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How signals propagate through a network as a function of the network architecture and
under the influence of noise is a fundamental question in a broad range of areas dealing
with signal processing - from neuroscience to electrical engineering and communication
technology. Here we use numerical simulations and a mean-field approach to analyze a
minimal dynamic model for signal propagation. By labeling and tracking the excitations
propagating from a single input node to remote output nodes in random networks, we
show that noise (provided by spontaneous node excitations) can lead to an enhanced signal
propagation, with a peak in the signal-to-noise ratio at intermediate noise intensities. This
network analog of stochastic resonance is not captured by a mean-field description that
incorporates topology only on the level of the average degree, indicating that the detailed
network topology plays a significant role in signal propagation.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction states. This is the basic model that we explore here, in order
Spatiotemporal patterns formed by excitable elements
are a common topic of interest in diverse disciplines, rang-
ing from cell biology (e.g. [1]), neurodynamics (e.g. [2,3]) to
social systems (e.g. rumor spreading [4] or epidemic dis-
eases [5,6]). The characteristic feature of excitable elements
is that they cycle through a well-defined sequence of
events: the susceptible element enters an active state as
soon as it is reached by a sufficient amount of excitations,
then goes through a refractory period, before it returns to
the susceptible state. In continuous descriptions, such as
Hodgkin–Huxley equations [7], Beeler–Reuter equations
[8] or the FitzHugh–Nagumo equations [9,10], this se-
quence of events is determined by the shape of the null-
clines of the differential equations. At a more general level
of abstraction, it is possible to regard the described se-
quence itself as the dynamical model, operating on discrete
time, with the state space of each excitable element consist-
ing only of these three (susceptible, excited, refractory)
. All rights reserved.
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to address the fundamental questions of how noise is re-
layed and processed by an excitable network and how the
network architecture can facilitate the functioning of such
dynamical systems. This setting can also be considered from
the perspective of communication and information theory.
From that perspective, we study the transmission of a
coherent signal, where the (noisy) channel is the network.

Spatiotemporal patterns arising from coupled excitable
elements have been studied for many decades (see, e.g.
[11,12]) and still continue to be of outstanding interest
due to, for example, their importance for cardiac dynamics
(e.g. [13,14]) and the general idea of predicting such pat-
terns from the variability in the system’s components
[15,16]. A systematic exploration of excitable dynamics
on graphs, however, has been attempted only during the
last few years [17,18]. The key idea is that network pat-
terns (i.e. the ‘‘network equivalent’’ to classical spatiotem-
poral patterns) reveal themselves as correlations between
topology and dynamics [19,3]. In this context, it is an
important challenge to assess the impact of different types
of network topology on the observed patterns.

The simple three-state stochastic cellular automaton
used for the present minimal model has proved to be a
suitable tool for exploring how network topology regulates
discrete excitable dynamics on graphs. Chaos, Solitons & Fractals
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the patterns formed by excitable dynamics on graphs. In
particular, noise (i.e. spontaneous excitations) has been
identified as an important parameter regulating such pat-
terns [19,3]. In [3], two types of correlations between net-
work topology and dynamics were observed with the help
of the minimal model: waves propagating from central
nodes and module-based synchronization. Remarkably,
the dynamical behavior of hierarchical modular networks
could switch from one of these modes to the other with a
changing rate of spontaneous network activation (see [3]
for details). In our subsequent work [20], we could capture
the origin of this switching behavior in a mean-field
description supplemented with a formalism where excita-
tion waves are regarded as avalanches on the graph.

One of the most surprising effects of noise in the con-
text of spatio-temporal pattern formation in excitable
media is the possibility of enhancing wave propagation
and spiral wave formation by a suitable amount of noise,
while too low noise fails to trigger an excitation wave
and too high noise destroys the coherence of the pattern.
This phenomenon of spatio-temporal stochastic resonance
has been first described by Jung and Mayer-Kress [21] and
experimentally verified in a light-sensitive variant of a BZ
reaction [22]. It is not a priori clear that the non-trivial path
structure between randomly selected nodes in an Erd}os–
Rényi (ER) random graph still allows for noise-enhanced
propagation of a signal, as in the case of spatiotemporal
stochastic resonance mentioned above. Indeed, the latter
has been observed in an excitable medium, i.e. (qualita-
tively speaking) when the underlying graph is a regular lat-
tice. A positive answer has been given in [23] for a system
consisting of two populations (excitatory and inhibitory) of
stochastic binary units (either active or inactive with some
probability depending on the neighborhood state) on
sparse networks.

One major drawback of a cellular-automaton-like mod-
el such as the one explored here is that the patterns can be-
come prone to artifacts due to the model’s discreteness in
time, space and the elements’ state space and the analysis
of the patterns becomes difficult. In order to adapt the
methods for analyzing the simulated data, we introduce
an internal labeling technique for specific excitations bet-
ter suited to discrete signals. We thus show that within
this simple and generic model we are capable of observing
noise-enhanced signal propagation, when the system re-
ceives a periodic input at a randomly selected node.
2. Model

2.1. The model

We study a minimal model of signal propagation on
random graphs. The dynamical process is governed by
the three-state model of excitable dynamics explored in
[19,3]. This model consists of three discrete states for each
node (susceptible S, excited E, refractory R), which are up-
dated synchronously in discrete time steps according to
the following rules: (1) A susceptible node becomes an ex-
cited node, if more than a fraction j of the direct neighbors
are in the excited state (see details below). If not, sponta-
Please cite this article in press as: Hütt M-T et al. Stochastic resonance in
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neous firing occurs with the probability f; (2) an excited
node enters the refractory state; (3) a node regenerates
(R ? S) with the recovery probability p (the inverse of
which is the average refractory time of a node).

This minimal model of an excitable system has a rich
history in biological modeling. It has been first introduced
in a simpler variant under the name ‘‘forest fire model’’
[24] and subsequently expanded by Drossel and Schwabl
[25] who also introduced the rate of spontaneous excita-
tions, f (the ‘‘lightning probability’’ in their terminology).
In this form it was originally applied to regular architec-
tures in studies of self-organized criticality. Other variants
of three-state excitable dynamics have been used to de-
scribe epidemic spreading [26,27,5,28]. As discussed
previously [17,19], this general model can be readily
implemented on arbitrary network architectures. It has
been shown that short-cuts inserted into a regular (e.g.
ring-like) architecture can mimic the dynamic effect of
spontaneous excitations [17]. Using a similar model setup,
it has been shown [19] that the distribution pattern of
excitations is regulated by the connectivity as well as by
the rate of spontaneous excitations. An increase in either
of these two quantities leads to a sudden increase in the
excitation density accompanied by a drastic change in
the distribution pattern from a collective, synchronous
firing of a large number of nodes in the graph (spikes) to
more local, long-lasting and propagating excitation pat-
terns (bursts). Further studies on the activity of inte-
grate-and-fire neurons in the classical small-world model
from [29] also revealed a distinct dependency of the
dynamic behavior on the connectivity of the system [30].

Note that here, in contrast to the work mentioned
above, we use a relative threshold j, that is, a node i with
degree ki is excited at time t + 1(xi(t + 1) = E), if the number
nðEÞi ðtÞ of excited nodes among its ki neighbors is larger than
or equal to jki. The larger the degree ki, the more excita-
tions are needed. There is, moreover, a balance between
a sufficient number of excited neighbors and the number
of susceptible neighbors able to propagate the excitation.
Overall, the amplification rate at a given node is upper
bounded by (1 � j)/j. In the limit j ? 0, but j – 0, this
relative-threshold model approaches the simpler model
discussed e.g. in [19,20], where only a single excitation
was sufficient for exciting a node. The alternative use of
an absolute threshold jabs with jabs > 1 would introduce
sharp cuts in the degree distribution and, therefore, would
lead to only a sub-network participating in the dynamics.
Nodes with degree k < jabs would never be excited, while
nodes with large k (more precisely with k such that
khc(E)i > jabs, where hc(E)i is the average excitation density)
would be excited as soon as they enter the susceptible
state. These high-degree nodes would thus oscillate with
an average period of 1/p, essentially decoupling from the
rest of the system. Only nodes with an intermediate degree
would be capable of more collective behaviors.

In the present investigation, we select a single input
node at random. All nodes with maximal distance from this
input node are then considered the output nodes. The in-
put node receives a periodic input (the ‘‘signal’’), and we
monitor, if excitation propagation to the output nodes is
facilitated by noise.
discrete excitable dynamics on graphs. Chaos, Solitons & Fractals
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In Fig. 1A a typical graph is represented. The hierarchical
representation (Fig. 1B) of the graph from Fig. 1A with the
driver node as the root is a convenient layout for under-
standing the signal propagation process. In particular, the
output nodes (or bottom-level nodes) are displayed as the
lowest layer in this layered representation. In the example
in Figs. 1A and B the output layer consists of two nodes.
2.2. Excitation labeling

A prerequisite for the quantitative discussion of stochas-
tic resonance (SR) in the propagation of excitations on a gi-
ven graph is a suitable identification of a signal-to-noise
ratio (SNR) at the bottom-level nodes (with reference to
the input node). As spectral methods, relying on detecting
the presence of the driver frequency in the output signal,
are technically difficult to apply to a system operating on
discrete time and space, we use a labeling technique allow-
ing us to trace the signal excitations through the graph.
Whether an excitation on node i at time t is labeled ‘‘signal’’,
depends on the composition of the input excitations to node
i (i.e. on the set of excitations of all ki neighbors of node i at
time t, where again ki is the degree of node i). The input is
composed of ng non-signal excitations and n⁄ signal excita-
tions, where both ng and n⁄ are between 0 and ki with the
subsidiary conditions ng + n⁄ 6 ki and ng + n⁄P jki. The lat-
ter is due to the fact that the input is assumed to be sufficient
for an excitation of node i at time t. If the non-signal excita-
tions alone would not have triggered an excitation, ng < jki,
we label this excitation ‘‘signal’’ E⁄, as some of the n⁄ incom-
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Fig. 1. Example of an ER graph (A) investigated here (N = 256, c = 0.03), together w
node is displayed at the top and the output nodes (the set of nodes with the larg
number of signal excitations at the bottom-level (output) nodes as a function of
value jc for the excitation propagation through the whole network.
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ing signal excitations have been necessary for the generation
of this excitation. Otherwise, this excitation is labeled a
noise-based (ordinary) excitation Eg. The SNR is then given
by the (time-averaged) number of signal excitations divided
by the number of non-signal excitations in the bottom-level
nodes (divided by the number of bottom-level nodes). Note
that this distinction between signal and noise-based excita-
tions does not affect the dynamics itself. When the addi-
tional categorization is dropped from the excitation (Eg,
E⁄? E), the dynamics coincide with what would have been
generated by the original model.
2.3. Parameter settings

Here we focus on ER graphs. The input node is picked at
random. The output nodes (or bottom-level nodes) at
which the signal excitations are monitored are formed by
the set of nodes with the largest shortest path from the in-
put node. We average over 100 runs (ten different graphs
with ten selections of input nodes at each graph). The
recovery rate p (which essentially determines an overall
time scale of the system), graph size N and the graph con-
nectivity c are kept constant, p = 0.2, N = 256 and c = 0.03
(above the percolation threshold). The two main effects
of connectivity, qualitatively speaking, are a shift in the
critical value of the excitation threshold and a strong
increase in path combinatorics, thus changing the steady-
state densities of excitations (data not shown).

Due to the generic sequence of states inscribed in the
model (excitable ? excited ? refractory ? excitable) a
0.20 0.25

old

Input node

Output nodes

ith its hierarchical representation (B), where the randomly selected input
est distance from the input node) are displayed at the bottom. (C) Average

the local excitation threshold j demonstrating the existence of a critical
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node undergoes, this formal model has two fields of appli-
cation: (1) neural information processing and (2) certain
variants of epidemic dynamics. The parallel to models of
epidemic diseases becomes apparent when one looks for
example at the susceptible-infected-recovered-susceptible
(SIRS) model (see, e.g. [33]), which is a slightly modified
version of the standard SIR (susceptible-infected-recov-
ered) model. In this model system, the recovered state is
able to switch over to the susceptible state, ensuring per-
sistent signal propagation in contrast to the SIR model.
Similar to the infection rate in SIR dynamics (see [31,5]),
the model discussed here has a critical value jc of the rel-
ative excitation threshold j (the fraction of excitations
among neighbors needed for triggering an excitation at a
node), above which excitations do not propagate through
the whole system. This is summarized in Fig. 1C. Concern-
ing the threshold at zero noise level, it is noteworthy that
the absolute number of bottom-level excitations depends
strongly on the graph realization (average numbers with
respect to time) and can vary across several orders of mag-
nitude, but the critical value of the threshold, from which
onwards zero bottom-level excitations are observed, ap-
pears independent of the graph realization at fixed net-
work size, graph type and connectivity (data not shown).

We will henceforth consider situations (network realiza-
tion, value of p and T) where the input signal is globally sub-
threshold in the absence of noise, which depends on the
recovery rate p, the input period T, and mainly on the local
relative threshold j. We then investigate how noise helps
subthreshold signals to propagate up to the output nodes.
The resulting signal-to-noise ratio is studied as a function
of the rate of spontaneous excitations, the local excitability
threshold j and the frequency 1/T of the periodic signal.

3. Results

At low driver frequencies, the subsequent signal excita-
tions are essentially decoupled. The decoupling depends on
the network’s capacity to ‘‘store’’ excitations within cycles
over the period length of the driver, as this storage capacity
is the basis of an interaction between subsequent signal
excitations [32]. Indeed, output nodes have a priori a
non-vanishing out-degree, so that recurrent connections
are present. Recurrent excitation will presumably mix up
with new excitations, resulting in signal-enhanced signal.
At higher driver period, it is seen that frequently an in-
serted signal is not capable of triggering a full signal prop-
agation due to the lack of persistent excitation helping
signal propagation at high-degree nodes (see Figs. 2 and
3). Already in Fig. 3 it is clearly seen that the total number
of signal excitations at low driver periods (high frequen-
cies) is under-estimated by the mean-field description dis-
cussed below, indicating the cooperativity between
subsequent periods. At longer driver periods the number
of signal excitations obtained from the numerical simula-
tions approaches the mean-field estimate.

3.1. Numerical results

Spectral analysis evidences stochastic resonance in two
steps: (i) first the detection of a ‘‘standard’’ resonance,
Please cite this article in press as: Hütt M-T et al. Stochastic resonance in
(2012), doi:10.1016/j.chaos.2011.12.011
where the output has a peak at the input frequency, coher-
ence of the output with the input signal and (ii) second, the
detection of a resonant amplification as a function of noise
strength. Numerical results (Fig. 4) display both features.
Nevertheless, the resonance curve is very noisy and ham-
pered by finite-size fluctuations, showing the ill-adapted-
ness of such a spectral analysis to the discrete model. We
turned to the labeling method to obtain a smoother and
more conclusive resonance curve (Fig. 5). This latter meth-
od would be convenient also for aperiodic resonance.

3.2. Mean-field description

A mean-field approach for excitable dynamics on a net-
work amounts to considering a structureless, well-mixed
set of elements, or equivalently full connectivity (a node
possibly interacts with any other with some uniform prob-
ability). More precisely, mean-field equations rely on the
identification of the fraction c(E)(t) with the probability for
a node drawn at random to be excited at time t (and the
same for susceptible and refractory states) and decorrela-
tion, yielding a product of probabilities in their right-
hand-side. Both approximations require that correlations
between nodes are weak. A third approximation is to simply
ignore degree fluctuations and introduce the smaller inte-
ger nj larger than hkij. Mean-field equations are proposed
straightforwardly based on the ‘‘stoichiometry’’ of the local
dynamics and ‘‘mass-action law’’ [5,34,6,28], here the need
of at least nj excited neighbors, or a local spontaneous exci-
tation, for a susceptible node to get excited. An additional
ingredient to be accounted for is the periodic source.
Strictly, the stimulus should be described as an array of Dir-
ac functions ð1=NÞ

P1
j¼0dðt � jTÞ (pointwise stimuli). We will

adopt here an homogenized description both in ‘‘space’’ (in-
put diluted over the whole network instead of being local-
ized at the input node) and in time (input spread over a
time window equal to the stimulus period) in a way that
one excitation is injected in the whole network during one
period. This effective input is moreover multiplied by the
density c(S)(t) to account for the fact that the input excita-
tion actually enters the network only if it is injected at a
node in the susceptible state. Overall we obtain:

cðEÞðt þ 1Þ ¼ cðSÞðtÞ½f þ ð1� f Þ½cðEÞðtÞ�nj þ 1=NT�
cðRÞðt þ 1Þ ¼ cðEÞðtÞ þ ð1� pÞcðRÞðtÞ
cðSÞðt þ 1Þ ¼ 1� cðEÞðt þ 1Þ � cðRÞðt þ 1Þ

8><
>:

In order to investigate stochastic resonance, we sepa-
rate the excitable species into two subspecies: excitations
E⁄ involving the signal and excitations Eg relying only on
noise, and write equations for the four concentrations
c(S), c(R), c(E⁄) and c(Eg). It follows:

cðE�Þðt þ 1Þ ¼ cðSÞðtÞð1� f Þ½½cðEÞðtÞ�nj � ½cðEgÞðtÞ�nj þ 1=NT�
cðEgÞðt þ 1Þ ¼ cðSÞðtÞ½f þ ð1� f Þ½cðEgÞðtÞ�nj �
cðRÞðt þ 1Þ ¼ cðEÞðtÞ þ ð1� pÞcðRÞðtÞ
cðSÞðt þ 1Þ ¼ 1� cðEÞðt þ 1Þ � cðRÞðt þ 1Þ
cðEÞðt þ 1Þ ¼ �cðE�Þðt þ 1Þ þ cðEgÞðt þ 1Þ

8>>>>>><
>>>>>>:

which is obviously consistent with the reduced system for
the variables c(S)(t), c(R)(t) and c(E)(t) using c(E⁄) + c(Eg) = cE.
discrete excitable dynamics on graphs. Chaos, Solitons & Fractals
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Fig. 2. Dependence of the number and temporal sequence of bottom-level (output-node) signal excitations on the driver period (raw data) at f = 10�2.
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Fig. 3. Dependence of the number of total signal excitations (full curve
with error bars) and bottom-level signal excitations (dashed curve with
error bars) on the driver period at f = 10�2, including the mean-field
prediction (full curve without error bars) for the total signal excitations
NcðE�Þstat from Eq. (5). The inset shows a larger version of the number of
bottom-level excitations as a function of the driver period (same as the
dashed curve in the main part of the figure).
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M.-T. Hütt et al. / Chaos, Solitons & Fractals xxx (2012) xxx–xxx 5
The stationary state cðSÞstat; c
ðRÞ
stat; c

ðEgÞ
stat ; c

ðE�Þ
stat

� �
is determined as

the fixed point of the above evolution equations. We first
solve:

cðRÞstat ¼
cðEÞstat

p
ð1Þ

then:

cðSÞstat ¼ 1� cðEÞstat
1þ p

p

� �
ð2Þ

then we have to solve the implicit equation for cðEÞstat:

cðEÞstat ¼ 1� cðEÞstat
1þ p

p

� �� �
f þ ð1� f Þ cðEÞstat

h inj
þ 1

NT

� �
ð3Þ

Plugging in the result cðEÞstat in the above equation describing
the evolution of c(Eg), an implicit equation for cðEgÞstat follows:
Please cite this article in press as: Hütt M-T et al. Stochastic resonance in
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cðEgÞstat ¼ 1� cðEÞstat
1þ p

p

� �� �
f þ ð1� f Þ cðEgÞstat

h injh i
ð4Þ
discrete excitable dynamics on graphs. Chaos, Solitons & Fractals
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Fig. 5. Stochastic resonance obtained with labeling. Here the fraction of
signal excitations at the bottom-level nodes is shown as a function of the
rate of spontaneous excitations f. Averages have been performed over ten
ER graphs and ten different choices of input nodes for each graph.
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and finally

cðE�Þstat ¼ cðEÞstat � cðEgÞstat ð5Þ

Note that this mean-field solution depends on the period T,
on the recovery rate p, on the spontaneous excitation rate f,
and on the network size N. It also depends on the relative
threshold and, in a very average way, on the network archi-
tecture via nj, roughly proportional to the average degree
hki. Setting f = 0, we obtain the mean-field state without
noise. Namely, the density of excitation in the absence of
noise satisfies the implicit equation
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Fig. 6. Comparison of the numerical simulations with the mean-field
prediction. (A) Fraction of total excitations as a function of the rate of
spontaneous excitations. The full curve with error bars represents the
numerical simulations, while the other curve is the quantity cðEÞstat from Eq.
(3). (B) Fraction of signal excitations in the whole graph as a function of
the rate of spontaneous excitations. Again, the curve with error bars is
from the simulations, while the other curve is cðE�Þstat from Eq. (5).
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cðEÞstatðf ¼ 0Þ ¼ 1� cðEÞstat
1þ p

p

� �� �
cðEÞstatðf ¼ 0Þ
h inj

þ 1
NT

� �

ð6Þ

Due to the artificial spreading of the input signal over all
nodes, cðEÞstat never vanishes. Accordingly, the mean-field
network dynamics is to be considered as subthreshold
whenever cðEÞstat < j.

Comparison with numerical simulations shows that the
mean-field predictions are a good fit for the overall excita-
tion density (Fig. 6A). In contrast, they completely miss the
stochastic resonance effect (Fig. 6B). Mean-field analysis
thus demonstrates that stochastic resonance cannot be
understood within an average view of the network dynam-
ics [35]. We conjecture that node heterogeneity and/or
paths combinatorics have essentially to be taken into
account.

4. Conclusion

The main result of the present work is the numerical
observation that signal propagation through a random net-
work of excitable units under the influence of a periodic
driver is enhanced by noise in a resonant fashion, when
noise is provided by random spontaneous excitations.

We considered a single input node (pacemaker), a situ-
ation differing from coherence resonance (no input) and
array-enhanced resonance (input distributed over all
nodes). From our perspective, among the various types of
noise-enhanced behaviors, the phenomenon observed here
most closely resembles spatiotemporal SR. It has to be con-
fronted with experimental evidence of SR in the brain
[36,37].

How is the scope of our approach related to previous
work? Among the range of literature on stochastic reso-
nance, its variants and applications [38], the two most rel-
evant concepts for our study are array-enhanced SR [39–
42] and spatiotemporal SR [21,22]. A further phenomenon,
stochastic coherence, is irrelevant in the present context,
since it describes the spontaneous coherent behavior dri-
ven by a common noise, in the absence of external signal
[43].

Array-enhanced SR is pertinent to arrays of oscillators
where each is subjected to the same periodic driver. It im-
plies that the individual entity (i.e. a single node) already
shows a resonant behavior when subjected to noise. This
is not the case here, as signal propagation is a property
only meaningful on the scale of the whole graph. In
[40,44] array-enhanced SR was investigated on graphs. In
[40] a linear coupling of stochastic resonators, each one
being a bistable oscillator, was analyzed, whereas in [44]
array-enhanced resonance and noise-enhanced spatial
synchronization were observed, employing Wilson-Cowan
oscillators in a subthreshold setting as individual elements.

In contrast, the concept of a pacemaker periodically
driving a single node has been introduced in [45]. In this
context, in [46], SR in small-world and scale-free networks
consisting of diffusively coupled bistable overdamped
oscillators was analyzed. The reported pacemaker-driven
SR depended most significantly on the coupling strength
and the underlying network structure.
discrete excitable dynamics on graphs. Chaos, Solitons & Fractals
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In [23], the same questions as in the present paper are
addressed, but the answers are obtained within quite a dif-
ferent model. It considers two populations of neurons
(either excitatory or inhibitory) at a coarser time scale
where individual spikes are no longer distinguished.
Accordingly, the neurons are described as binary units
(either active or inactive) evolving in continuous time.
The network is a sparse directed random graph, identified
with a tree in the mean-field approximation, and the rules
for excitation transmission are stochastic (hence intrinsic
stochasticity intermingles with noise associated here with
spontaneous activation or inactivation). This model dis-
plays a rich behavior, from SR to dynamical transitions
yielding several kinds of self-organized active states, e.g.
global oscillations. The more minimal neuron model used
here helped us to achieve two additional goals: (1) Sto-
chastic resonance on graphs reveals itself as a fairly univer-
sal phenomenon, as any set of coupled excitable devices is
in principle capable of this behavior; in particular, there is
no need of delays, nor of a mosaic of excitatory and inhib-
itory connections, nor additional stochasticity in the excit-
ability (beyond spontaneous excitations) to observe the
phenomenon; (2) the excitation labeling technique facili-
tates a detailed analysis of the phenomenon and allows
us to dissect the interplay between signal propagation,
noise and network architecture.

The relative subthreshold introduces an essential non-
linearity, visible in the mean-field equations in the term
½cðEÞ�nj . Accordingly, excitation propagation is here a collec-
tive, strongly non-linear phenomenon. In particular, the
dynamics cannot be decomposed into a superposition of
elementary excitations. A striking feature of the compari-
son between the mean-field model and the numerical sim-
ulations is that, while the density of excitations is in good
agreement, the strong enhancement of signal excitations
as a function of noise intensity is not captured by the
mean-field model. We suggest that unraveling the mecha-
nism underlying this stochastic resonance requires an
understanding of paths statistics and the combinatoric
description of barriers, that is, how excitation travels and
cycles in the network, self-enhancing and cooperatively
(or destructively) interacting with noise.

Three major extensions of these findings are left for sys-
tematic investigation in future work: (1) the influence of
network topology beyond ER graphs, (2) the influence of
different types of noise, (3) the dependence on the local
dynamical model.
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