honeycomb lattice of carbon atoms with one valence electron. The remaining three
electrons per carbon atom are involved in the formation of strong covalent σ bonds, and can be considered
as frozen as far as the low energy electronic properties of graphene are concerned. Here we study the low
energy properties of graphene, and in the next session we will analyse the effect of an impurity on the local
density of states. We mainly follow the content of [1] and [2].

The graphene lattice is made of two triangular Bravais sublattices spanned by
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They are denoted A and B according to Fig. 1.
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Figure 1: A and B labels the two sublattices of graphene. a1 and a2 are direct space basis vectors.

Every atom A (respectively B) has three nearest neighbors B (respectively A), whose relative positions
are given by the three unit vectors
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, d3 = (0,−1) . (2)

The distance a between two carbon atoms (a = 0.142nm) is set to unity. The reciprocal lattice is spanned
by the vectors b1 and b2 defined by

ai · bj = 2πδij . (3)

The low energy properties of graphene are captured by a tight-binding approximation, in which we consider
a spinless nearest-neighbor model on an infinite honeycomb lattice:

H = t
∑
〈i,j〉

(|φi〉〈φj |+ h.c.) , 〈φi|φj〉 = δi,j (4)
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The state |φi〉 describes the bound state in which the electron is localized around the carbon atom i, whose
position is ri

1. The corresponding wavefunctions are of the form 〈r|φi〉 = φ(r− ri).

1. Rewrite the tight-binding Hamiltonian in second quantization

1 Momentum space

2. The honeycomb lattice is invariant under discrete translations of a1 and a2. We denote by Tα the
unitary operator that translates a single electron by aα (for α = 1, 2). What is Tα in second quanti-
zation (** and in first quantization ? why is not simply e±aα·∇ ?). Check that [H,Tα] = 0. What is
the standard method to exploit this symmetry ?

3. Since the honeycomb lattice is made of two Bravais sublattices A and B, one has to define two Fourier
modes (one for each sublattice). In this tutorial we work with the following convention2 for the Fourier
transform

|ΨA
q 〉 =

∑
r∈A

eiq·r|φr〉, |ΨB
q 〉 =

∑
r∈B

e−iq·d3eiq·r|φr〉 =
∑
r∈A

eiq·r|φr+d3〉 (5)

Check that these states are indeed eigenstates of Tα. Check that |ΨA
q 〉 = |ΨA

q+bi
〉 and |ΨB

q 〉 = |ΨB
q+bi
〉.

What is the Brillouin zone ? What is its area ABZ?

4. What are the creation operators c†A(q) and c†B(q) corresponding to |ΨA
q 〉 and |ΨB

q 〉 ? What is the

inverse Fourier transform ? Compute their anti-commutation relations {cα(q), c†α′(q
′)}.

5. For a system that can contain many electrons, we can also consider the operators Tα that translates
all electrons. They are defined by

TαcrT †α = cr+aα , Tα|0〉 = |0〉

Show that states of the form c†A(q1) · · · c†A(qm)c†B(qm+1) · · · c†B(qn)|0〉 are eigenstates of both Tα and Tα.

6. Show that the tight-binding Hamiltonian in momentum space is

H =

∫
BZ

d2q

|b1 ∧ b2|
c†(q)

(
0 f(q)

f(q)∗ 0

)
︸ ︷︷ ︸

h(q)

c(q), c(q) =

(
cA(q)
cB(q)

)
.

where f(q) = t(1 + eiq·a1 + eiq·a2).

7. What is the one-body spectrum of H ? What are the eigenstates ? Write the Hamiltonian in diagonal
form

H =

∫
BZ

d2q

|b1 ∧ b2|

(
ε+(q)d†+(q)d+(q) + ε−(q)d†−(q)d−(q)

)
1Each carbon atom hosts many bound states, but only the lowest energy one contributes to the low energy properties of

graphene. Technically the tight-binding approximation amounts to a projection of the Hilbert space to the low energy subspace
spanned by the |φi〉.

2The unusual term e−iq·d3 in the Fourier transform on the B sublattice is conventional, and is there to ensure the periodicity
of all quantities w.r.t. to shifts q → q + bi. This amounts to forget the relative position of the B sublattice w.r.t. the A
sublattice.
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2 Dirac points

8. We want to describe undopped graphene. What is the corresponding filling of the spinless tight-binding
model ?

9. What is the Fermi surface (FS) ?

10. We define the corners of the Brillouin zone by

Kξ = ξ
b1 − b2

3
(6)

where ξ = ±1 is called the chirality. Check that to first order in q we have: f(Kξ +q) ' −ξvF |q|eiξθq ,
with vF = 3t

2 and θq is the polar angle of the wave vector q with respect to the direction a1 − a2. ξθq
is called in the literature the pseudospin.

11. What are the excitation energies in the neighborhood of Kξ (to first order in q) ?

12. Show that the mode q eigenvectors near Kξ are 1√
2

(
1

∓ξe−iξθq

)
.

13. Argue that the low-energy effective Hamiltonian of graphene at half-filling is given by :

H =
∑
ξ

vF

∫
d2q

ABZ
c†ξ(q) (−ξqxσx + qyσy) cξ(q)

Each term ξ = ± is now a two-dimensional Dirac Hamiltonian. At low energy graphene has effectively
two independent Dirac fermions.

3 Retarded Green’s function

14. Argue that the retarded Green function G0(ω) is of the form :

G0(ω) =

∫
BZ

d2q

|b1 ∧ b2|
c†(q)G0(q, ω)c(q)

Show that the 2 by 2 retarded Green function G0(q, ω) is

G0(q, ω) =
1

(ω + iη)2 − |f(q)|2

(
ω + iη f(q)
f(q)∗ ω + iη

)
(7)

15. Show that the 2 × 2 matrix retarded Green function of the operators c(A,Kξ + q) and c(B,Kξ + q)
in the neighborhood of Kξ is:

Gξ(q, ω) =
1

(ω + i0+)2 − v2|q|2

(
ω −ξvF qeiξθ

−ξvF qe−iξθ ω

)
(8)

4 Symmetries of graphene

Besides translation invariance, the tight-binding model of graphene has many symmetries.
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16. Chirality symmetry is a unitary operator Γ such that

ΓciΓ
† =

{
ci if i ∈ A
−ci if i ∈ B

Check that Γ anti-commute with H. Since Γ does not commute with H, it is not associated with any
conserved quantity. However {Γ, H} = 0 implies that the energy spectrum of H is symmetric about
zero (show that). What is Γc†(A,q)Γ† ? Γc†(B,q)Γ† ? Check that Γd±(q)Γ† = d∓(q).

17. Time-reversal symmetry is an anti-linear, anti-unitary3 operator T defined by

T ciT † = ci, T c†iT
† = c†i

Show that graphene is invariant under time-reversal symmetry (i.e. [T , H] = 0). What are T c†(A,q)T †
and T c†(B,q)T † ?

18. Inversion symmetry is a a unitary operator I such that IcrI† = cd3−r. Check that graphene is
invariant under inversion. What is Ic(A,q)I† ?

19. Show that under time-reversal we have h(q) → h∗(−q) while under inversion we have h(q) →
σxh(−q)σx. Check this way that graphene is indeed time-reversal and inversion symmetric.
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3An operator A is said to be anti-linear if A(λu+ v) = λ̄A(u) +A(v). An anti-unitary operator is an anti-linear operator A
such that 〈Au,Av〉 = 〈u, v〉. The hermitian conjugate of anti-linear operator A is the operator A† obeying 〈Au, v〉 = 〈u,A†v〉
for all u, v. Therefore anti-unitary operators are anti-linear operators such that AA† = 1.
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