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Using dynamical concepts of phase transitions developed in earlier work, we exhibit the char-
acteristic features of the spectrum and eigenfunctions to be expected when a hierarchy of phase
transitions is present in a system, such as is expected to occur for spin glasses.

1. Introduction

The concept of phase transition is most precise in the context of equilibrium statistical mechanics
in the thermodynamic limit. Unfortunately many systems of interest are excluded by the narrowness
of this definition. In this paper we continue our master equation approach [1,2] to this problem
and extend that method to structures having strong resemblance to those believed to exist in spin
glasses. We remark that for spin glasses the perceived need to take a thermodynamic limit has vastly
complicated the enterprise and that a dynamical approach, which is the essence of our method, is
being pursued by other workers in this field as well [3].

The master equation approach is applicable to both traditional physical systems and to others of
a more general nature [4,5]. In previous publications [1] we used this framework to provide concepts
of entropy, dissipation, currents, and fluctuation-dissipation theorems, with or without detailed
balance. In [2] we presented a concept of first order phase transition from this perspective. In the
present paper we accommodate the hierarchical structure often attributed to spin glasses within the
master equation approach, and show how spectral properties (especially left eigenfunctions) reflect
the physically significant structure. We comment that our treatment of phase transitions has two
principal differences from other approaches. First, it is dynamical, letting the system define its own
metastability. Second, it is not infinitely sharp, in the sense that only asymptotic statements are
made (no thermodynamic limit is taken). Arguments for these differences have already been made
in the relatively simpler case of ordinary (macroscopic) metastability [6].

In Sec. 2 we outline our approach, with emphasis on phase transitions. Following that we
comment on systems with slower than exponential relaxation and the implications for the transition
matrix spectrum. In Sec. 3 a dynamical distance function is introduced and used to define a coarse
graining. Finally in Sec. 4 the uses of our approach for spin-glasses are presented.
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2. General framework

Dynamics are expressed through a stochastic matrix giving rates for transitions among the
microscopic states. The latter are assumed to be elements of a finite set, X . Thus R is defined by
Rxy ≡ Pr (x ← y) in one time step. We assume R to be irreducible. For many purposes these
restrictions are not essential. Entropy, relative entropy, a fluctuation dissipation theorem and other
results are discussed in [1].

The eigenvalues of R are numbered in order of decreasing magnitude, starting from the label 0.
The corresponding left and right eigenvectors are denoted Ak and pk respectively (k = 0, 1, . . .).
(Although R need not have a spectral expansion, in this article we will for convenience use such a
representation. All we actually require, however, is the existence of eigenvectors for the eigenvalues
near unity.) By probability conservation

∑
x Rxy = 1 (stochasticity). It follows that R has an

eigenvalue λ0 = 1 (which on general grounds is the largest possible magnitude) and left eigenvector
that can be taken to be A0(x) ≡ 1. The corresponding right eigenvector, p0, has all elements
strictly positive and is the stationary probability distribution.

In [2], for a transition involving two phases only, we begin with the assumption that λ1 is
strictly less than 1 and non-degenerate. Moreover, the existence of the transition is related to quasi-
degeneracy through the assumption that there exists a range of times (t) such that 1 ∼ λt

1 À |λ2|t.
Intuitively, λ2 and all smaller eigenvalues provide relaxation within a phase, while λ1 governs the
slower relaxation between the two phases.

From these assumptions we show that R is nearly reducible in the sense that the states on which
p0 has most of its weight break into two subsets—to be identified with the phases—on each of which
R is almost stochastic. The key step in the proof is to show that the left eigenvector corresponding
to λ1 is “essentially” constant on each phase, so that it plays a role analogous to A0 on the total
space. To reach that conclusion we use the eigenvectors A1 and p1 associated with λ1 and the
orthogonality relations 〈Ak|pj〉 = δ(k, j). It follows that A1 has a strictly positive maximum
(AM ) and strictly negative minimum (Am). These are attained on points y

M
and ym. We next

define probability distributions pt
M (pt

m) as the distributions arising from a system’s starting in y
M

(ym) at time 0. (Thus pt
M (x) = (Rt)x y

M
.) Hence pt

M and pt
m can be interpreted as restricted

stationary probabilities on the phases. The basis for most of our results is [2]

1− λt
1 =

∑

x

pt
M (x)

(
1− A1(x)

AM

)
=
∑

x

pt
m(x)

(
1− A1(x)

Am

)
(1)

This says that so long as λt
1 is close to 1, and for x such that either pt

M (x) or pt
m(x) is significant

(i.e., x is in one of the phases), then the associated A(x) cannot depart too much from its extreme
value, AM or Am. This result can be generalized to the case of many phases by assuming that the
first p eigenvalues of R are real and satisfy λt

1, . . . , λ
t
p = O(1− ε), for small ε. (Thus Eq. (1)

does not depend on the smallness of λ2.) To find the analogs of AM and Am and the associated
points in X one uses convexity arguments in Rp. We again identify p + 1 special X-space points
y∗q , q = 1, . . . , p + 1, such that the following equalities hold

1− λt
k =

∑

x

pt
y∗

q
(x)

(
1− Ak(x)

Ak(y∗q )

)
(2)
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This holds both for all k = 1, . . . p and for all q = 1, . . . p + 1 [7]. In this way the basic phase
transition breakup, effective reduction of R, etc., is carried over to the multiphase case.

Critical slowing down and other slowing down

Recalling the spectral expansion, Rt =
∑

α λt
αpαAα [8], and the identity

Γ(η) t−η =

∫
∞

0

du uη−1e−ut

(with λ ∼ e−u), it is clear that to get power law dropoff in some property it is necessary to have a
bunching of eigenvalues near 1. However, such bunching does not by itself characterize critical points.
For example, diffusion in a volume of side L shows both slow relaxation and clustered spectrum for
L→∞, but one would not ordinarily call this critical. On the other hand, the percolitis [9] phase

transition has many properties that are critical, but its spectrum, which scales like 1/
√

N (with
N the system size), strongly resembles that of diffusion in 4 dimensions. Our expectation is that
non-mean field critical points have, in addition to eigenvalue clustering, an interplay of two distance
concepts, one emerging from the structure of the points, x ∈ X , and the other induced by R (about
which more later).

There are other kinds of slowing down. Examples are stretched exponentials, spin-glass relax-
ation and the decay of superfluid current [10]. In this article we consider the spin-glass case.

3. Coarse graining and dynamic distances

Both conceptually and practically the microscopic detail implicit in a state “x” is often excessive.
We therefore define a coarse graining of X . This is done by means of a dynamic distance function
used to sort points for combining in a single grain (or fiber).

The state X is divided into grains, labeled x̃ ∈ X̃ . We write x = (x̃, u) to indicate that a point
of the original X is specified by its coarse grain label “x̃” and by a point u within that grain. In our
coarse graining the stationary distribution p0 plays a central role. The intention is that the slowest
modes should survive the coarse graining. For x = (x̃, u) and y = (ỹ, v), let R(x̃, u; ỹ, v) ≡ Rxy

and define

R̃x̃ỹ =
∑

u,v

R(x̃, u; ỹ, v)pc
0(ỹ, v) with pc

0(ỹ, v) ≡ p0(ỹ, v)∑
v′ p0(ỹ, v′)

.

The new stationary distribution is p̃0(x̃) =
∑

u p0(x̃, u). The currents J̃x̃ỹ [11] are likewise sums of
the separate point-to-point currents within each grain. In principle this process need only leave the
eigenvalue 1 intact, although for a sensible choice of grains the slowest eigenvalues are little affected.
This is illustrated below.

In our abstract dynamical formulation there does not necessarily exist a concept of intrinsic
distance on X related to the underlying space on which the microstates (x) are defined. All that is
available is R, and that is where the distance comes from. We have considered several possibilities.
From the two phase example one expects the first nontrivial left eigenvector to be a candidate for
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distance, i.e., “Left eigenvector distance” ≡ L.E.Dis.(x, y) = |A1(x)−A1(y)|. However, with many
phases this is no longer so obvious a candidate. It also has a dependence on the total weight in the
phase that may not be useful.

The definition we use preserves certain desirable ambiguities, in particular the time scale over
which one wishes to coarse grain. We define

disT (x, y) =
∑

u

| pT
x (u)− pT

y (u)| , with pT
x (u) = (RT )ux (3)

This means that you start the system alternatively in x or y and check at a later time T the extent
to which the distributions overlap. For the two-phase case this will be closely related to our earlier
tentative definition, but (3) is more generally useful. Other possibilities involve generalizations of

“L.E.Dis.”, using all Ak with the corresponding λk greater than some number λ̃ (close to 1, say).

The selection of a λ̃ would correspond to the choice of T . We remark that distance concepts similar
to those we introduce here have appeared in many contexts and the the use of “slow” variables of
one form or another leads to a variety definitions (and some of these have as their purpose coarse
graining, along the lines we take below). A sampling of references is [12, 13, 14].

The notions of coarse graining and distance are naturally combined by using the distance function
to define grains. We give an example using a two phase system that we now construct. Let Q be a
stochastic matrix, created by first generating a random matrix with each element selected uniformly
on [0, 1]. Then divide each column by the sum of its elements. We combine four such N×N matrices
to produce a 2N×2N matrix:

R̂ =

(
Q(1, 1) ε1Q(1, 2)

ε2Q(2, 1) Q(2, 2)

)
(4)

Each column of R̂ is then divided by the sum of the elements in that column to produce a stochastic
matrix, R, that has the properties of a two-phase system, provided ε1 and ε2 are small. For
1 À ε1 À ε2 (> 0) one of the phases is metastable; when the εs are equal the phases get equal
weight. Generically this is not an equilibrium situation since nonzero currents are present in the
stationary distribution.

We coarse grain this system in stages. The distances between each pair of states for a particular
time T is calculated. The two points with smallest relative distance are combined in a single grain.
Then the two nearest of the remaining states are combined, etc., halving the space (for convenience
N is a power of 2 times a small prime). A reasonable value of T depends on the εs. This process is
repeated until the final matrix is small. Generally the following structure is preserved:

R ∼
(

big small

small big

)

For a specific example, we show in Table 1 the values of the two largest nontrivial eigenvalues. The
smaller of these represents the relaxation time within a phase. What makes this work is that for
the specific T (of Eq. (3)), the points within each phase relax completely, but do not spill over
to the other phase. Thus they are preferentially combined at each stage of coarse graining. The

4



slow process, the transition between phases, is not affected by this unification. Hence the largest
nontrivial eigenvalue is unchanged.

In Fig. 1 we show both the stationary probability distributions (p0) and first nontrivial left
eigenvectors (A1) at various stages of coarse graining. Because ε1 is considerably different from
ε2 the stationary weights of the two phases are different. The approximate constancy of the left
eigenvectors is also evident [15]. Note that where p0 is large, A1 takes one value, where it is small,
the other. (The ability to see this is an advantage of taking ε1 6= ε2.)

4. Hierarchical dynamical first order phase transitions

Relaxation in spin-glasses is notoriously slow. Using traditional criteria, the issue of whether or
not a phase transition exists is complicated by the problems of defining the thermodynamic limit.
A picture that has won acceptance is a hierarchical structure in which several states of relatively
low free energy can, by a massive overturning of spins, go to a yet lower free energy, with this
pattern repeating at many scales. We will not try to summarize the state of knowledge in this
field, but only display a hierarchical structure within a master equation context that is suggestive
of the situation just described. This structure gives a dynamical characterization of the spin-glass
transition. Another, simpler situation where the known properties of the model suggest hierarchical
structure is in multicomponent one-dimensional driven diffusive systems [16].

As an example, we consider a multiphase system such that the number of independent phases
depends on the time scale for observation. On the shortest time scale the phases consist of n1 states
(for simplicity all phases have the same number of states). For larger t, n2 such groups of states flow
back and forth among themselves, but do not go (or seldom go) anywhere else. As time increases,
ever larger groups are connected.

We study such a system with a particular matrix and parameters. What will be seen is that the
left eigenvectors are locally constant on the phases, with the degree of “constancy” related to the
time scale for that phase. Finally we will examine the question of whether this method could lead to
a way to deal with the enormous transition matrices that would arise in even a small 3-dimensional
spin glass.

The matrix is generated recursively. At the lowest level is a collection of n1× n1 stochastic
matrices. These are coupled weakly, as in Eq. (4), except that instead of only two, any finite number,
n2, is allowed. These larger units are again grouped, n3 at a time, with weaker coupling. The model
is thus defined by the sequences n1, n2, . . . , and ε1, ε2, . . . (the couplings). In our example the
hierarchy ends at n3. Our choice was {n} = (10, 2, 2) and {ε} = (0.01, 0.0001). (Everything works
for larger systems, but more figures would be needed.) In Fig. 2 we show the first 4 non-trivial left
eigenvectors. The absolute values of the associated eigenvalues are: 0.9999, 0.9921, 0.9907, 0.1971,
showing there to be three distinct time scales: 1/ log λ1, 1/ log λ2, (≈ 1/ log λ3) and 1/ log λ4. As
described in the figure caption there is a clear hierarchy of phases, with the shorter lived ones subsets
of the longer lived (eigenvalue closer to 1) ones. The right eigenvectors do show similar behavior in
the sense that substantial departure from zero occurs only on ranges of relative constancy of the left
eigenvectors. However, the structure is more difficult to discern because the actual value assumed
by the right eigenvectors is not systematically identifiable with a particular phase. Note too that
the left eigenvectors can assume complex values, a situation not explicitly considered in [2].
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We next take up coarse graining. A single coarse graining, by a factor 2, leaves the entire struc-
ture intact. We will not repeat the figure corresponding to Fig. 2, since it has identical features,
except for the abscissa running from 1 to 20, instead of 1 to 40. The new set of eigenvalues is
0.9999, 0.9921, 0.9907, 0.2114, virtually identical, except for a relative slowdown in internal equi-
libration within each phase. The next coarse graining, to a 10×10 matrix, does have an interesting
complication due to 40 not being divisible by 22n2n3. We show the left eigenvectors for this case
in Fig. 3.

As remarked earlier, coarse graining has practical as well as conceptual value, especially for
the numerical use of the master equation formulation. Thus the number of spins in 3 dimensional
cubes of sides 2 and 3 are 8 and 27, respectively. The sizes of the state spaces for even so small
a system are 28 = 256 and 227 ∼ 108, leading in the latter case to impossibly large matrices.
The suggestion that comes to mind is a dynamical renormalization based on the distance concept
introduced earlier. Thus the 256 states of a 2×2×2 Ising model cube would be allowed to evolve
under stochastic dynamics (the coupling could be ferromagnetic, random, etc.) and distances of the
resulting distributions evaluated (cf. Eq. (3)). If the resulting states fall into a relatively small number
of classes, and if the results were not sensitive to either the boundary conditions or the particular
random, quenched coupling (in the spin glass case), these classes and dynamically calculated (from
simulations) transition probabilities among them could themselves be used for the next stage of
scaling.

In any case, whether or not explicit transition matrices can be used for realistic models, the
difficulties of using traditional thermodynamic limit ideas suggests the value of another theoretical
framework. For example, we have already used this framework in mean field models such as percolitis
[9] and one may expect analogous methods to work for mean field spin glass models.
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Table

Table 1. Two largest eigenvalues (excluding the trivial value, 1) for a succession of coarse
grainings. If an eigenvalue is complex, its magnitude is given. The original matrix is 96 by 96 and
the couplings are 0.01 and .001. The time used for distance measurements is 8. When the coarse
graining has reduced the system to a 3-by-3 matrix, the two phase-two state description is no longer
valid. 8 Matrix size 96 48 24 12 6 3 Largest 0.9891 0.9891 0.9891 0.9891 0.9891 0.6542

Second largest 0.0895 0.0657 0.0441 0.0274 0.0159 0.0126
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Figure Captions

Figure 1. The upper row is the vector A1 as a function of state label (which is arbitrary). The
lower row is the stationary distribution, p0 with the same labels. The first column shows the original
96-by-96 matrix. The second column shows the eigenvectors after two coarse grainings (each by a
factor 2) and the third column after another 2. The last column brings the matrix down to 3-by-3,
at which point the two-phase aspect is lost. Parameter values for the matrix are the same as in
Table 1.

Figure 2. Absolute values of the first four nontrivial left eigenvectors for the matrix described
in the text. The first such eigenvector (“no. 2”) shows the system to have essentially two phases,
while the next two show how those phases have internal two-phase structure. The next eigenvector,
whose eigenvalue is distant from 1, is far from constant. Note though that its interesting behavior
is confined to a single one of the previous phases.

Figure 3. Absolute values of the first four nontrivial left eigenvectors for coarse graining by a
factor 4. The transition matrix is the same as that considered in Fig. 2.
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