Chapter 4

Studies of thermal denaturation

4.1 Introduction

In this chapter we present some preliminary results obtained when studying the
tunst-opening model in contact with a thermal bath. In the previous chapters we
always referred essentially to a microcanonical scheme, with constant energy con-
ditions. We start here a new approach in which constant temperature conditions
are chosen. Canonical ensemble simulations are performed in order to study the
thermal behavior of a model chain and to compare the results with the real DNA
statistical features in similar conditions. We investigate here whether the model
is to reproduce the DNA denaturation transition and we attempt to adjust the
model parameters on the basis of available experimental data.

We will consider both the original and the improved form of the twist-opening
model. As we will see, in the first case there is not good agreement with exper-
imental results on DNA, while for the improved model the agreement is much
better.

We have performed simulations in the canonical ensemble using the completely
deterministic Nosé Hoover thermostat technique. We have also looked at the
specific dynamical mechanism that leads to the denaturation transition: this
allows to investigate the kind of dynamical distortion that are thermally induced
in the chain and to compare them with the analytical solutions introduced in this
work.

In this context, we will come back to the results obtained in Chapter 3 for
what concerns the existence of small amplitude “breathing” solutions. In that
chapter we found that, with our choice of parameters, only slowly oscillating
solutions, arising from small ¢ acoustic modes, can be obtained for the original
model. This phenomenology is confirmed by constant temperature studies of the
dynamical behavior of the chain.

Anyway, we discussed a possible improvement of the model, which allows to
recover oscillating approximate solutions related to optical modes. We will see
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that the improved model features in constant temperature conditions correspond
much better to real DNA properties.

The addition of the direct stacking term has in fact a major role even in the
context of denaturation. As already stressed by Dauxois and co-workers in [33],
base pairs situated in the vicinity of an open base pair have a larger probability to
open, because of a change in the electronic overlap which leads to to the release
of the stacking interaction. In the original twist-opening model, such an effect
was absent. Moreover, in the small displacement limit, the interaction between
neighboring radial stretches arises from terms of the type (y, +y, 1): such terms
have the opposite effect of decreasing the stretch distortion of pairs in vicinity of
an open pair. The introduction of W, allows to recover the correct stacking
interaction, and represents an important modification which acts in denaturation
as to favor bubble formation.

In Section 4.2 we remind the fundamental properties of the denaturation
process. Section 4.3 is devoted to a summary of the Nosé Hoover thermostat-
ing technique. We stress the main difficulties of the original method and the
improved technique more recently introduced by Martyna and co-workers using
Nosé Hoover thermostat chains. In Section 4.4 we briefly explain the results,
problems and possible solutions introduced by the authors in performing canon-
ical studies for the PB model. We then use the Nosé Hoover chain technique in
Section 4.5 in order to obtain constant temperature conditions for the model. In
this section we first refer to the original model (which corresponds to put S =0
in the improved Lagrangian (3.68)) then to the improved one (S # 0). We then
discuss the results in order to have indications for the choice of the parameter
GGy, which we cannot fix on the basis of other experimental results.

Furthermore, in Section 4.5 we show space-time graphs illustrating the dy-
namical configurations at different temperatures, as functions of site number and
time. This allows to understand the dynamical mechanism that leads to denat-
uration. We also discuss the correspondence with thermal behavior of the model
and the known analytical solutions, for the original and improved versions of the
tunst-opening model.

4.2 The denaturation of DNA

Denaturation is the complete strand separation arising when DNA is heated up
to a certain temperature that we denote by Ty.,. This melting temperature
Tien, depends on the base sequence, because of the different strength of double
and triple hydrogen bonds connecting bases in the pairs AT and GC respectively.
Anyway, the range of variability of T, is not too large: an approximate estimate
for natural DNA fixes the melting temperature Ty, in the range 326370 K [18|.

One can obtain experimentally a curve that represents the percentage of de-
naturated base pairs of DNA in solution as a function of the temperature by
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heating slowly the solution and measuring its absorbtion in the UV range, near
260 nm. This depends on the fact that free nucleotides absorb in this range, while
their absorbtion is strongly reduced when they are stacked in the double helix
[18].

Denaturation arises in a very narrow temperature range of a few degrees.
Denaturation curves have the shape schematically indicated in Figure 1.3.

For a DNA model which attempts to reproduce the opening features of the
molecule it is thus interesting to study its ability to reproduce denaturation
curves. For this, one has to simulate a constant temperature condition, and
to calculate, for each temperature, the percentage of denaturated base pairs in
the chain. The first request is obviously that the model displays denaturation,
i.e. that all the base pairs open above a certain temperature threshold. Then,
one would like to reproduce approximately the correct Tj.,, and finally have de-
naturation in a sufficiently narrow temperature range. Model parameters can
be adjusted in order to approach as well as possible the main features of real
denaturation curves.

4.3 The simulation of the canonical ensemble
with the Nosé Hoover method.

The Nosé thermostat

Molecular dynamics studies of our model can help in understanding its specific
features by describing its behavior when in contact with a thermal bath. The
statistical properties which define the denaturation curves can be numerically
calculated, and the results can be used to correct the Lagrangian and to fix
its parameters. Furthermore, this can help in understanding the mechanism by
which the model is excited by thermal energy, and thus what kind of fluctuations
spontaneously arise in the chain. The observed dynamics can be compared with
the known properties of real DNA at different temperatures, so that the efficiency
of the model itself in reproducing the DNA dynamical behavior can be usefully
tested.

The numerical simulation of a system in the canonical ensemble, .e. with fixed
particle number, volume and temperature, can be obtained essentially through
two different approaches: either using stochastic forces as the Langevin one,
or modifying the Hamilton equation in such a way to satisfy the condition of
constant temperature, preserving at the same time the deterministic character
of the model. We will use the latter method. More precisely we will refer to
the Hoover reformulation [39] of the Nosé method [38], with the improvement
introduced by Martyna et ol in [58].

The Nosé method [38, 40] is based on the idea of extending the physical
system by introducing one more degree of freedom which represents the thermal
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bath!. Let us denote the system variables by ¢; and their masses by m;. The
thermal interaction between the particles of the system and the bath is expressed
as a rescaling of the time by a factor s. The kinetic energy can be controlled by
controlling the particles velocities. The introduction of s can be viewed as the
introduction of a flexible time: the change of the time length implies in fact a
change in the velocities. In the extended system the real velocities v; are thus
substituted by virtual velocities V; = sv;. This leads to define virtual momenta
P; defined as functions of the real ones p; as P, = sp;. The variable s regulating
the energy flux is the only added degree of freedom, with a parameter () which
represents the thermal inertia and fixes the temperature fluctuations.

The Lagrangian of the extended system is postulated to be of the form

L= Z @32 i’ —V{a})) + %2 — (N +1)kgT Ins, (4.1)

where T is the temperature and kg the Boltzmann constant.

With this choice, the conjugate momenta are

oL
P = g, s
aL
ps =57 =0Qs
so that 2s%¢;> = ;= P2?s72 = ;L p? and the system Hamiltonian is
P
H(qi, P, 5,ps) = Ho+ 2% 4+ (N + 1)kpT Ins (4.2)

2Q

where Hj is the original system Hamiltonian. In this Hamiltonian, P; are the
virtual momenta, but they always appear in the form P;/s, representing the real
ones p;.

'In standard statistical mechanics the canonical ensemble is obtained by making the system
exchange energy with a macroscopic reservoir with many particles. In this scheme the system
still exchange energy with an external object, with the difference that it is represented by a
degree of freedom. But this degree of freedom interacts with all the particles and its own
dynamics is defined in such a way that this interaction leads to a canonical evolution for the
physical system of interest.
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The equations of motion derived for g;, p;, s and pg are then

: %

g9 = s’

.oV

bi = _6% )

s b

Q 7

N P2

Do = Q(Z m:SQ — (N + 1)kBT> : (4.3)
i=1

These equations guarantee that in the extended phase space the microcanon-
ical conditions for the whole system are equivalent to canonical ensemble condi-
tions for the original system of particles. The microcanonical partition function
is in fact defined as:

Z= / dp,ds | [ dPidg; 6(H — E) . (4.4)

Rescaling Z in order to express it in terms of real momenta p; = P;/s, one
obtains

Z= / dpds sV | [ dpida; 6(H — E) . (4.5)
The integral over s can be easily calculated to obtain

2
/dssN5(H0—|— Py (N+1)kBTlns—E) =

2Q
1 Ho+ (p5/2Q) — E
s : 4.
(N+ DksT P ( kT ) ’ (4.6)
the partition function is then of the form
Z=C- /Hdpidqi exp (&) (4.7)
; kgT’’

and this, as desired, is the expression of the canonical partition function for the
initial system.

Making the ergodic hypothesis, one has that the time average is equivalent to
the average on the extended microcanonical ensemble, and thus to the canonical
average for the system of interest:

t

lim % Adt = <A(p/5aQ)>ea:t.sys. = (AP, 9)) can. (4.8)

t—00
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The Nosé-Hoover thermostat

In the Hoover reformulation [39] of the Nosé method a negative feedback mech-
anism is more apparent. Hoover defines a new variable

Ps
(=s— 4.9
0 (4.9)
which represents a friction coefficient; rescaling the time unit as dt — dt/s and
using the original variables Equations (4.3) can be simplified into the following
form:

. Di
4% =—,
my;
. ov
i ~ o0 CPi s
%lns =,
N 9
% = ( B —NkBT> /Q (4.10)
i=1

(the constant (N + 1) is substituted by N in this formulation).

This formulation is called Nosé-Hoover thermostat. Friction coefficient (,
which fluctuates between positive and negative values, stabilizes the kinetic en-
ergy of the real system, Zi\il (pZ2 / mi), to the canonical expectation value NkgT.
In this case the s variable is decoupled from the others, and can be neglected, so
that the time evolution of the system is given simply by the first three equation
in the phase space formed by the variables (g;, p;, (). Equations of motion (4.10)
cannot be derived from an Hamiltonian, even if a pseudo-Hamiltonian exists, i.e.
there is a conserved quantity, obtained by solving the last equation in (4.10).

The inertia parameter () and the ergodic assumption

The main difficulty of this method, in both formulations, is in the choice of the
inertia parameter (). If its value is too large, the external “bath”, represented in
the Nosé idea by an additional particle, is too heavy and thus the energy exchange
between the bath and the system is too small. On the contrary, if @) is too small,
the bath tends to “follow” the rest of the system and oscillates too fast, making
the equilibrium state for the whole system hard to approach. The problem of
choosing a good value for () is often quite delicate, and the consequence of a
bad choice is that kinetic energy oscillations (namely the mean squared deviation
of the kinetic energy) are quite different from what expected for the canonical
ensemble. The best choice for () is usually obtained when the thermostat is
in good “resonance” with the system, ¢.e. one must impose for the thermostat
approximatively the same linear frequency of the system.
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Furthermore, as pointed out by Martyna and et al[58], for small or stiff system
the ergodic assumption fails. This represents a more fundamental problem. This
depends essentially on the fact that, while positions and momenta of the initial
system are driven by the thermostat, there is nothing to drive the fluctuations
of (. For this reason, in some cases ( falls onto periodic or quasi-periodic orbits,
instead of exploring the whole phase, thus breaking the ergodic assumption.

The Nosé Hoover chains

Martyna and co-workers [58] propose a new method to assure the extended system
ergodicity, which gives good results. In order to drive the thermostat fluctuations,
they introduce a second thermostat, which is coupled just with the first one; they
add then a third thermostat to control the second one, and so on. These Nosé-
Hoover thermostat chains usually assure ergodicity already with three or four
thermostats.

The Nosé-Hoover chain method can be expressed, in the case of M ther-
mostats, by the following equations:

. Di
q9i = —,
m;
. Py,
==
L
b = OV pppi
‘ 0g; Q1 ’
N 9
pin = (30 o — NksT) =Pl
i=1 7 2

(4.11)

2
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piv = (Gos = k7).

The equations for n; are added for completeness.

4.4 Anharmonic stacking in the PB model

Before going on, it is useful to recall which results have been obtained for the
denaturation properties of the PB model. Peyrard and co-workers focus on DNA
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denaturation from the very beginning [14, 33]. They perform numerical simu-
lation at constrained temperature with a (single) Nosé Hoover thermostat, and
statistical-mechanics analysis with the transfer-integral method to obtain analyti-
cal and numerical results on the denaturation statistical properties. Furthermore,
molecular dynamics simulations allow to investigate the mechanism underlying
denaturation. By visualizing the local state of the base pairs as a function of
the time and of the site number, at fixed temperature, these authors are in fact
able to detect in the model the behavior of the characteristic phases of real DNA
denaturation:

1. in the low temperature range, the model presents oscillations localized on
a few sites, consistently with the fluctuational openings (“breathing”) ob-
served experimentally and with the existence of small amplitude breather
solution for this model;

2. at higher temperatures, the small amplitude oscillations grow to give larger
oscillating bubbles localized on a number of sites that increases with tem-

perature, that well represent the denaturation bubbles observed in real
DNA;

3. at the highest investigated temperature bubbles grow to cover all the chain
until it reaches complete melting.

The estimation of the denaturation temperature 7., depends on the chosen
denaturation threshold for the base-pairs, i.e. the hydrogen bond length at which
one base pair is considered as denaturated. This threshold can be chosen by
referring to the Morse potential shape or to the hydrogen bond equilibrium length.
Anyway, any reasonable choice is acceptable in order to give an approximate
estimation of Tj,, and in fact, a change in the threshold is found not affect very
much Ty,,.

For the PB model the authors find, numerically and analytically, that Ty,
is of the order of 500K . This deviation from typical values may depend on the
choice of parameters.

There is, anyway, a more fundamental deviation from the real situation: de-
naturation occurs in fact over a too large temperature range (of the order of
300K).

In [33]?, Dauxois, Peyrard and Bishop propose an improvement of the PB
model to correct this behavior. Following the suggestions made within an Ising
model description of DNA in [59], they argue that such an extremely sharp tran-
sition in a one-dimensional model can occur as a consequence of cooperativity
effects. These can be introduced in the PB model at the microscopic level by an
appropriate anharmonic stacking interaction potential that reflects the change in

2See also [50].
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the electronic distribution on the bases when the hydrogen bonds are broken:

K _
W (Yn, Yn-1) = 5 (1 + pe "(y”y"‘“) (Yn — Yn—1)- (4.12)

The new anharmonic inter-site coupling can be justified on the basis of the
observation that the stacking energy is actually a property of the whole base
pair, and depends on the state of the neighboring pairs. When the hydrogen
bond breaks, the electronic distribution on the base pair is modified, causing a
decrease of the stacking interaction with the adjacent bases. The prefactor to
the usual term (y, — y,_1) in (4.12) depends on the sum of adjacent stretches
(Yn + Yn_1), so that it decrease from (1 + p)K/2 to K/2 when either one or both
base pairs n and n — 1 open. This means that a base pair which is placed in the
immediate vicinity of a denaturated bubble has an higher probability to open.

The addition of the anharmonicity in the model does not qualitatively affect
the dynamics of the system near transition, but the dependence on temperature
is strongly modified. New denaturation studies performed with an appropriate
parameter choice show transition in a temperature window of less then 30K with
denaturation temperature estimated to be 361.5K [33].

4.5 Denaturation for the two versions of the
twist-opening model with different values of

Go

4.5.1 Model without the direct stacking term W,

Denaturation percentages

We have performed numerical simulations at constant temperature for the system
of equations describing the original and the improved versions of the twist-opening
model for a chain of N = 256 bps. Let us start by presenting results of the former
case. We integrate the equations of motion using a fourth order Runge-Kutta
algorithm with integration step of 0.05t.u. We simulate the canonical conditions
by introducing for each set of degrees of freedom {r,} and {¢,} a chain of three
Nosé Hoover thermostats, which turns out to be sufficient to obtain the correct
canonical energy averages and fluctuations:

1
() = 5 N koT (4.13)
(X% 1 2 2 7,0\ 2 1 2 2
((Br =5 NksT) ) = (B = SNKGT (4.14)

where E,’? is the total kinetic energy of the N degrees of freedom {r,} and {p,}

kin
respectively, kg the Boltzmann constant and 7" the fixed temperature.
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The system takes a long time to reach equilibrium, defined when kinetic en-
ergies satisfy Equations (4.13), (4.14). After an initial transient of 125000 ¢.1u.,
we calculate the value of kinetic energy and its fluctuations, and the percentage
of denaturated base pairs, averaged on an equal time. The averaged values are
in fact, choosing these time intervals, well stabilized and coherent with canonical
expectation values. Equations (4.13) and (4.14) are satisfied with an error of less
then 0.5%.

The averaged number of open pairs is calculated by considering as denaturated
a pair with r,, > 81n2/a ~ 1.25 A, where y = In 2/« corresponds to the inflection
point of the Morse potential. All simulations were performed with free boundary
conditions. We report in Figure 4.1 the resulting denaturation curves for the
twist-opening model with the parameter choice already discussed in the previous
chapters, and with different choices of the unknown G constant.

1 Y Y )
0.8 |
0.6 |
0.4 |

0.2 -

0

20 60 100 140 180
temperature

Figure 4.1: Denaturation curves obtained by numerical integration of the twist-
opening model with constant temperature conditions. We report the fraction of
base pairs which satisfy the relation r, > 8In2/a ~ 1.25 A. Different curves are
obtained with G/K = Gy/(R3K) values as indicated in the legend. We calculate
six points for each curve, corresponding to temperatures 7' = 20, 60, 90, 120, 150
and 190K (with one more point for the case G = 0.5K).

The results show that, with the chosen set of parameters, the transition tem-
perature Ty, is approximatively in the range 90110 K. This values are actually
well below the real ones. This could suggest, once more, relevant errors in the
choice of the parameters, or, otherwise, that we need to improve our model in
some way. We will see in Section 4.5.3 that the introduction of Wy, affects
strongly the denaturation features of the model, with a relevant improvement of
the value of the transition temperature.
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The dependence on G

Moreover, we observe that the curves presented in Figure 4.1 show a dependence
of some features of transition on the value of Gy. As a general result, we can
say that the temperature interval in which denaturation arises is narrower for
greater values of GGy. According to our predictions, denaturation is thus affected
by the rigidity of the two backbone strands with respect to bending. The effect
is such that the more rigid are the two helices that forms the duplex, the more
rapid is the denaturation transition as a function of the temperature. This can
be easily understood. We know that the formation of a denaturation bubble in a
given region implies an untwist of the same region. The term of the Lagrangian
depending on GGy prevents strongly localized changes of the twist angle along the
chain, with increasing efficiency as G increase. More precisely, larger Gy’s do
not affect the possibility to large twist distortions, but favor smooth distortions,
i.e. they request that various twists change happen quite simultaneously along
the chain. Small bubbles will thus form and grow more easily in the case of a
“soft” helix, while a rigid one will tend to stay close and to open as a whole when
the total kinetic energy reaches a global denaturation threshold.

In the context of this first results it seems that a large value of Gy will be
more efficient in order to reproduce the very narrow temperature range of the
real DNA denaturation transition. This indication is anyway too vague to allow
for a specific choice. We can expect that denaturation becomes hard to achieve
for too rigid helices and try then to fix an intermediate value®, but this poses
problems for the simulations, that become longer and longer as the Gy parameter
increases, due to the fact that a sort coordination in the untwisting motion is
needed. Interestingly, this “temporal” behavior could be also taken into account
in order to mimic real denaturation experiments. Anyway, the study of some
more direct structural features will turn out to be more useful in order to obtain
an evaluation of Gy.

Dynamics at constant temperature

Radial configurations

In order to understand better the dynamical mechanisms underlying the de-
naturation transition we register the configurations of the chain at thermal equi-
librium for different temperatures, for a time interval of about 1950 ¢.u. Radial
configurations can be conveniently displayed in a grey-scale density plot, where
the horizontal axis corresponds to the spatial index n along the chain, the vertical

3Furthermore, we remind that the shape of the dispersion relation curves depends on Gy. For
large values of Gy (approximatively above RZK) the gap between the two branches disappear.
This implies that, in principle, values of Gy larger than 1 has to be excluded in order to have
gap breathers. These remarks must be taken into account in order to make a definitive choice
of Go.
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axis to time, and the grey level indicates the hydrogen bond length: from white,
for close base pairs, to black, which corresponds to open base pairs with bond
stretch greater than 1.2 A.

Figure 4.2 reproduces the radial configurations for the cases Gy/(R3K) =
0.5, 2, 10, 100 (columns (a), (b), (c), (d) respectively) for the four temperatures
T =60, 90, 120, 150K (from top to bottom). Dark vertical strips correspond to
stable opening. These openings appear at some time and remain well localized
in space for a long time. Their amplitude is much larger and they are much
more localized in comparison with analytical stable “acoustic” solutions we are
able to build in the context of the multiple scale expansion technique. Anyway,
they show properties which correspond in some way to those of the analytical
solutions: they do not show internal oscillations, in agreement with the results
on the existence of optical breather with low wave number in the model.

We notice that the absence of internal oscillation is true mainly for larger
distortions, and, therefore, for higher temperatures. For low temperatures there
are some smaller oscillating distortions, which are maybe in the phonon regime,
slightly visible in the upper part of graphs reported in Figure 4.2. We can con-
firm the presence of these smaller oscillations by using two different colors for
opening and compression of base pairs. The resulting space-time plot is re-
ported in Figure 4.3. It corresponds to a piece of the graph of Figure 4.2 with
Gy = 0.5 R2K, taken between temperatures 60K and 90K: we show in green
the slightly stretched regions and in red the compressed ones, while the larger
distortions are again in black and equilibrium corresponds to white.

As for the PB model, we can say that in our model energy equipartition is
not present at constant temperature, at least for small and medium time scales.
Energy in fact strongly localizes on some lattice sites instead of distributing
homogeneously on the chain. Equipartition will be probably restored on longer
time scales, in a statistical sense, because local openings can appear and disappear
randomly on each site along the chain. Anyway, persistence reveals a slow decay
of correlation.

Localized openings increase in number and extensions as the temperature in-
creases. This is clearer in the first plot (a), where the transition is smoother.
Open regions extend progressively over the whole chain, up to a complete denat-
uration. For the last three G values, in fact, the chain is completely denaturated
at T'= 150K in the last two cases it denaturates already at 120K . The plots in
Figure 4.2, in fact, confirm the fact that increasing Gy one gets a sharper transi-
tions. Even if they denaturate already at 7' = 120K, the chains with larger G|
values displays for lower temperature much less open base pairs with respect to
the lower (G cases, in agreement with the presence of a more rapid transition.
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Figure 4.2: Radial configurations for various choices of the parameter Gy: (a):
Go = 05KR2, (b): Gy = 2KR2, (¢): Gy = 10KRZ, (d): Gy = 100K R2. From
top to bottom: T = 60, T" = 90, T" = 120, T" = 150K. Each image shows
the system evolution on a time interval of 1950 ¢.u. (time increase from top to
bottom). The horizontal coordinate corresponds to the position along the chain
n; the bright regions to closed base pairs, the darker ones to base pairs stretched
over 1.2 A.
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Figure 4.3: Radial configurations: smaller oscillating distortions. We report a
fragment of the previous image with Gy = 0.5KR? and, from top to bottom,
T =90, T = 120. We show in green the slightly stretched regions and in red
the compressed ones. the darker regions correspond to base pairs stretched over

1.2A.

Twist configurations

Using the same graphical technique we can also visualize twist distortion
along the chain. Furthermore, by using two colors, it is possible to distinguish
untwisted regions from overtwisted ones. The general behavior of twist in the
thermalized chains whose radial configurations are reported in Figure 4.4 shows
a clear tendency to untwist the helix. The global untwist increases with tem-
perature, in evident correlation with the global percentage of open base pairs.
Large untwisted regions alternates with small regions where twist is increased,
due to the geometrical constraints on the winding of the two strands. When the
chain opens completely, the twist decreases by more than 0.8 9y (which is the
value chosen for the threshold to full red in the color plots) everywhere along the
chain.

It is interesting to discuss the role of the strand rigidity on the thermally
induced twist distortion. For the two chains withGy/(R2K) = 10 and 100 and
for the lower temperatures, in fact, twist remains much closer to its equilibrium
value and no bubble formation is observed. Instead, extremely localized, small,
positive twist distortions appear. This overtwist points seem more movable and
their density is approximately equivalent to that of the negative twist distortions,
which are much less important with respect to the small Gy cases. This confirms
that an increasing strand rigidity prevents twist deformation, and, thus, base
pairs opening.

When temperature increases enough, i.e. for T' = 120, 150K, and we wait
long enough, all base pairs open and we observe the global untwist of the whole
chain as for the other cases.
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Figure 4.4: Twist configurations for various choices of the parameter Gy: (a):
Go = 05KR2, (b): Gy = 2KR2, (¢): Gy = 10KRZ, (d): Gy = 100K R2. From
top to bottom: T = 60, T" = 90, T" = 120, T" = 150K. Each image shows
the system evolution on a time interval of 1950 ¢t.u. (time increase from top to
bottom). The horizontal coordinate corresponds to the position along the chain
n; the red regions to untwist, the green ones to overtwist distortions.

111



Incorrect results in reproducing DNA dynamical features without Wk

From discussions in Section 3.6 we know that our first version of the twist-
opening model, even if it reproduces the helical geometry of DNA in a better
way with respect to previous models, has some important drawbacks. Namely, it
does not possess the approximate breather solutions which can be derived from
linear modes on the acoustic branch. These solutions are especially interesting
because they reproduce the DNA “breathing” experimentally observed at room
temperatures: it is in fact the possibility of a thermal activation that confers
to these kind of solution their importance in the context of DNA dynamical
studies. In this section we have seen that thermal energy actually does not
activate oscillating solution, but distortions that remain opened or oscillate very
very slowly.

4.5.2 “Breathing” in the improved twist-opening model

We know from Chapter 3 that the addition to the model of the direct stacking
term Wer allows to recover analytical oscillating solutions. Furthermore, the
oscillations have frequency of the same order of magnitude of that experimentally
observed in DNA “breathing”. We look now at the properties of the improved
model when put in equilibrium with a thermal bath at room temperatures, in
order to understand if its behavior actually reproduces these known DNA dy-
namical properties.

We consider here just the case Gy = 2 R2K. Being the model constants not
yet fixed, we fix the other parameters to the same values we used for the original
model and we arbitrarily take S = 2K. We fix "= 300K and we plot the radial
and twist chain configurations, with the same graphics of previous figures. The
plots are reported in Figure 4.5.

From Figure 4.5 we immediately see that the improved model shows a different
thermal induced behavior with respect to the original one. Oscillating distortions
are now visible; their frequency can be approximately calculated from the picture
and turns out to be that of real DNA breathing modes. We will discuss more in
detail this result in the concluding section 4.5.3.

Furthermore, we observe that the improved model, at a temperature of 300K,
is still below the denaturation transition. Its thermal behavior is thus in better
agreement with real DNA properties: DNA denaturates in fact in the range of
326 + 370 K.
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Figure 4.5: Model configurations for the improved model at T = 300K, with
Go =2 R2K, S = 2K: (a): radial configuration; (b): twist configuration. Each
image shows the system evolution on a time interval of 7800 ¢.u. (time increase
from top to bottom). The horizontal coordinate corresponds to the position
along the chain n. For radii, the bright regions correspond to closed base pairs,
the darker ones to base pairs stretched over 1.2 A. For angles, the red regions
correspond to untwist, the green ones to over-twist distortions.
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4.5.3 Denaturation of the improved twist-opening model

We have then considered higher temperatures and we have looked at the denat-
uration transition in the improved model. We have examined four cases which
correspond to the choices Gy = 0.5, 2, 10, 100 R2K, fixing the other parameters
to the values we used for the original model and S to 2K. We have calcu-
lated denaturation percentages at various temperatures between 7' = 370K and
T = 580K. Time intervals used in simulations are the same as for the previous
case.

Because of the necessity of a better choice for the parameters of the improved
model, we can only refer about preliminary results. Anyway, these results allow
to conclude that the twist-opening model, in its final form, reproduces quite well
the DNA denaturation features and lead to important conclusions on the rele-
vance of the helical geometry in this process. Let us discuss the model behavior
in with respect to the various features of the denaturation process.

Denaturation transition.

From our first calculations we deduce that the improvement of the model leads
to important results for what concerns the denaturation curves. Denaturation
temperature can be now situated in the range 430 <+ 520K, which is much closer
to the true DNA value that the value found for the original model, even if it is,
this time, too large. Furthermore, 7y, seems now to depend more on Gy, and
thus it may be adjust through a correct parameter choice.

The interval of temperature in which denaturation arises also depends on the
choice of Gy, and is narrower for larger values of this parameter, as for the not
improved model. The dependence of the transition rapidity on the parameter Gg
can be again related to the greater difficulty to locally untwist the helix if the
strands forming its structure are more rigid with respect to bending. This effect
results in a minor density of untwisted regions in rigid helices, and therefore in a
decrease of the number of open base pairs.

The denaturation interval can be roughly estimated of the order of 100K, or
less for the sharper cases: it is thus again too large in comparison to the few
degrees of real denaturation curves. Anyway, an improvement of this behavior
appears possible at present. We probably need a more detailed reconstruction of
the denaturation curves in order to evaluate in a precise manner the tempera-
ture interval. We stress that the two properties which characterize denaturation
curves, namely Ty, and the curve width, allow the determination, by curve fit-
ting, of two parameters. Accurate curve calculations is quite cumbersome, but
can lead in principle to a determination of our unknown parameters S and Gj.
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Figure 4.6: Radial configurations for the improved model with S = 2K, and
for various choices of the parameter Gy: (a): Go = 0.5KR3, (b): Gy = 2KR2,
(c): Go = 10KR3, (d): Go = 100KR3. From top to bottom: T = 430, T =
460, T = 490, T' = 520K. FEach image shows the system evolution on a time
interval of 1950 t.u. (time increase from top to bottom). The horizontal coordinate
corresponds to the position along the chain n. Grey scale ranges, from white to
black, from 0 to 1.2 A.
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Figure 4.7: Twist configurations for the improved model with S = 2K, and
for various choices of the parameter Gy: (a): Go = 0.5KR32, (b): Gy = 2KR2,
(c): Go = 10KR3, (d): Go = 100KR3. From top to bottom: T = 430, T =
460, T = 490, T' = 520K. FEach image shows the system evolution on a time
interval of 1950 t.u. (time increase from top to bottom). The horizontal coordinate
corresponds to the position along the chain n. The red regions correspond to
untwist, the green ones to overtwist distortions. Black corresponds to regions
where twist is at rest.
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Breathing.

As expected, configuration plots at lower temperature (Figure 4.5) clearly
show that oscillating openings can be thermally generated, in agreement with
the presence of optical breather solutions, for what concerns the model, and with
the observed “breathing” phenomena, for what concerns real DNA. In fact, on
one hand, the frequency of the oscillations that we observe in the model at con-
stant temperature has approximatively the same order of magnitude of that of
the breathers analytically found in the previous section; on the other hand, the
same frequency is actually observed experimentally in DNA. The agreement be-
tween the thermal behavior and the main features of analytical solutions is an
indication of the fact that breathers can be thermally generated in the model.
The agreement with experimental results shows in turns that the existence and
biological relevance of soliton-like excitations in real DNA turns out to be con-
firmed as an interesting work hypothesis.

Bubble formation.

We report in Figures 4.6 and 4.7 configuration plots for 7" = 430, 460, 490 and
520K, showing the radial and twist distortions for the improved twist-opening
model. We use again four different values for Gy. All simulations are performed
with the same integration times of the previous cases (Figures 4.2 and 4.4).

Figures 4.6 and 4.7 show that, at higher temperatures, near denaturation
transition, we observe the formation of larger bubbles, that gradually cover all
the chain while the temperature approaches T,.,. Bubbles grow with tempera-
ture increase up to a complete strand separation, as expected.

Untwisting.

Figures 4.6 and 4.7 show another important characteristic, related to the twist
degree of freedom and to its coupling with the base pair opening. It is evident
in fact from the pictures that even a partial denaturation of the chain is possible
only if a corresponding untwist is present. See, for instance, the case of T' = 490K
and Gy = 10K R3, where the right part of the chain is completely opened and
strongly untwisted. The chain untwisting confirms that torsion is a fundamental
parameter in studying DNA opening.

Furthermore, pictures corresponding to these opening-untwisting conditions
clarify that such a global untwist can be achieved only by an overall rotation of
the two chain ends, which leads to eliminate extratwist from the chain. Opening
is possible, i.e., only with free boundary conditions. It could be therefore inter-
esting to perform simulations with periodic boundary conditions, mimicking the
case of a circular DNA. Some preliminary results show as expected that denatu-
ration is prevented in this conditions: the two strands of a closed molecule have a
fixed number of turns and cannot untwist over large regions. We can finally come
back to what we have discussed in Chapters 1 and 2: the helical structure and the
related geometrical constraints are unavoidable elements for a good description
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of dynamical opening of DNA.

All this results lead to a deeper understanding of the mechanisms underlying
transition to the denaturated state in the twist-opening model, which confirms
our expectations. Transition arise via formation and growth of bubbles charac-
terized by an opening of base pairs coupled with a local untwist of the double
helix. Small oscillating localized distortions characterize the early phase of this
process, at low temperatures. The excitations extension increase with tempera-
ture, in a temperature interval that depends on the strand rigidity parameter GY.
Larger bubbles do not oscillate. Their extent increases and they finally cover the
whole chain which is thus completely denaturated. As a general result, we have
shown the necessity of a chain untwisting in order to open the chain, and thus
the relevance of the chain boundary condition. The proposed model mimics the
known DNA dynamical properties at the different temperatures.

A further comment on DNA modeling

To conclude this chapter, we would like to stress the importance of looking at
the dynamical behavior of a DNA model in constant temperature conditions. A
common criticism against DNA models which refer to soliton theory is that these
studies do not consider the environmental conditions in which the real system
lives. More specifically, the fact that it is not taken into account the possible
disruptive effect of thermal noise is often considered as a strong limitation of
their theoretical interest.

Constant temperature simulations not only allow a more realistic approach
to dynamical model studies. As we have seen in this chapter, they also lead to
make interesting observations of the features of the model. In the case of non
linear models, in fact, thermal energy does not necessarily act in a disruptive
way, by dispersion effects, but can have a constructive effect, because of energy
localization. This is in agreement with the fact that in nonlinear systems, e.g.
in our case, equipartition of energy does not hold on short and intermediate
time scales, so that energy is “organized” in more or less complex structures.
These structures can have a great interest in the context of studies which try to
reconstruct the behavior of complex natural structures.
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