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Abstract

The relation between continuous-time dynamics and corresponding
discrete schemes, and its generally limited validity, is an important and
widely acknowledged chapter of numerical analysis. In this paper, we
propose another, more physical, viewpoint on this topic in order to un-
derstand the possible failure of discretization procedures and the way to
fix it. Three basic examples, the logistic equation, the Lotka-Volterra
predator-prey model and the Newton law for planetary motion, are
worked out. They illustrate the deep difference between continuous-
time evolutions and discrete-time mappings, hence shedding some light
on the more general duality between continuous descriptions of natural
phenomena and discrete numerical computations.

1 Introduction

This special issue of MSCS is devoted to the ubiquitous duality between
discreteness and continuity, and to the debates arising either to reconcile,
or to contrast, these two notions. We shall consider this issue within a more
restricted scope: in all this paper, “continuous” and “discrete” will refer
to time, and to the modality used to describe a deterministic evolution:
either by a continuous trajectory t ∈ [0,∞[→ x(t), either as a discrete
sequence (xn)n labeled with integers. Our aim is mainly to give a simple
and comprehensive account of results scattered in the literature.

A striking difference between discrete and continuous modelings, ex-
plained in Sec. 2, is related to the occurrence of deterministic chaos, namely
of a seemingly erratic behavior originating in nonlinear amplification of any
perturbation (sensitivity to initial conditions) and mixing of phase space re-
gions. Discrete autonomous dynamical systems in 1-dimension can exhibit
chaotic behavior, whereas the corresponding (1-dimensional) continuous evo-
lution equations rule it out, and cannot even possess a nontrivial periodic
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solution. A phase-space dimension d ≥ 3, at least, is required to (possi-
bly) observe a chaotic behavior in a continuous dynamical system (see for
instance the textbook [Devaney 1989]). This point hints at the following
issue: the passage from discrete to continuous equations, or conversely, is
all but insignificant. Moreover, this issue should unavoidably be faced, since
any numerical resolution of a continuous equation in fact imply the recourse
to a discrete analog: it is thus of the utmost importance to describe the rela-
tion between the desired (continuous) solution and the output of the actual
(discrete) computation.

In Section 2, we evidence some caveats about the passage from discrete
to continuous equations, and conversely, on the paradigmatic Verhulst lo-
gistic equation, investigating in particular the status and influence of the
actual size of the unit time step in discrete modelings, providing a physi-
cal interpretation of standard numerical analysis procedures. In Section 3,
we consider a 2-dimensional evolution, which brings new difficulties. Some
guidelines might be drawn in the case of Hamiltonian systems, based on
their symplectic structure. We recall in Section 4 the historical example of
Newton’s derivation of Kepler’s law. A final Section 5 draws some general
conclusions enlarging the scope of the three case studies.

2 From discrete to continuous dynamics and back:

How large is 1?

2.1 The discrete-time logistic evolution

The logistic map fa(x) = ax(1 − x) giving the celebrated recursion relation
on the interval [0, 1]

xn+1 = axn(1 − xn) = fa(xn) x0 ∈ [0, 1] a ∈]1, 4] (1)

is one of the simplest example of discrete autonomous evolution leading to
chaos. This nonlinear equation was introduced by Verhulst (a Belgian math-
ematician) in 1838 to take into account that a, the Malthus coefficient char-
acterizing the growth of the population

Xn+1 = aXn,

has to decrease when Xn increases, due to resources limitation [Verhulst
1838]. The simplest way was to replace the constant rate a by a linear
dependence in Xn, matching the rate a at vanishing population, namely
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a(1 − Xn/M); the parameter M is then interpreted as being the maxi-
mum acceptable population, currently known as the “carrying capacity” of
the environment. Equation (1) is recovered through the change of variable
xn = Xn/M . A very rich variety of dynamic behaviors is generated by this
Equation (1), whose temporal structure is governed by the values of the con-
trol parameter a. Since the seminal reference1 [May 1976], several studies
of the asymptotic dynamics of (1) have been published, among which some
very pedagogical ones are [Evans and Morriss 1991], [Peitgen et al. 1992],
[Korsch and Jodl 1998]. Let us only recall the most significant properties.

For a given, such that 1 < a < a1 = 3, the fixed point x∗

a = 1 − 1/a is
stable, globally attractive, therefore xn → x∗

a as n → ∞, irrespectively of
the initial condition x0 provided it belongs to its basin of attraction ]0, 1[.
In a1 = 3, a cycle of period 2 appears through a pitchfork bifurcation. Also
called period-doubling bifurcation since it is associated with the destabiliza-
tion of a fixed point x∗

a into a 2-cycle (or the destabilization of a 2n-cycle
into a 2n+1-cycle when it involves f2n

a instead of fa), this generic bifur-
cation is characterized by the relation f ′

a1
(x∗

a1
) ≡ ∂xf(a1, x

∗

a1
) = −1 and

the generic condition ∂2
axf(a1, x

∗

a1
) 6= 0 (denoting here the a-dependence on

the same footing for the sake of clarity) [Iooss and Joseph 1981]. The 2-
cycle emerging in a1 remains stable and globally attractive in ]0, 1[ for any
3 < a < a2 = 1 +

√
6. More generally, there exists an increasing sequence

(ak)k of bifurcation values such that for ak < a < ak+1, the asymptotic
regime is a cycle of period 2k, which destabilizes in ak+1 through a pitchfork
bifurcation of f2k

a . This sequence converges to a∞ ≈ 3.5699 according to the
scaling law a∞ − ak ∼ δ−k with a universal rate δ ≈ 4.6692 [Feigenbaum
1978] [Coullet and Tresser 1978]. The discrete evolution (1) is actually a
generic example exhibiting this so-called period-doubling scenario toward
chaos, i.e. a normal form to which any one-parameter family experiencing
such a scenario is conjugated [Collet and Eckmann 1981]. In a = a∞, a
chaotic behavior arises, reflecting for a > a∞ in a positive Lyapunov expo-
nent (sensitivity to initial conditions) and mixing property (time decorrela-
tion of phase space regions). Chaotic regions in the a-space then intermingle
in a highly complicated fashion (but now understood [Collet and Eckmann
1981]) with non chaotic regions where stable odd cycles rule the asymptotic
dynamics.

The conclusion is now acknowledged, but it was striking at the time

1Without lowering the historical importance and repercussions of this paper, it is to
note that more is known today on the asymptotic behavior in the region a > a∞, which
leads to modify May’s claim that all trajectories are periodic but with period so large that
the dynamics resembles chaos.
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of publication of [May 1976]: a large variety of chaotic behaviors can be
generated by a 1-dimensional discrete evolution, with a seemingly harm-
less nonlinearity (smooth and simply quadratic). The results recalled above
showed unquestionably that nonlinearities are never harmless when supple-
mented with a folding dynamics, here coming from the bell shape of the
evolution map. But the role and importance of the time-discrete nature of
the evolution rule are far less clear and we shall carry on the analysis in this
direction.

2.2 Continuous-time counterpart: a trivial dynamics

As it is impossible to give an analytical solution2 of (1), i.e. xn as an
explicit function of n and x0, and because we are interested in the asymptotic
solution n → ∞ (which gives a vanishing relative duration to the unit step
n → n+1), it is appealing to deal with the corresponding continuous problem
[Hubbard and West 1991], which is straightforwardly solvable. To derive a
continuous counterpart of (1), one subtracts xn to both sides of equation
(1) and identifies xn+1 − xn with the differential of a continuous function of
time y(t), which leads to:

dy

dt
= fa(y) − y = y[a(1 − y) − 1], (2)

whose analytical solution is easily obtained :

y(t) =
(a − 1)y0

ay0 + [a(1 − y0) − 1]e−(a−1)t
. (3)

This solution is obviously regular with respect to t ≥ 0 for any value of
a > 1 and, not surprisingly, tends to x∗

a as t → ∞. In contrast with this
plain behavior, qualitatively insensitive to the value of a > 1, any attempt
to solve (2) by discretization with a time step h = 1 will lead to the logistic
evolution (1) with its full richness of solutions as a is varied. On the other
hand one expects that, for h small enough, one should approach the true
solution (3). How is it possible ? We have therefore to quantify what means
“small enough”.

2Except for a = 4, where xn = sin2(2πθn) with θn = 2θn−1 = 2n
θ0 if x0 = sin2(2πθ0).

This equivalence with the angle-doubling θn+1 = 2θn (modulo 1) allows to prove that one
gets a fully chaotic behavior for a = 4 (the location of xn below 1/2, coded 0, or above
1/2, coded 1, generates a binary sequence that is statistically equivalent to the outcome
of a game of heads-and-tails).

4



2.3 Interpretation of discretization schemes associated with

the logistic equation

Let us thus recall the behavior of the discretization schemes associated with
(2) [Borrelli and Coleman 1998]. Our aim is evidently not to get more knowl-
edge about this equation, nor to device an accurate numerical resolution, but
rather to understand in this tractable and well-understood situation what
is currently done to solve real problems when no straightforward solution is
available. For a given time step h, the discretization scheme writes

y(t + h) = y(t) + h{ay(t) [1 − y(t)] − y(t)} (4)

A remarkable feature of the logistic equation is the possibility to rewrite this
scheme as

Y (t + h) = AY (t) (1 − Y (t)) , (5)

with

Y (t) = λy(t) where λ =
ah

1 + h(a − 1)
(6)

involving the effective control parameter

A(a, h) = 1 + h(a − 1) (7)

provided y0 ∈ [0, 1/λ] (note that λ < 1 if h < 1). Obviously, the same
phenomenology as for evolution (1) will be observed. For instance, the
inequality A < a1 = 3, required to obtain the convergence of (5) to the
nontrivial fixed point Y ∗

A = 1 − 1/A, means

h < hc(a) =
a1 − 1

a − 1
=

2

a − 1
(8)

Extending the reasoning to the subsequent bifurcations, one would observe
a whole period-doubling scenario when the discretization step h increases,
namely at values (hk)k with A(a, hk) = ak, i.e.

hk =
ak − 1

a − 1
(9)

Chaos arises for h > h∞(a) = (a∞ − 1)/(a− 1). The bifurcation diagram as
a function of h, at fixed a, would then be similar to the standard bifurcation
diagram in a-space, up to a rescaling of the attracting sets by a factor
of λ(a, h), a translation and a rescaling of the bifurcation values (ak =
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Figure 1: Discretization of the logistic equation (2) with a = 3.1, using a time
step h < hc (here h = 0.94 whereas hc ≡ 2/(a − 1) = 20/21 ≈ 0.95), see
text, Section 3. Bold line: exact (continuous-time) solution of (2). Stair step
1
λ
fA(nh). x∗

a = 1 − 1/a. Behavior near origin is shown in the inset.

1+(a−1)hk). In particular, it is interesting to note that the sequence (hk)k

follows the same universal scaling law h∞ − hk ∼ δ−k or more precisely:

hi+1 − hi

hi+2 − hi+1
−→ δ when i → ∞ with δ ≈ 4.4669 (10)

For illustration let us consider the case a = 3.1 (Figures 1, 2 and 3). The
critical value of h is hc = (a1 −1)/(a−1) = 2/2.1 ' 0.9524. For h > hc, one
gets a 2-cycle, namely oscillations of the solution between the two (stable)
fixed points of fA[fA(Y )]. The onset of the chaos occurs for h = h∞ =
(a∞ − 1)/(a − 1) = 2.5699/2.1 = 1.22376.

2.4 Discussion: an interplay between two characteristic times

This simple study illustrates that the passage from continuous-time to discrete-
time in a nonlinear evolution is not insignificant: an actual chaotic behavior
can be suppressed by replacing a discrete model by its limiting continuous
counterpart, or conversely destabilization of the continuous-time evolution,
leading to cycles and even a spurious chaotic behavior, might follow from
an improper choice of the step of the discretization [Yamaguti and Matano
1979].

Nevertheless, the passage from Equation (1) to (5) by a simple scaling
is exact only in the case of the quadratic family. To enlarge the scope of
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Figure 2: Same as Fig. 1 but with h = 0.96 > hc.

our discussion, we shall now investigate what remains true in more general
situations. Let f be a map, generating a discrete dynamical system xn+1 =
f(xn) and having a stable fixed point x∗ (i.e. f(x∗) = x∗ and |f ′(x∗)| <
1). The naive continuous counterpart writes dy/dt = f(y) − y. Linear
stability analysis shows that x∗ is still a (at least locally) stable fixed point
of the continuous dynamics since the linear growth rate of perturbations is
negative: f ′(x∗) − 1 < 0.

We might then consider the discrete scheme zn+1 = zn + h[f(zn) − zn]
for various values of the time step h. It is straightforward to show that this
discretization scheme destabilizes for h > hc where

hc = 2/[1 − f ′(x∗)] (11)

Indeed, the linear stability of x∗ breaks down when the modulus |1+h(f ′(x∗)−
1)| overwhelms 1, which occurs for 1 + h(f ′(x∗) − 1) = −1. This relation
yields the above value of hc and shows that the discrete scheme exhibits
a period-doubling (pitchfork) bifurcation in h = hc (the additional generic
condition for this bifurcation stated in Sec. 2.1 is also fulfilled, as can be
directly checked).

The additional feature observed when the map fa depends on a control
parameter a and exhibits a period-doubling in a1 is that hc(a) crosses h = 1
in a = a1: for a > a1, f ′

a(x
∗

a) < −1 and x∗

a is instable with respect to
the initial discrete dynamics (h = 1) but is still a stable fixed point of the
continuous dynamics, showing the inadequacy of the limiting continuous
model dy/dt = fa(y)− y to capture the behavior of the discrete one xn+1 =
fa(xn). It is to note that, in the case when f ′

a(x
∗

a) decreases with a (as in
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Figure 3: Discretization of the logistic equation (2) with a = 3.1, using a time
step h = 3/(a − 1) = 1.424 corresponding to the fully chaotic case A = 4, see
text, Sec. 2.3.

the logistic example), then hc(a) decreases if a increases: the more stable is
the fixed point (i.e. the larger |f ′

a(x
∗

a)− 1| with f ′

a(x
∗

a)− 1 < 0), the smaller
is the time-step range of validity of the discretization scheme (in a sense,
the less stable is the discretization scheme).

The qualitative differences, explicitly described in the previous sections,
between the continuous-time and discrete-time versions of the logistic equa-
tion (and above in a more general framework) are not really surprising: a
general claim assesses that a continuous-time dynamics requires a phase
space of dimension at least 3 to develop a chaotic behavior [Schuster 1984].
In dimension 1 or 2, continuous trajectories behave as boundaries each for
each other (trajectories of an autonomous continuous dynamic system can-
not cross each other), which obviously prevents from chaos (and even from
nontrivial periodic solutions in dimension 1). But whereas it is straightfor-
ward to foresee the loss of chaotic and even periodic behavior when turning
to the limiting continuous dynamics, is it possible to understand on physical
grounds the existence of a critical value hc for the discretization time step h?

The explanation lies in the comparison of the intrinsic time scale(s) of
the dynamics with the chosen “time unit” h. The characteristic time of a
continuous evolution, still denoted dy/dt = f(y) − y to avoid proliferation
of new notations, can be estimated as τ ∼ 1/[1 − f ′(x∗)]. Indeed, a mere
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linearization of (2) around the fixed point x∗ leads to,

d

dt
[x(t) − x∗] = [f ′(x∗) − 1](x − x∗) (12)

whose solution is x(t) − x∗ ∼ e−t[1−f ′(x∗)] hence the value of τ . Destabiliza-
tion of the discretization scheme occurs when h > hc = 2τ . The stepwise
updating, after each time step h, of the evolution law is too rough to properly
control the discrete evolution and force it to follow closely all the relevant
variations of the continuous trajectory.

This is reminiscent of the Nyquist theorem [Nyquist 1928] [Shannon 1949]
for a periodic continuous evolution: the observation time step should be
smaller than half the smallest period (or characteristic time) to properly
sample the continuous trajectory.

It is to note that τ or equivalently the critical value hc = 2τ of the
time step are intrinsic features of the dynamics, in the sense that they are
invariant through conjugacy. This means that for any diffeomorphism φ,
f and φ−1 ◦ f ◦ φ (providing an equivalent modeling of the discrete model
associated with f) have the same critical value hc and the same characteristic
time τ . Indeed, denoting y∗ = φ−1(x∗) the fixed point of φ−1 ◦ f ◦ φ, it
is straightforward to check that f ′(x∗) = [φ−1 ◦ f ◦ φ]′(y∗), from which
follows the equality of the characteristic time associated respectively to f
and φ−1 ◦ f ◦ φ.

Let us carry further the comparison between the continuous evolution
and its discretization, in order to understand the emergence of oscillations
for h > 2τ . The general continuous equation dy/dt = f(y)−y operates a fine
tuning of the evolution rate dy/dt that is obviously not achieved by updating
f(y) − y at times tn = nh. We have shown here that, near a stable fixed
point, the resulting discrepancies lead to a bifurcation in the asymptotic
dynamics, when h overwhelms the characteristic time of the evolution. To
take a familiar example of such oscillations arising from a mismatch between
two characteristic times, let us consider an heating/cooling device, able to
measure the difference between the instantaneous room temperature and a
prescribed one, and to monitor the appropriate energy supply or extraction,
to compensate the measured difference. If the time h necessary for the device
to actually deliver the required energy is longer that the characteristic time
of temperature variations in the environment, the device will not balance
the external temperature variations but rather, its ill-phased response will
superimpose and the room temperature will suffer large oscillations. More
generally, any ill-tuned homeostatic device, responding with a large time lag
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h, will produce oscillations, and the result of Sec. 2.3 is the mathematical
translation of this ubiquitous phenomenon.

2.5 Generalized Euler discretization schemes

Actually, the improvement of the validity range of a discretization scheme
by using an implicit recursion relation is a general property. In particular,
implicit scheme (with the notation xn ≡ x(tn) where tn = t0 + nh)

xn+1 = xn + h[axn+1(1 − xn+1) − xn+1] (13)

for the logistic equation can be checked to be stable for arbitrarily large time
steps h [Hubbard and West 1991].

Let us illustrate the general ideas on the simpler case of a 1-dimensional
dynamical system dx/dt = g(x) having a stable fixed point x∗, i.e. g(x∗) = 0
and g′(x∗) < 0. The first order Euler scheme zn+1 = zn +hg(zn) destabilizes
in hc = 2/|g′(x∗)| through a pitchfork bifurcation (see Sec. 2). Higher-order
schemes write

zn+1 = Fq(h, zn) ≡ zn + hg(zn) +
h2

2
g(zn)g′(zn)+

+
h3

6

(

[g(zn)]2g′′(zn) + g(z)[g′(zn)]2
)

+ . . . + hqGq(zn) (14)

Direct computation of ∂xFq(h, x∗) yields the following results
— the second-order scheme (q = 2) destabilizes in the same value hc,2 = hc,1

but now through a tangent bifurcation (∂xF2(h, x∗) = +1 in contrast with
∂xF1(h, x∗) = −1);
— the third-order scheme (q = 3) destabilizes through a pitchfork bifurca-
tion but at a larger value hc,3 > hc,1;
— it can be checked that the successive critical values (hc,q)q for schemes of
increasing order form an increasing sequence, up to ∞.
Moreover, it can be shown that implicit scheme embeds all the higher-order
schemes of arbitrary orders and can be seen as an “infinite-order” scheme
[Mendes and Letellier 2004], with no limitation on the time-step size. The
price to pay is the implicit nature of the scheme, not easily tractable numer-
ically.

3 Lotka-Volterra predator-prey model

The previous Section 2 has enlightened the specificity of discrete dynamics,
that cannot in general be understood, even qualitatively, from the behaviour

10



of its continuous counterpart. In two or more dimensions, the same problem
arises: the discrete recursion relation following from the continuous evolution
law is not unique. The caveats illustrated in Section 2 are all the more
relevant.

3.1 Continuous Lotka-Volterra predator-prey model

Lotka-Volterra model is a seminal model in population dynamics and ecol-
ogy, introduced by Lotka in 1920 and independently by Volterra in 1925 to
describe the joint evolution of two interacting species, namely preys (popula-
tion x) and predators (population y) feeding on them [Lotka 1920] [Volterra
1931]:



















dx

dt
= x(a − by)

dy

dt
= y(cx − d)

(15)

a is the growth rate of the prey population alone, by is the mortality rate due
to predators hence proportional to the predator population y (natural death
of preys is supposed to be negligible); cx is the growth rate of predators,
allowed by predation, hence proportional to the available resources x, and
d is the natural mortality rate of predators. More refined and realistic
models have been introduced since, for instance by Kolmogorov and May
for ecological studies [Kolmogorov 1936] [May 1973]. We here stick to this
basic model for the sake of its simplicity, having the aim to illustrate some
caveats in discrete vs continuous modeling.

This model is the archetype of nonlinear dynamics inducing intrinsic os-
cillations. Let us briefly recall its main properties. Using reduced population
and time variables

u =
cx

d
, v =

by

a
, τ = at (16)

so that the coupled evolution writes



















du

dτ
= u(1 − v)

dv

dτ
= αv(u − 1)

(17)

depending on a single control parameter

α =
d

a
(18)
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It possesses two fixed points: an unstable one (0, 0) (hyperbolic point with
unstable direction Ou and stable direction Ov) and a marginally stable
one (u∗ = 1, v∗ = 1). As well known [Murray 2002], this 2-dimensional
dynamical system leaves invariant the quantity

H(u, v) = αu + v − log(uαv) = α[u − log u] + [v − log v] (19)

Trajectories are thus level curves of H(u, v). A straightforward expansion of
H(u, v) around the fixed-point (u∗ = 1, v∗ = 1) shows that the trajectories
in its neighborhood are close to ellipses, and of period close to 2π/

√
α.

Farther from (u∗, v∗), trajectories are still closed (hence bounded) curves (see
Figure 4 full line) turning around (u∗, v∗) counterclockwise, with extremal
amplitudes for u reached when v = v∗ = 1 (respectively when u = u∗ = 1
for v). They describe out-of-phase oscillations of the two species. The
period, the phase difference and amplitudes are joint functions of the initial
conditions and the control parameter α of the dynamics.

3.2 Discretizations of the equations

A natural way to discretize Equation (17) is to use the Euler scheme.

Euler method. It writes, for any given time step h











u(τ + h) = u(τ) + hu(τ) (1 − v(τ))

v(τ + h) = v(τ) + hαv(τ) (u(τ) − 1)
(20)

We give for illustration the - very simple - corresponding Fortran program.

! Resolution of Lotka-Volterra equations

implicit none

real*8 al,h,u,v,u0,v0

integer i

al=0.5d0 ! value of alpha

h=0.1d0 ! time step

u0=0.3d0 ! initial conditions

v0=1.d0

do i=1,250

u=u0*(1.d0+h*(1.d0-v0))

v=v0*(1.d0+al*h*(u0-1.d0))

write(23,*) h*real(i),u,v ! writing t,u(t),v(t)

u0=u
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Figure 4: Trajectories in the phase space {τ, u} for α = 0.5. Dotted line
corresponds to the Euler scheme, full line to the implicit Euler scheme.

v0=v

enddo

end

It simply does not work: Figure 4 shows (dotted line) the destabilization
of the expected periodic solution whereas Figure 5 displays the growing
of the “constant” H(u, v). Let us explain what happens in the analytically
tractable case of small amplitude variations in the neighborhood of the fixed
point (u∗, v∗).

Small amplitude. In the harmonic approximation, it is easy to show that

H(t + h) = H(t)(1 + αh2) − αh2(1 + α).

Then, by recursion

H(nh) = (1 + αh2)n[H(0) − Hm] + Hm,

where Hm = 1+α is the smallest possible value of H. Replacing (1+αh2)n

by enαh2

and nh by τ one gets

H(τ) − Hm = eαhτ (H(0) − Hm). (21)
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Figure 5: Trajectories in the phase space {u, v} for α = 0.5. Continuous line
corresponds to the Euler scheme, crosses to the implicit Euler scheme.

This exponential growing of H is shown in Figure 6.
It is known that implicit Euler method is often more accurate [Hub-

bard and West 1991]. This leads to introduce the following hybrid scheme,
differing from Equations (20) in the second line.

Implicit Euler method










u(τ + h) = u(τ) + hu(τ) [1 − v(τ)]

v(τ + h) = v(τ) + hαv(τ) [u(τ + h) − 1]
(22)

with a simpler Fortran program :

do i=1,250

u=u*(1.d0+h*(1.d0-v))

v=v*(1.d0+al*h*(u-1.d0))

write(23,*) h*real(i),u,v ! writing t,u(t),v(t)

enddo

The results are also displayed in Figures 4 and 5 for comparison. The solu-
tion is periodic and h remains bounded and does not even vary significantly.
Implicit Euler scheme is in this case not simply more accurate, but it makes
the numerical integration possible (see the Figure 7).
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Figure 6: Exponential divergence of H(τ) − Hm as function of τ = nh.
α = 0.5, h = 10−2. Continuous line is given by Equation (21), long dotted
line results from numerical integration (with u0 = 0.3 and v0 = 1).

3.3 Symplectic structure

It is interesting to note that a mere change of variables allows to unravel the
Hamiltonian character of the Lotka-Volterra equations, i.e. the underlying
symplectic structure of this conservative dynamics. Indeed, setting

p = log u and q = log v (hence H = α(ep−p)+(eq −q)) (23)

casts the evolution (17) into Hamilton equations:

dq

dt
=

∂H

∂p

dp

dt
= −∂H

∂q
(24)

The reason underlying this need of using implicit Euler scheme to solve
properly the discrete Lotka-Volterra equation is thus known: it is the sym-
plectic structure of the equation given by the Hamilton equations (see for
instance [Tabor 1989]):























ṗ = −∂H

∂q

q̇ =
∂H

∂p

(25)
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Figure 7: Stability of H(τ) − H(0) as function of τ = nh with α = 0.5.
Numerical integration of Equations (22). Notice the scales.

The Euler scheme writes (with the same notation as above: pn ≡ p(tn) and
qn ≡ q(tn) where tn = t0 + nh)











pn+1 = pn − h ∂H
∂q

(pn, qn)

qn+1 = qn + h ∂H
∂q

(pn, qn)

(26)

The Jacobian of the associate linear transformation is

J = 1 + h2





∂2H

∂q2

∂2H

∂p2
−
(

∂2H

∂q∂p

)2




It means that the phase-space volume is not conserved in time (in contrast
to its conservation in the continuous evolution). In the most frequent case
when there is separation of the variables p and q in the Hamiltonian, namely
H(p, q) = K(p) + V (q), the implicit Euler method











pn+1 = pn − ∂H
∂q

(pn, qn)

qn+1 = qn + ∂H
∂p

(pn+1, qn)

(27)

thus fixes this flaw. Namely, plugging pn+1 = pn − h(∂H/∂q)(pn, qn) in
the expression for qn+1 before derivation leads to J = 1. Such integration
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scheme is called a symplectic integrator, or symplectic Euler method, since it
preserves the symplectic structure of the original evolution (and the associ-
ated area conservation) [Sanz-Serna 1992]. (it is to note that the symplectic
structure is apparent only in canonical variables p = log u, q = log v).

4 An historical precedent: Newton derivation of

Kepler laws

The above situation of Lotka-Volterra model resembles the resolution of the
planetary movement equation as done by Newton. The physical requirement
to use a semi-implicit scheme is yet encountered in the reasoning developed
by Newton to provide dynamical grounds to Kepler laws [Coullet et al.
2004].

In its Principia, in 1687, Isaac Newton implemented a discrete descrip-
tion of the planetary motion as resulting of a sequence of pointwise impulses,
that he actually borrowed from Robert Hooke. Remarkably, the algorithm
implicitly associated with this viewpoint corresponds to an implicit version
of Euler discretization scheme in the plane [Coullet et al. 2004]















~rn+1 = ~rn + h~vn

~vn+1 = ~vn + h
~f(rn+1)

m

(28)

(where m is the planet mass and f the central gravitation force) and it
achieves a better numerical stability than the standard one. Indeed, the
standard Euler algorithm















~rn+1 = ~rn + h~vn

~vn+1 = ~vn + h
~f(rn)

m

(29)

fails to follow properly the planetary motion, mainly because it fails to pre-
serve conservation laws (energy conservation and equality of areas swept
in a given time interval). It is remarkable that the celebrated Verlet algo-
rithm used in molecular dynamics simulations follows (28) and not the Euler
scheme (29).
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5 Discusssion and extensions

5.1 Improved discretization schemes

We have briefly mentioned the improved validity range of Euler implicit
schemes (see Sec. 2.5). In the same spirit, a large variety of generalized
discretization procedures, known as non standard Euler schemes, are still
in development, mainly on the basis of numerical skill and intuition; a few
empirical guidelines can be summarized [Mickens 2002]:
— the discrete scheme should be of the same (differential) order than the
original continuous evolution equation;
— invariants and symmetries of the continuous evolution should be pre-
served: this is the basic principle of the so-called geometric integrators; two
examples have been given here with the symplectic integrators associated
respectively with Lotka-Volterra equations and Newton equations [Hairer et
al. 2002];
— nonlinear terms (e.g. quadratic cross-products) are better treated using
an hybrid expression. For instance, a term x(t)y(t) in dy/dt might be best
translated into a term xn+1yn (rather than xnyn) in the expression for yn+1−
yn;
— mainly, the discretization step h should never exceed the characteristic
times of the continuous evolution.

5.2 Conclusion

We have presented first an example showing explicitly the link between the
validity of the discretization scheme with the dynamical (in)stability of the
associated map for a unit step-size. Convertely, our study enlightens the
specificity of the discrete dynamics, that cannot in general be understood,
even qualitatively, from the behaviour of its continuous counterpart. In di-
mension d ≥ 2, discretization of a system of first-order differential equations
is not unambiguously defined. In the cases of Lotka-Volterra (predator-prey)
model and Newton equations, we showed how the symplectic structure of
the equation determines the “good” choice. More generally, these examples
illustrate the deep difference between continuous dynamical systems and
discrete recursions, and accordingly, the gap existing between a continuous
dynamical system and its numerical integration, following in fact a discrete
scheme that might not be a faithful analog, not only from a conceptual
viewpoint, but even for plain practical purposes.
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