POLYMERS IN THE CELL NUCLEUS

A story about chromosome folding and self-tuning polymers with some final questions for molecular modeling people

1

DNA IN THE NUCLEUS : CHROMATIN

The current model of nuclear architecture

5. Chromosome territories

3. chromatin fiber (or...)

Hübner, Eckersley-Maslin, Spector, Current Opinion in Genetics & Development, 2013

TOPOLOGICALLY ASSOCIATED DOMAINS (TADS)

Chromosome conformation capture techniques (Hi-C) Contact map

ΒI

POLYMERS IN THE CELL NUCLEUS – MARIA

EPIGENETIC DOMAINS

Filion et al. Systematic protein location mapping reveals five principal chromatin types in Drosophila cells, Cell, 2010

In Drosophila, epigenetic domains = TADs

Sexton T. et al., Three-Dimensional Folding and Functional Organization Principles of the Drosophila Genome, Cell 2012

LETTER

doi:10.1038/nature16496

Super-resolution imaging reveals distinct chromatin folding for different epigenetic states

Alistair N. Boettiger¹, Bogdan Bintu¹, Jeffrey R. Moffitt¹, Siyuan Wang¹, Brian J. Beliveau², Geoffrey Fudenberg³, Maxim Imakaev³, Leonid A. Mirny³, Chao-ting Wu² & Xiaowei Zhuang¹

3D imaging, 20-50-nm resolution

3 epigenetic states:

Active

Inactive

○ Repressed

WHAT TO MEASURE?

mass (fluorescence) distribution :

$$1 = \int \Delta(\mathbf{r}) d^3 r$$

mass (fluorescence) barycenter :

$$G = \int \mathbf{r} \, \Delta(\mathbf{r}) d^3 r$$

mass (fluorescence) variance :

$$R_G^2 = \int (\mathbf{r} - G)^2 \,\Delta(\mathbf{r}) d^3 r \qquad \leftarrow \text{ radius of gyration}$$

LETTER

doi:10.1038/nature16496

Super-resolution imaging reveals distinct chromatin folding for different epigenetic states

Alistair N. Boettiger¹, Bogdan Bintu¹, Jeffrey R. Moffitt¹, Siyuan Wang¹, Brian J. Beliveau², Geoffrey Fudenberg³, Maxim Imakaev³, Leonid A. Mirny³, Chao-ting Wu² & Xiaowei Zhuang¹

WHAT TO COMPARE WITH?

Polymer physics:

LETTER

doi:10.1038/nature16496

Super-resolution imaging reveals distinct chromatin folding for different epigenetic states

Alistair N. Boettiger¹, Bogdan Bintu¹, Jeffrey R. Moffitt¹, Siyuan Wang¹, Brian J. Beliveau², Geoffrey Fudenberg³, Maxim Imakaev³, Leonid A. Mirny³, Chao-ting Wu² & Xiaowei Zhuang¹

IDEA: FINITE-SIZE EFFECTS

A polymer with N identical monomers:

IDEA: FINITE-SIZE EFFECTS

Crossover : scaling law rupture

POLYMERS IN THE CELL NUCLEUS - MARIA BARBI

WHY INTERESTING?

Theoretical modeling available

POLYMERS IN THE CELL NUCLEUS - MARIA BARBI

COMPARE WITH DATA...

adimensional ↔ dimensional

A SELF-TUNING POLYMER

Simulation snapshots by Pascal Carrivain

rigidity \rightarrow Kuhn length K_{nm}? linear compaction base-pairs / nm \rightarrow K_{bp}?

what is a monomer?

NEW FITTING PARAMETERS

Fitting parameters

FIT OF EXPERIMENTAL DATA

Fit of the whole dataset (histograms)

DATA FROM:

Boettiger et al. "Super-Resolution Imaging Reveals Distinct Chromatin Folding for Different Epigenetic States." Nature 2016

FIT OF EXPERIMENTAL DATA

Resulting average R_g

DATA FROM:

Boettiger et al. "Super-Resolution Imaging Reveals Distinct Chromatin Folding for Different Epigenetic States." Nature 2016

RESULTS

Parameters

		Active	Inactive	Repressed
FIT	$\varepsilon (k_B T)$	$0.15\substack{+0.03 \\ -0.11}$	0.36 ± 0.03	$0.37\substack{+0.04 \\ -0.03}$
	$K_{\rm kb}$ (kb)	$0.4^{+0.5}_{-0.2}$	3^{+3}_{-1}	$1.2^{+1.5}_{-0.6}$
	$K_{ m nm}~(m nm)$	16^{+12}_{-6}	60 ± 20	26^{+12}_{-8}
Derived	$c \; (\mathrm{bp} \mathrm{nm}^{-1})$	25	50	46
	$c_{10}~({ m nuc}/10{ m nm})$	1.4	2.6	2.4
	$C (\rm{nuc/K_{nm}})$	2.2	15.6	6.6

CLOSE TO TRANSITION \rightarrow HIGHLY RESPONSIVE

Energies ϵ for the 3 states

ARCHITECTURE AS A TUNING PARAMETER

An image of the 3 states

INTERPRETATION, AND QUESTIONS

Repressed domains

actively repressed by proteins of the polycomb group $\rightarrow \epsilon$ justified

 \rightarrow mechanistic scenario?

INTERPRETATION, AND QUESTIONS

Inactive domains

no known binding proteins: how ϵ can be justified?

 \rightarrow nucleosome-nucleosome interactions?

INTERPRETATION, AND QUESTIONS

Active domains

low ϵ : different nucleosome-nucleosome interaction?

very low persistence ~ 16 nm ~ 2 nucl.
less than for DNA (50 nm)!
→ softening effect of non-histone binding

softening effect of non-histone binding (and bending) proteins as HMG?

CONCLUSION

Experimental data Coarse-grained model

underling structural features

fit

Ref:

Polymer coil–globule phase transition is a universal folding principle of Drosophila epigenetic domains Epigenetics & Chromatin volume 12, Article number: 28 (2019)

Antony Lesage, Vincent Dahirel, Jean-Marc Victor & Maria Barbi

THANK YOU FOR YOUR ATTENTION !

NEW FITTING PARAMETERS

Fitting parameters

FINAL FIT

