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Landscape paradigm is ubiquitous in physics and other natural sciences, but it has
to be supplemented with both quantitative and qualitatively meaningful tools for
analyzing the topography of a given landscape. We here consider dynamic explo-
rations of the relief and introduce as basic topographic features “wells of duration
T and altitude y.” We determine an intrinsic exploration mechanism governing the
evolutions from an initial state in the well up to its rim in a prescribed time, whose
finite-difference approximations on finite grids yield a constructive algorithm for
determining the wells. Our main results are thus sid a quantitative characterization
of landscape topography rooted in a dynamic exploration of the landscape, siid an
alternative to stochastic gradient dynamics for performing such an exploration, siiid
a constructive access to the wells, and sivd the determination of some bare dynamic
features inherent to the landscape. The mathematical tools used here are not famil-
iar in physics: They come from set-valued analysis sdifferential calculus of set-
valued maps and differential inclusionsd and viability theory scapture basins of
targets under evolutionary systemsd that have been developed during the last two
decades; we therefore propose a minimal Appendix exposing them at the end of this
paper to bridge the possible gap. © 2005 American Institute of Physics.
fDOI: 10.1063/1.1874332g

I. INTRODUCTION

A. The landscape paradigm in natural sciences

The general notion of landscape is encountered in many different domains, for instance in
physics, neural networks sHopfield nets22d and learning processes, molecular biology,13,19 ecology
and evolutionary biology,23 or optimization problems, to cite but a few. From the mathematical
viewpoint, a landscape is simply a function V :X°Rø h+`j smore precisely, an extended30 func-
tion since it might take infinite values +`d associating a real value Vsxd to each state xPX of the
system. From a physical viewpoint, the status and definition of V strongly depend on the scale at
which the system is described, reflecting in the choice of the space of states X.

Let us give some examples to sustain our exposition. In statistical physics and molecular
biology, Vsxd can be the energy landscape if x is the shigh-dimensionald microscopic configuration
of the considered system: atomic coordinates in a glass,15 spin orientations in a spin glass,17

tridimensional conformation of the hundred or more amino acids forming a protein,18 spatial
positions of bead centers in a granular medium.16 It can also be a smesoscopicd free energy
landscape if x is the value of a slow-dimensionald order parameter describing the global state of
the system: spatially average density, overall magnetization, conformational parameterssd for a
macromolecule sas, for instance, its radius of gyrationd. At a still more macroscopic level, x can be
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a reaction coordinate measuring the progress along a path representing some transformation of the
system and inscribed on an effective energy landscape. In quite different contexts, cost functions
encountered in optimization problems are close analogs to energy landscapes,2 whereas fitness
landscapes encountered in ecology and evolutionary biology can be cast in the frame of free or
effective energy landscapes, up to a sign change snamely, by considering the opposite of the
fitnessd. sSee Ref. 28 for an introductory review.d

Energy or free energy landscapes are currently exploited in stochastic gradient methods ac-
counting for the interplay between thermal motion and interaction forces seffective forces in the
case of a free energy landscaped deriving from the potential x°Vsxd. In complex systems sglasses,
spin glasses, proteins, for instanced the landscape V typically presents a large number of local
optima around which the solution of a stochastic gradient method is trapped and travels a long
time before going away and visiting other local minima. This dynamical behavior has been
advocated by Giorgio Parisi to encapsulate a meaning of complexity and rugged landscapes are
often seen as a mark of complex systems. sSee, for instance, Ref. 25.d

Although the landscape Vsxd is thus endowed with different status and interpretations in
varying contexts, understanding and controlling the system behavior requires in any case a quan-
titative knowledge of the landscape topography. It is thus of the utmost importance to design
efficient tools allowing a dynamical analysis of local minima of such a function x°Vsxd. We
emphasize that it is not just an academic issue since actual energy or free energy landscapes of real
systems are available through either of the following:

sid a theoretical access from first principles se.g., molecular interactions, spin–spin interac-
tionsd and/or modeling hypotheses, allowing us to write an explicit formula for Vsxd;

siid an experimental access, for instance, for proteins sindirect kinetic or spectral measure-
mentsd sRef. 19d;

siiid a numerical access, either through molecular dynamics at an atomic scale, yielding the
energy landscape, either through Monte Carlo sampling of the configuration space accord-
ing to the Boltzmann distribution, yielding free energy landscapes for the relevant order
parameterssd of the system.20

B. Dynamical analysis of a landscape topography

Here we propose a theoretical and algorithmic analysis allowing us to determine quantitatively
the landscape relief of a function V, e.g., location of wells, location and heights of the barriers
associated with a given dynamics for exploring the landscape.31 It gives access to a hierarchical
picture of the landscape and allows us to determine the nesting of wells and barriers at different
scales.

Given a dynamic exploration mechanism ssuch as a stochastic gradient dynamicsd, we define
the “wells of velocity l, duration T, and altitude y” as the sets of initial states xPX “below the
level y,” i.e., Vsxdøy, from which at least one evolution governed by the exploration mechanism,
and of velocity bounded by l, reaches the rim y of the well at the prescribed time T. When the
well is not empty, we then evidence intrinsic dynamics governing the evolutions from an initial
state of the well up to its rim y at prescribed time T. This intrinsic exploration mechanism is
characterized from the time derivative of the well, regarded as a set-valued map associated with
the prescribed duration T and the altitude y the elements of the well. Both the wells and their
intrinsic exploration mechanism can be approximated by finite-difference approximations on finite
grids, which allows us to implement a constructive algorithm.

In this study we offer an alternative to stochastic gradient-type exploration mechanisms. In
quite a similar way of thought, second-order exploration mechanisms of the graph of an energy
landscape function has been proposed in Ref. 1. Here we suggest starting the landscape explora-
tion with a universal mechanism, independent of the energy function, allowing us to look at any
possible velocity with prescribed norm l and retaining its intrinsic exploration dynamics as a good
candidate for a dynamical system exploring the given energy landscape. The stochastic gradient
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method is thus replaced by a differential inclusion involving the time derivative of the well, but
allowing in the same spirit the system state to escape the trap of local minima, while being
quantitatively influenced by their depth.

The mathematical tools we use are quite novel in physics: They come from set-valued analysis
sdifferential calculus of set-valued maps and differential inclusionsd and viability theory scapture
basins of targets under evolutionary systemsd that have been developed during the last two de-
cades.

The resulting quantitative topographic description by wells rooted in a constructive dynamic
exploration of the landscape and the associated determination of the statistical properties of its
relief can then be exploited for the following:

s1d performing a quantitative characterization of the landscape, for comparison or classification
purposes. It allows us to investigate bifurcations, more currently called phase transitions in
many-particle systems sRef. 24d;

s2d providing a quantitative access to the landscape hierarchical structure and allowing us to
estimate its ruggedness, which yields a tentative measure of the system complexity;

s3d defining macrostates and macroscopic variables to be used in coarse-grained descriptions of
the system. The relevance of such an approach is to provide an intrinsic determination of
macrostates, founded upon the identification of macroscopic features with slow modes and
slowly evolving properties sRef. 21d.

Outline of the paper. In Sec. II, we shall define wells, introduce some mathematical features
of their relief, and reformulate their characterization in terms of the “capture basin of a target,” a
key concept of viability theory that finds here an unexpected, yet natural, application. In Sec. III,
we present the algorithm allowing us to construct explicitly these wells and the intrinsic explora-
tion mechanism on which it is based. In Sec. IV, we introduce the notion of complete wells,
matching more closely with physical landscape features. After a conclusive summary in Sec. V,
the essential notions of viability theory needed for this paper are presented in an Appendix. j

II. WELLS OF AN ENERGY LANDSCAPE

A. An efficient alternative to stochastic exploration

In order to provide both a quantitatively meaningful and quantitative topographic analysis of
a landscape V on a space X, we introduce “wells of duration T and depth y.” Given a dynamical
system, allowing upward steps of velocity bounded by a parameter l, these wells are the sets
PVsl ; t ,yd of initial states “below the level y” fi.e., of states xPX such that Vsxdøyg from which
at least one32 evolution reaches the upper level y swhat we call the rim of the welld at time T. In
other words, given some tolerance l allowing upwards exploration, and some level y, the wells
and their depth might be dynamically sthe experimentally meaningful and operational wayd deter-
mined according to the trapping time T.

For exploratory purposes, here we implement an alternative to stochastic gradient dynamics
and replace stochastic differential equations encountered in physics by differential inclusions of
the form33

∀t ù 0, x8std P Fsl;xstdd ,

where x Fsl ;xstdd is some set-valued function on X fi.e., Fsl ;xd is a subset of Xg parametrized
by a parameter l[R. Compared to a differential equation, the solution of a differential inclusion
is less constrained since the full specification of the derivative x8std at each time t is replaced by
a constraint on the region Fsl ;xstdd, where it has to lie. Such a tolerance is highly valuable and
quite realistic in the modeling of an actual system, since the experimentally available knowledge
about its dynamics generally provides only bounds sor more generally viability constraintsd on the
kinetic rates, rather than explicit pointwise expressions of these rates as a function of the system
state. These bounds might nevertheless vary with the system state xstd, hence defining a specific
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set Fsl ;xstddat each time t. For instance, in the case when the function V is differentiable, a close
analog to stochastic gradient dynamics is provided by

x8std P − = Vsxstdd + lB ,

where B denotes the unit ball of the finite-dimensional vector space X. Indeed, the gradient
dynamics x8std=−=Vsxstdd governs evolutions decreasing along the function V, but stopping at
the first encountered local minimum. To overcome this stalling situation, a natural idea is to
perturb the gradient equation either by a stochastic noise, as currently implemented in simulated
annealing methods, or, as we suggest here, by a “tychastic” one. Indeed, differential inclusion
x8stdP−=Vsxstdd+lB is the “tychastic version” of the stochastic differential equation
dx=−=Vsxstdddt+l dWstd ssee Ref. 8 for the links between stochastic and tychastic viabilityd.

However, we have to overcome the fact that the function V is usually not differentiable, if
obtained through experimental measures or simulations and no longer analytically defined. Hence
the concept of gradient disappears swhen the observable or simulated configuration space is
discreted, or has to be approximated by gradients of functions interpolating in one way or another
the experimental data. Any method allowing to bypass these obstacles and to deal with graphs of
such functions may be worthy of being investigated.

Another suggestion is to leave open the choice of the directions of exploration by looking for
any way to climb the landscape V to reach a given level y at a given time T. For that purpose, we
can choose Fsl ;xdªlB, stating that any velocity of norm l is a priori an eligible candidate to
apply for such a mission. We shall provide below the way of further selecting the most efficient
ssubset ofd velocitysiesd, i.e., achieving the most thoroughly and the most efficiently from a
numerical viewpoint the quantitative exploration of the landscape relief. The same type of strategy
has been used in previous works for constructing an algorithm that is also of relevance for
landscapes. This so-called Montagnes Russes Algorithm converges to global minima of an ex-
tended function jumping over local minima, which amounts to using the gradient algorithm to the
smallest of the exponential Lyapunov functions above the energy function for the differential
inclusion x8stdPlB. sSee Refs. 10 and 11.d But whereas this algorithm was devoted to the search
of global minima, we are here looking for exploratory tools providing a complete hierarchical
picture of the landscape.

B. Definition and characterization of wells

From now on, we assume that the set-valued map x Fsl ;xd governing the exploration
dynamics is given. We denote by yPR the altitude of the well we wish to study. y=0 is set
through the sarbitraryd choice of a base level sor, if known and finite, by the lower bound on Vd.
Usually, the relevant altitudes are the values of the local maxima or saddle points of the function
V. We shall associate with it the concept of well Psl ;T ,yd of duration T and altitude y defined as
follows.

Definition II.1: Consider an extended function V :X°Rø h+`j and a differential inclusion

∀t ù 0, x8std P Fsl;xstdd .

Denote by

SsV,yd ª hx P X such that Vsxd ø yj and S0sV,yd ª hx P X such that Vsxd = yj

the level sets of the function V and by Slsxd the set of solutions to the above differential inclusion
starting at x. The well PVsl ;T ,yd,SsV ;yd of duration T and altitude y of the function V is defined
by the set of initial states xPSsV ;yd such that there exists at least one solution xls·dPSlsxd such
that

sid VsxlsTdd = y ,
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siid ∀ t P f0,Tg, Vsxlstdd ø y .

We observe that PVsl ;0 ,yd=S0sV ,ydª hxPX such that Vsxd=yj. In other words, the well
PVsl ;T ,yd is the set of initial conditions x in the well from which there exists at least one
evolution xls·d staying below the level y during a duration T and reaching the level y at exactly
time T. This does not exclude the fact that for some earlier time t*øT sor some later time t*

ùTd, the evolution reaches the level y. This just means that x belongs to the intersection
PVsl ;T ,ydùPVsl ; t* ,yd of wells of several durations. This point can be made more explicit:
considering the initial state x of the system as a variable and the time to reach the level y as the
result, we can define the reaching function sl ,x ,yd°jsl ,x ,yd by

jsl,x,yd ª inf
xPPVsl;T,yd

T ,

providing the first instant when one evolution starting from x reaches the level y.
We can also regard the same object by introducing the set-valued map sl ;T ,xd PV

−1sl ;T ,xd
associated with the parameter l, the duration T, and the initial state x the altitude y of the well, the
rim of which can be reached at time T by at least one evolution governed by differential inclusion
x8stdPFsl ;xstdd.

Turning back to the initial definition, the maximal depth dVsl ;T ,yd of the well PVsl ;T ,yd is
defined by

dVsl;T,yd ª sup
xPPVsl;T,yd

sy − Vsxdd .

The knowledge of the wells provides some physical characteristics of the landscape V, thus
bridging the above mathematical definitions with a more traditional description of landscapes. We
observe, for instance, that jsl ,x ,yd is the escape time for the given dynamics, also called the first
passage time, from above a barrier of top y when the velocity is bounded by l. Its inverse
fjsl ,x ,ydg−1 has the meaning of a kinetic constant.

Denoting VVsl ;T ,yd the number of the connected components of well PVsl ;T ,yd, its loga-
rithm is the configurational entropy. sSee Refs. 29 and 16 for its meaning and use in physics,
respectively, for glasses and granular mediad:

sVsl;T,yd ª logsVVsl;T,ydd .

In summary, what we are basically looking for is the subset of sx ,y ,l ,Td such that either x
PPysl ;T ,yd or T.jsl ;x ,yd or yPPV

−1sl ;T ,xd. As detailed in the next section, we shall give a
mathematical characterization of this set as a “capture basin of a target under an auxiliary system,”
allowing us to implement a constructive algorithm. We choose here the representation of this set
through the above concept of well xPPVsl ;T ,yd.

C. Viability characterization of wells

The next step of our investigation is to translate the above topographically meaningful fea-
tures in terms of capture basins for which many properties have been established and constructive
algorithms are available sSee the Appendix and for further details, Refs. 3–6.d

Proposition II.2: Consider an extended function V :X°Rø h+`j and a differential inclusion

∀t ù 0, x8std P Fsl;xstdd .

We associate with it the auxiliary system of differential inclusions

sid x8std P Fslstd;xstdd ,

siid y8std = 0,
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siiid l8std = 0,

sivd t8std = − 1 s1d

the constrained set K and the target C defined by

K ª EpsVd 3 R+ 3 R+ and C ª GraphsVd 3 R+ 3 h0j ,

where GraphsVd and EpsVd,X3Rø h+`j are, respectively, the graph and epigraph of V ssee the
Appendix for a precise definitiond. Then

PVsl;T,yd = hx P X such that sx,y,l,Td P Capts1dsK,Cdj ,

where Capts1dsK ,Cd is the capture basin of the target C under evolutionary system s1d and under
the constraint of remaining in K ssee Definition A.2 belowd.

Proof: Indeed, to say that sx ,y ,l ,TdPCapts1dsK ,Cd amounts to saying that there exist one
evolution xls·dPSlsxd and a time t!ù0 such that the associated auxiliary evolution,

t → sxstd,ystd;lstd;tstdd = sxstd,y,l,T − td ,

starting from sx ,y ,l ,Td at t=0, reaches the target C at time t! while staying meanwhile in K:

sid sxst!d,y,l,T − t!d P C ,

siid ∀ t [ f0,t!g, sxstd,l,y,T − td P K .

The first condition is equivalent to both equations t!=T and V(xsTd)=y. The second equation
means that for every tP f0,Tg, Vsxstddøy. These are the very properties stating that x belongs to
the well PVsl ;T ,yd, or, equivalently, that jsl ;x ,ydøT. j

Therefore, the graph of the set-valued map sl ,T ,yd PVsl ;T ,yd inherits the properties of
capture basins. For instance, it can be shown susing Theorem A.6 given in the Appendixd that the
well satisfies a kind of dynamical programming principle that can be stated in the following way:

Proposition II.3: The set-valued map PV is the unique set-valued map sl ,T ,yd Psl ;T ,yd
satisfying the initial condition

Psl;0,yd ª S0sV,yd ª hx P X such that Vsxd = yj

the constraints

Psl;T,yd , SsV;yd

and the “tracking property:” for any xPPsl ;T ,yd, any evolution xls·dPSlsxd starting from x at
time 0 climbing the well until it reaches the rim at time T satisfies

sid ∀ t P f0,Tg, xstd P Psl;T − t,yd ,

siid ∀ s ù T such that ∀ t P fT,sg, Vsxstdd ø y, then xstd P Psl;t − T,yd .

D. Time derivative of the well as an a posteriori exploratory dynamical system

Since we have related the well of a landscape function to capture basins, the basic viability
theorems provide tangential characterization of the wells, allowing us to find the underlying
dynamical system governing the evolutions of differential inclusion climbing the wells up to their
rims. This can be done to the price of using differential calculus of set-valued maps sinvented in

043508-6 J.-P. Aubin and A. Lesne J. Math. Phys. 46, 043508 ~2005!

Downloaded 22 Oct 2005 to 134.157.8.89. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



the beginning of the 1980s for this purposed: Knowing the “derivatives” with respect to time of the
set-valued map t PVsl ; t ,yd ssee Definition A.10 for a rigorous definitiond, we obtain an intrinsic
exploration mechanism of the well.

Proposition II.4: For any xPPVsl ;T ,yd, those evolutions xls·dPSlsxd starting at x and
climbing the well PVsl ;T ,yd in the sense that V(xlstd)øy for any tP f0,Tg and VsxlsTdd=y are
governed by differential inclusion

x8std P −
]PVsl;T − t,yd

]t
ù Fsl;xstdd .

In particular, taking for initial exploration mechanism the set-valued map Fsl ;xdªlB indepen-
dent of the energy function V instead of exploration mechanisms Fsl ;xdª−¹Vsxstdd+lB already
dependent of V, we obtain a more intrinsic exploration mechanism.

Theorem A.12 stated in the Appendix gives a technically precise meaning to this symbolic
statement. In other words, the underlying dynamical system governing the evolutions climbing the
wells up to their rims is the set of velocities vPFsl ;xd pointing to the time derivative of the well
in order to climb it from −T to 0 in order to reach the rim of the well at altitude y. The associated
mathematical problem to comfort this intuitive result starts with the definition of the time deriva-
tive and the proof of this result is based on results of viability theory. Let us just mention the
following informal version of Theorem A.12 stated in the Appendix:

Proposition II.5: The set-valued map PV is the unique “Frankowska solution to the partial
differential inclusion”

∀t . 0,x P Psl;T,yd, 0 P
]Psl;T,yd

]t
+ Fsl;xd

satisfying the initial condition

Psl;0,yd ª S0sV,yd ª hx P X such that Vsxd = yj

and the constraints

Psl;T,yd , SsV;yd .

We propose now to check the same statement in the discrete case, which allows us to define
an algorithm providing the wells under discrete dynamics and the exploratory mechanisms.

III. THE SAINT-PIERRE CAPTURE BASIN ALGORITHM

The Saint-Pierre Capture Basin Algorithm provides both the set-valued map PV and for any
xPPVsl ;T ,yd, the evolutions climbing the well up to its rim under a given duration.

Let us consider any discrete time approximation Fsl ;xd of Fsl ;xd governing the evolution of
sequences xW PSW lsxd, governed by

xn+1 P Fsl;xnd .

fFor instance, Fsxd :x+hFhsl ;xd, where h is a time step and Fh is an approximation of F in the
sense that the graph of Fh converges to the graph of F in the Painlevé–Kuratowski senseg. The
discrete version of a well defined by Definition II.1 for continuous time systems becomes as
follows:

Definition III.1: Consider an extended function V :X°Rø h+`j and a set-valued map
sl ,xd Fsl ;xd. The discrete time well PW Vsl ;N ,yd,SsV ;yd of duration T and depth y of the
function V is the subset of initial states xPSsV ;yd such that there exists one sequence xW PSlsxd
such that

sid VsxNd = y ,
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siid ∀ n P h0,Nj, Vsxnd ø y .

In the discrete time, we obtain the intrinsic exploration mechanism under mere inspection:
Proposition III.2: Knowing the well PW V, the discrete dynamical system

xn+1 P Fsl;xnd ù PW Vsl;N − n,yd

governs the evolutions starting from xPPW Vsl ;N ,yd and arriving at step N at some xN

PPW Vsl ;0 ,yd=S0sV ,yd of the rim of the well PW Vsl ;N ,yd.
In the discrete case, the discrete well is obtained by the Capture Basin Algorithm:
Proposition III.3: The Saint-Pierre Capture Basin Algorithm yields the discrete well as the

intersection of the following subsets defined recursively by

sid PW Vsl;0,yd = S0sV,yd ,

siid ∀ N ù 0, PW Vsl;N + 1,yd = Fsl; · d−1„PW vsl;N,yd… ù SsV,yd .

When Fsl ;xdªx+lB, this algorithm can be written

sid PW Vsl;0,yd = S0sV,yd ,

siid ∀ N ù 0, PW Vsl;N + 1,yd = „PW vsl;N,yd + lB… ù SsV,yd .

Proof: Indeed, we introduce the auxiliary system C by

Csx,y,l,td ª Fsl,xd 3 hyj 3 hlj 3 ht − 1j ,

governing the evolution of the sequence:

sid xn+1 P Fsl;xnd ,

siid yn+1 = yn,
s2d

siiid ln+1 = ln,

sivd tn+1 = tn − 1,

and the constrained set K and the target C defined by

K ª EpsVd 3 R+ 3 R+ and C ª GraphsVd 3 R+ 3 h0j .

Then one can prove as in the continuous time case that

PW Vsl;N,yd = hx P X, such that sx,y,l,Nd P Capts2dsK,Cdj ,

where the subscript s2d in Capts2dsK ,Cd refers to the discrete evolutionary system s2d.
The capture basin algorithm defines recursively a sequence of subsets Cn starting at C0 by

Cn+1 ª K ù sCn ø C−1sCndd ,

which converges to the capture basin Capts2dsK ,Cd. j

One can prove that whenever the discrete map x Fhsxdªx+hFhsl ;xd is a time discretiza-
tion of the differential inclusion x8stdPF(l ;xstd), the graph of the discrete well converges to the
graph of the well in the Kuratowski–Painlevé sense ssee Refs. 26 and 27 and see Ref. 14, among
other referencesd.
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IV. COMPLETE WELLS

The concept of well we proposed in Definition II.1 is not restrictive enough to match its
physical counterpart, in the sense that it does not require that all evolutions starting from a point
of a well PVsl ;T ,yd to remain below the rim of the well before time T while one of them at least
reaches its rim at time T.

Definition IV.1: Consider an extended function V :X°Rø h+`j and a differential inclusion

∀t ù 0, x8std P Fsl;xstdd .

The complete well WVsl ;T ,yd,PsV ;yd of duration T and depth y of the function V is defined by
the set of initial states xPSsV ;yd such that

sid all solutions xls·dPSlsxd satisfy

∀t P f0,Tg, Vsxlstdd ø y

siid at least one solution xls·dPSlsxd satisfies

VsxlsTdd = y .

The complete wells can be characterized in terms of absorption and capture basins. sSee, for
instance, Refs. 3–6.d

Proposition IV.2: Consider an extended function V :X°Rø h+`j and a differential inclusion

∀t ù 0, x8std P Fsl;xstdd .

We associate with it the auxiliary system of differential inclusions s1d. The constrained set K and
the targets C and D are defined by

K ª EpsVd 3 R+ 3 R+ and C ª GraphsVd 3 R+ 3 h0j

and

D ª EpsVd 3 R+ 3 h0j .

Then

WVsl;T,yd = hx P X such that sx,y,l,Td P Capts1dsK,Cd ù Abss1dsK,Ddj .

Proof: Indeed, to say that sx ,y ,l ,TdPCapts1dsK ,CdùAbss1dsK ,Dd amounts to saying the
following:

s1d sx ,y ,l ,TdPCapts1dsK ,Cd, and thus, as we have seen, that xPPVsl ;T ,yd.
s2d sx ,y ,l ,TdPAbss1dsK ,Dd means that for all evolutions xls·dPSlsxd, there exists a time t!

ù0 such that the associated auxiliary evolutions,

t → sxstd,ystd;lstd;tstdd = sxstd,y,l,T − td ,

starting from sx ,y ,l ,Td at t=0 reaches the target D at time t! while staying, meanwhile, in
K:

sid „xst!d,y,l,T − t!… P D ,

siid ∀ t P f0,t!g, sxstd,l,y,T − td P K .

The first condition is equivalent to both equation t!=T and inequality V(xsTd)øy. The
second equation means that for every tP f0,Tg, Vsxstddøy.

These are the two properties stating that x belongs to the well WVsl ;T ,yd. j
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V. CONCLUSIONS

Our objective in this investigation was to build exploration dynamics of a landscape V asso-
ciating with a bound l on the velocities of the exploration mechanism, a duration T, and an
altitude y:

s1d The set PVsl ;T ,yd of initial states x below altitude y from which starts at least one evolution
climbing the landscape in order to reach the altitude y at exactly the prescribed time T;
altitude y might be either a reference level, thus providing access to the depth of the well, or
chosen among the values of local maxima of the landscape function, thus providing access to
the height of the barriers separating the well from the other ones.

s2d An underlying dynamical system governing the evolutions climbing the wells up to their
rims the velocities of the exploration mechanism are consistently chosen among

x8std P −
]PVsl;T − t,yd

]t
.

Hence, the exploration mechanism is no longer an external stochastic modification of the
gradient equation, but an intrinsic set-valued method involving the time derivative of the
well.

This dynamic description of landscape topography has then been reformulated in the frame-
work of viability theory, which provides a constructive algorithm to characterize quantitatively the
landscape, built as an intrinsic exploration mechanism of energy landscapes; this mechanism could
be either a perturbed gradient method or a universal mechanism independent of the energy func-
tion. The more refined notion of complete well, introduced in Sec. IV, allows us to bridge still
more our mathematical definitions and exploration with the current landscape paradigm. As dis-
cussed in the Introduction sSec. I Bd, our results can then be exploited for taxinomic purposes, to
investigate phase transitions, to quantify the landscape hierarchical structure. It also proposes an
alternative to standard stochastic gradient methods, namely differential inclusions, in modeling
dynamics associated with an experimentally determined landscape.

ACKNOWLEDGMENTS

Jean-Pierre Aubin acknowledges the financial support provided through the European Com-
munity’s Human Potential Programme under Contract No. HPRNCT-2002-00281 sEvolution
Equations for Deterministic and Stochastic Systemsd.

APPENDIX: ELEMENTS OF VIABILITY THEORY

Let X be a finite-dimensional vector space. A set-valued map F :X X associates to any x
PX a subset Fsxd,X. The set-valued map F generates the evolutionary system SF :X Cs0,` ;Xd
associating with any initial state x0PX the set SFsx0d,Cs0,` ;Xd of solutions to differential
inclusion x8stdPF(xstd) starting at x0. We denote by

GraphsFd ª hsx,yd P X 3 Yuy P Fsxdj , X 3 Y ,

the graph of a set-valued map F :X Y and DomsFdª hxPX uFsxdÞ0”j its domain.
We shall say that a subset K,X is locally viable under F sor under SFd if from every x

PK starts at least one solution xs·d to the differential inclusion x8PFsxd viable in K on the
nonempty interval f0,Txf in the sense

∀t P f0,Txf, xstd P K ,

and that K is viable if we can take Tx= +` for any xPK. Most of the results of viability theory are
true whenever we assume that the dynamics are Marchaud:

Definition A.1: We shall say that the set-valued map F :X Y is a Marchaud map if
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sid the graph of F is closed in X3Y,
siid the values of Fsxd of F are convex subsets of Y,
siiid the growth of F is linear: ∃c.0 u ∀xPX, iFsxdiªsup

vPFsxdiviøcsixi+1d.

We shall say that F is l-Lipschitz if sset-valued extension of the standard Lipschitz propertyd

∀x,x8 P X, Fsxd , Fsx8d + lix − x8iB ,

where B is the unit ball in Y.
We shall also need some other prerequisites from the Viability Theory: among which capture

and absorption basins.
Definition A.2: Let C,K,X be two subsets, C being regarded as a target, K as a constrained

set. The subset CaptFsK ,Cd of initial states x0PK such that C is reached in finite time, without
leaving K, by at least one solution xs·dPSFsx0d starting at x0 is called the viable-capture basin of
C in K sthe solution might eventually leave K, but only after having reached Cd. The subset
AbsFsK ,Cd of initial states x0PK such that all evolutions xs·dPSFsx0d starting at x0 are viable in
K until they reach C in finite time is called the absorption basin of K with target C.

Obviously AbsFsK ,Cd,CaptFsK ,Cd. We recall the following result sRef. 7d of bilateral fixed
point property:

Theorem A.3: The viable-capture basin CaptsK ,Cd of a target C viability being with respect
to the constrained set Kd is the unique subset D satisfying C,D,K and

D = CaptFsK,Dd = CaptFsD,Cd

and the absorption basin of K with target C is the unique subset A satisfying C,A,K and

A = AbsFsA,Cd = AbsFsK,Ad .

We also recall backward invariance:
Definition A.4: The subset K is locally backward invariant under F if for every t0P g0, +`f,

xPK, for all solutions xs·d to the differential inclusion x8PFsxd arriving at x at time t0, there
exists a time sP f0, t0f sdepending on the solutiond such that xs·d is viable in K on the interval
fs , t0g. The subset K is backward invariant under F if we can take s=0 for all solutions.

It is straightforward to check that backward evolutions u→zsud=xst0−ud are solutions of the
differential inclusion z8sudP−Fszsudd with initial condition zs0d=xst0d; we call them backward
solutions sstarting from xst0d at time u=0d. It is noted that the slocald backward invariance of K is
stronger than slocald viability of K under this backward evolution, since all solutions starting in a
backward invariant subset K remain in K for a finite time sdepending on each considered solution
in case of the local version of the propertyd, whereas the slocald viability of K only requires that for
each point xPK, at least one solution is slocallyd viable in K.

We also introduce a weaker notion: A subset D,K is locally backward invariant relatively to
K if all backward solutions starting from D and viable in K si.e. remaining in K for a finite timed
are actually viable in D si.e., remain in D for a finite timed.

Definition A.5: A subset R,X is a repeller under F if all solutions starting from R leave R in
finite time.

Hence, R is not viable, but this does not exclude local viability. It is, moreover, obvious that
any subset of a repeller is itself a repeller.

We can derive the following characterization of capture basin ssee Ref. 4d:
Theorem A.6: Let us assume that F is Marchaud and that the subsets C,K and K are closed.

If K \C is a repeller sthis is for instance the case when K itself is a repellerd, then the viable-capture
basin CaptFsK ,Cd of the target C under F is the unique closed subset D satisfying C,D,K and34

sid D \C is locally viable under F,
siid D is locally backward invariant relatively to K.

Definition A.7: The contingent cone TLsxd to L,X at xPL is the set sobviously a closed coned
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of directions vPX such that there exist sequences hn.0 converging to 0 and vn converging to v

satisfying x+hnvnPL for every n ssee, for instance, Ref. 9d.
For instance, if L is a differentiable manifold in X, TLsxd coincides with the tangent space to

L at point x. If the interior of L is nonempty, then TLsxd=X for any xP IntsLd.
We introduce the following Frankowska property that we need for deriving the system of

Hamilton–Jacobi–Bellman equations of which the well is a solution:
Definition A.8: Let us consider a set-valued map F :X X and two subsets C,K and K. We

shall say that a subset D between C and K si.e., C,D,Kd satisfies the Frankowska property with
respect to F if

sid ∀ x P D \ C, Fsxd ù TDsxd Þ 0” ,

siid ∀ x P D such that sRef. 35d − Fsxd ù TKsxd Þ 0” then − Fsxd , TDsxd . sA1d

When K is assumed further to be locally backward invariant sthen −Fsxd,TKsxd for any xPKd the
above conditions sA1d boil down to

sid ∀ x P D \ C, Fsxd ù TDsxd Þ 0” ,

siid ∀ x P D, − Fsxd , TDsxd sA2d

fThe minus sign in front of F arises when considering backward evolution, governed by the
differential inclusion, z8sudP−F(zsud).g

Theorem A.6 and the Viability36 and Invariance Theorems imply
Theorem A.9: Let us assume that F is Marchaud, that K and C,K are closed subsets, and

that K \C is a repeller. Then the capture basin CaptFsK ,Cd is

s1d the largest closed subset D satisfying C,D,K and

∀x P D \ C, Fsxd ù TDsxd Þ 0” . sA3d

Furthermore, the evolutions xs·dPSFsxd viable in K until they reach C are governed by the
differential inclusion

x8std P Fsxstdd ù TDsxstdd .

sIt roughly means that these trajectories point into D or are taugent to D at any point where
they reach the boundary of D, thus ensuring their viability until they reach C.d

s2d if F is Lipschitz, the unique closed subset D satisfying the Frankowska property sA1d.

The absorption basin AbsFsK ,Cd is the largest closed subset D satisfying C,D,K and

∀x P D \ C, Fsxd , TDsxd . sA4d

We shall apply Theorem A.9 to the case when subsets KªGraphsFd and CªGraphsHd are
graphs of set-valued maps from X to X and when we decide to regard D as the graph of a
set-valued map G :R3X Y. We then interpret the contingent cone to the graph as the graph of
the contingent derivative. We obtain set-valued solutions to systems of Hamilton–Jacobi inclu-
sions that this unknown function G should satisfy in order that its graph yields the desired capture
basin. We refer to Refs. 5 and 6, Ref. 12, and their references for more details on this topic. Here,
we recall the definition of contingent derivative of a set-valued map and translate Theorem A.9 in
the framework of wells.

Definition A.10: Let us consider a set-valued map G :R3X Y. The graph of the contingent
derivative DGst ,x ,yd sa set-valued map defined from R3X to Yd at a point st ,x ,ydPGraphsGd is
equal to the contingent cone to the graph of G at st ,x ,yd:

TGraphsGdst,x,yd = GraphsDGst,x,ydd .
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Consequently, to say that wPY belongs to the contingent derivative DGst ,x ,yds±1,vd of G at
st ,x ,yd in the direction s±1,vdPR3X means that

lim inf
h→0+,v8→v

dSw,
Gst ± h,x + hv8d − y

h
D = 0,

where d is any distance in Y. Since the contingent cone is a closed subset, the graph of a
contingent derivative is always closed and positively homogeneous sthis is what remains of the
required linearity of the derivative in classical analysis, but, fortunately, we can survive pretty well
without linearityd.

When g :R3X°Y is single-valued, we set Dg(t ,xdªDgst ,x ,gst ,xd). We see at once that
Dgst ,xds±1,vd= ±]gst ,xd /]t+]gst ,xd /]x ·v whenever g is differentiable at st ,xd. The above defi-
nition sA.10d generalizes to set-valued maps a property obviously valid for differentiable maps,
hence provides a consistent extension of the differentiation to set-valued maps, coinciding with the
plain notion for smooth single-valued maps. Moreover, it is to note that when g is Lipschitz on a
neighborhood of st ,xd and when the dimension of X is finite, the domain of Dgst ,xd is not empty.
Furthermore, the Rademacher Theorem stating that a locally Lipschitz single-valued map is almost
everywhere differentiable implies that x Dgst ,xd is almost everywhere single valued. However,
in this case, equality Dgst ,xds−1,−vd=−Dgst ,xds1,vd is not true in general. We refer to Ref. 9 for
more details.

Remark: This is how Fermat defined in 1637 the derivative of a function as the slope of the
tangent to its graph. Leibniz and Newton provided the characterization in terms of limits of
difference quotients. Here, too, the graph of the contingent derivative DGst ,x ,yd is the upper
Painlevé–Kuratowski limit of the graphs of difference quotients =hGst ,x ,yd of G at st ,x ,yd
PGraphsGd, defined by

sl,vd ° =hGst,x,ydsl,vd ª
Gst + lh,x + hvd − y

h
.

Indeed, we observe that

Graphs¹hGst,x,ydd =
GraphsGd − st,x,yd

h
s,R 3 X 3 Yd ,

so that the contingent cone to the graph of G, being the upper limit of the graphs of the difference
quotients, is equal by definition to the graph of the upper graphical limit of the difference quo-
tients.

The strong requirement of pointwise convergence of differential quotients involved in the
usual derivatives can be weakened in sat leastd two ways, each way sacrificing different groups of
properties of these usual derivatives.

sid Distributional derivatives: Fix the direction v and take the limit of the function
x°=hgsxdsvd in the weaker sense of distributions. The limit D

v
g may then be a distribu-

tion, and no longer a single-valued map. However, it coincides with the usual limit
(D

v
gsxd=Dgsxd ·v) when g is Gâteaux differentiable. Moreover, one can define difference

quotients of distributions, take their limit, and thus, differentiate distributions.
Distributions are no longer functions or maps defined on Rn, so these distributional deriva-
tives lose the pointwise character of functions and maps; on the other hand, this generali-
zation retains the linearity of the operator g°D

v
g, mandatory for using the theory of linear

operator for solving partial differential equations.
siid Graphical derivatives: Fix the point x and take the limit of the function v°=hgsxdsvd in

the weaker sense of graphical convergence sthe graph of the graphical limit being by
definition the Painlevé–Kuratowski upper limit of the graphsd. The limit Dgsxd may then be
a set-valued map, and no longer a single-valued map. However, it coincides with the usual
limit when g is Gâteaux differentiable. Moreover, one can define difference quotients of
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set-valued maps, take their graphical limit, and thus differentiate set-valued maps. These
graphical derivatives keep the pointwise character of functions and maps, mandatory for
implementing the Fermat Rule, proving inverse function theorems under constraints or
using Lyapunov functions, for instance, but lose the linearity of the map g°Dgsxd.

In both cases, the approaches are similar: They use sdifferentd convergences weaker than the
pointwise convergence for increasing the possibility for the difference quotients to converge. But
the price to pay is the loss of some properties by passing to these weaker limits sthe pointwise
character for distributional derivatives, the linearity of the differential operator for graphical de-
rivativesd. j

Proposition II.2 related the graph of the well to the capture basin P
v
sl ;T ,yd

=hx [X such that sx ,y ,l ,Td[ Capt1sKCdj under system sA1d:

sid x8std P F„lstd;xstd… ,

siid y8std = 0,
sA1’d

siiid l8std = 0,

sivd t8std = − 1.

At this point, we need to introduce the concepts of epigraph and epiderivative of extended nu-
merical functions:

Definition A.11: Let V :X°Rø h+`j be an extended function. Its epigraph EpsVd is the set of
pairs sx ,ydPX3R satisfying Vsxdøy fthus EpsVd,X3Rg. The contingent epiderivative
D↑Vsxd :X° R̄ is defined through the relation

EpsD↑Vsxdd ª TEpsVdsx,Vsxdd .

We can check that D↑Vsxd consistently coincide with the usual derivative DVsxd when V is
differentiable in x, and that for any vPX,

D↑Vsxdsvd = lim inf
h→0+,v8→v

Vsx + hv8d − Vsxd

h

is a generalized limit of differential quotients.
We deduce from Proposition II.2 and Theorem A.9 the following characterization of the well

as the unique solution to an initial-value problem of a partial differential inclusion satisfying
viability constraints:

Theorem A.12: Assume that the set-valued map F is Marchaud and that the function V is
continuous. Then the well PV :R+3R+3R X is the largest set-valued map P :R+3R+3R X
solution to the partial differential inclusion

∀x P Psl;T,yd, Fsl;xd ù DPsl;T,y,xds0,− 1,0d Þ 0”

the initial condition

Psl;0,yd = S0sV,yd

and the viability constraint

Psl;T,yd , SsV,yd .

Furthermore, if F is Lipschitz, this solution is the unique solution satisfying

sid ∀xPPsl ;T ,yd, Fsl ;xdùDPsl ;T ,y ,xds0,−1,0dÞ0” ,

043508-14 J.-P. Aubin and A. Lesne J. Math. Phys. 46, 043508 ~2005!

Downloaded 22 Oct 2005 to 134.157.8.89. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



siid ∀xPPsl ;T ,yd such that inf
vPFsl;xdD↑Vsxds−vdø0 then −Fsl ;xd,DPsl ;T ,y ,xds0,

+1,0d.

Proof: Theorem A.9 implies that the graph of the well PV :R+3R+3R X, once transformed
by the permutation sl ,t ,y ,xd→ sx ,y ,l ,td of the coordinates, is the largest subset D between C

and K si.e., C,D,K,X3R3R+3R+d, such that

∀sx,y,l,td, sFsl;xd 3 h0j 3 h0j 3 h− 1jd ù TDsx,y,l,td Þ 0” .

This amounts to saying that the well PV is the largest set-valued map P satisfying the initial
condition Psl ;0 ,yd=S0sV ,yd, the constraint Psl ;T ,yd,SsV ,yd, and the contingent solution to
the partial differential inclusion,

∀x P Psl;T,yd, Fsl;xd ù DPsl;T,y,xds0,− 1,0d Þ 0” ,

and that the evolutions ft° sl ,T− t ,y ,xstddg viable in the well until they reach its rim are gov-
erned by the differential inclusion

s0,− 1,0,x8stdd P sh0j 3 h− 1j 3 h0j 3 Fsl;xstddd ù GraphsDPVsl;T − t,y,xstdds0,− 1,0dd .

This can be written as

x8std P Fsl;xstdd ù DPVsl;T − t,y,xstdds0,− 1,0d .

This is what we meant symbolically above as

x8std P Fsl;xstdd ù −
]PVsl;T − t,yd

]t
.

When F is Lipschitz fthis is the case when Fsl ;xdªlB swhere B is the unit ball in Xdg, the
graph of the well PV safter permutation of the coordinates as aboved is the unique subset D,
satisfying

∀sx,y,l,td, sFsl;xd 3 h0j 3 h0j 3 h− 1jd ù TDsx,y,l,td Þ 0” ,

and, whenever (−Fsl ;xd3 h0j3 h0j3 h+1j)ùTKsx ,y ,l ,tdÞ0” , then

s− Fsl;xd 3 h0j 3 h0j 3 h+ 1jd , TDsx,y,l,td .

Thanks to the definition of the contingent epiderivative and the fact that KªEpsVd3R+3R+, we
infer that

s− v,0,0, + 1d P TDsx,y,l,td ,

if and only if D↑Vsxds−vdø0. This concludes the proof. j
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