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Plan of the talk

1. Introduction and open problems
e Spin glasses: quenched disorder and frustration
* A new Kkind of criticality
* Mean-field theory and Droplet theory
* Nature of the low temperature phase?
e Transition in presence of a magnetic field?

2. The non-perturbative RG approach
e Exact flow equation for the effective average action
* Approximations: derivative expansion, truncations, ...

3. The NPRG for the critical behavior of spin glasses
e Expansion in invariants around the minimum of the potential
e Definition of the coupling constants
 Truncations at the cubic order
e Truncations at the quartic order

4. Future perspectives and conclusions
* Develop a functional NPRG approximation scheme
e Transition in presence of an external magnetic field



Spin glasses

Random ferromagnetic and antiferromagnetic interactions
due to quenched magnetic impurities

r N
Edwards-Anderson model | H =—» J;;8:5; —h» S
[Edwards & Anderson ('75)] (i.5) p

- W,
Jij 1.i.d random variables (Gaussian or binary)

Impossibility of satisfying _
all local interactions :> Frustration

- Degenerescence of the low energy states
- No conventional long range order



An unconventional phase transition
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- Large scale numerical simulations in 3d [Janus collaboration (*10-)]
and perturbative RG calculations in e = 6 — d [Bray & Moore (84, '85)]

- Lower critical dimension dj, ~ 2.5 [Bray & Moore ('84); Franz & al ('94)]



Theoretical approaches:

* Mean-field theory [Paris (79, '80)]

Replicas

 Full replica-symmetry breaking in the spin glass phase
« Complex free-energy landscape (infinite hierarchy of minima,

ultrametric structure) [Mézard & al ('84)]

» Spin glass transition in presence of an external field (dAT line)

[de Almeida & Thouless (02, '03)]

e Exact in infinite dimensions [Guerra, Toninelli, Talagrand ('02, '03)]

. n
------------
----
-----
"""""""

-------
..........
----------
-----

P




Theoretical approaches:

Droplets

* Droplet theory [Bray & Moore ('85); Fisher & Huse ('85)]
* Based on scaling arguments in finite dimensions

* Only two pure states

e Supported by real space RG calculations [Bray & Moore ('85)]
* No transition in presence of an external field
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Open problems

1. Nature of the low temperature phase?
* The same as the one predicted by mean-field”? Full RSB? Infinite
number of pure states?

 Finite-dimensional fluctuations should anyway destroy
metastability and alter the MF scenario

2. Transition in presence of an external uniform (or random)
magnetic field?
* The existence of the dAT line in 3d is
still strongly debated
[Aspelmeier & al ('16); Jorg & al ('07)]

* The basin of attraction of the Gaussian
fixed point is finite even above the ¢
upper critical dimension and shrinks to SG

zero as vd — 6 [Moore & Bray ('11)]
[Charbonneau & Yaida ('17)] T. T
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A non-perturbative RG approach

* Practical issues

 \Very hard to settle these questions from the results of experiments
and simulations (e.g., one can only access the critical point from
above, as the relaxation time is infinite in the whole spin glass
phase)

= The standard theoretical framework to include fluctuations
beyond mean-field is the Renormalization Group approach

* Technical and conceptual difficulties
e Intricate nature of the order parameter

e Interplay of disorder and metastability (complex free-energy
landscape, new kind of low-T fixed points?)

= A novel approach: The non-perturbative RG [wetterich ('93)]

First step: critical properties of the spin glass transition in zero field
using a NPRG formalism

Perturbative RG has been extended up to 3 loops
[Harris & Lubensky ('76); Green ('85); Yeo & al ('05)]



The NPRG: Basic ideas

* The “effective average action” (Gibbs free-energy)
Legendre transform of the free-energy

/D(p@(p( ] + /J%>

I[¢] = —log Z[J] +/Jm b by = (pg) = 2108 2L]

0

* Physical information about the equilibrium properties
* '[¢p, = ¢] = U(¢): Local potential —» Thermodynamics

T2 _ 0°T'[¢]
DY 0g, 00,

. Inverse of the propagator — Correlation function

* Integrate progressively short wave-length fluctuations

RG “a la Wilson” 0 k A
_—r
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The NPRG: Exact flow equation

* Add a “regulator” (or cutoff) to the microscopic action

Slel — Silpl = Slpl + ASilgl  ASilel = 3

5 | Bula)elael—0

q

Mass term that “freezes”
the low momenta modes

Tul¢] = —log ZulJ] + / Ty b0 — ASi[

xr

e k. = A — Mean-field (no fluctuations) —»I'r_p = S
ek =0 — Exact Gibbs free-energy —I'j—o =T

* Exact flow equation 1 ) !
[Wetterich ('93)] 3krk[¢] — §TT{3I<RI< <F [¢] + Rk) }

* Scale invariance at the critical point: Fixed point of the
(dimensionless) flow equation after coarse graining and rescaling




The NPRG: Approximations & Truncations

* Long-distance physics —} Derivative expansion (LPA’)

L[] = / {uk(¢)+ Zk2(¢) (8x¢)2+-.-}

* Expansion in powers of the field

Describe the properties of the system around a constant
nontrivial profile

(n)
U(¢) = ) UnL!@b — Po,)" Zi(¢) = Zk(¢o,k)

n

Approximations and truncations must preserve the
symmetries of the theory (expansion in invariants)

Very successful in describing the critical physics (as well as non-
universal properties) of a broad variety of models [Berges & al ('02);

Delamotte ('12)]: €.g., RFIM [Tissier & Tarjus ('06)], Turbulence [Canet & al ('16)],
KT transition [Jakubczyk & al ("14)], KPZ equation [Kloss & al ('14)], ...



The critical behavior of spin glasses (h=0)

* Cubic Ginzburg-Landau microscopic (bare) action (at zero field)
qap () —> n X n overlap matrix (n — 0)
[Harris & Lubensky ('76); Bray & Moore ('79); Temesvari & al ('02)]

S[{Qab}] — / {% Z (aa:Qab(x))z + % Z ng(aj)

X a<b a<b

f1 Y G (@) 0e(@)gea() + ... }

* 7o symmetry S — — S S[{qqy}]is left invariant if qap(7) = —qap(z) Vb
(every replica index must appear an even number of times)

1
ASkl{qar}] = = /Rk(QZ)Qab(Q)Qab(_Q) Zli:ab,ed = Zk0ac0bd
q

2

* The NPRG flow equation
1 —1
(@l =5 Y [oukute)| (0 + Bi)

a<b? 4

The inversion is not possible for
generic configurations in replica space

ab,ab

q,—q



—Xpansion in invariants of the potential

* Expand Uy ({Q.}) around the nontrivial replica symmetric

(running) minimum A
U ({Qan}) e T < TMF
. 0@t l{Qu)=qu )
Akin to: =2 4 7 gb N (qb — Go,1)° Q’
2 Qrk

* Preserve the symmetry of the theory == Expansions in invariants
Combinations of the overlap field that satisty the symmetry and

vanish at the minimum and whose first derivatives also vanish at Ok
1

0Q%) — poy = 5(Q% — Q)

O(QS) — :UJSZ)C = QubrQvcQca — Qz — Qk ( (b) + pl()c) T /0(2))

O(Q ) — Iugé)cd — Qabechdea — Qk Qk( b) + pl()c> + 10(2) + :0(2))

2 2) (2 2) (2
:051,13 = pgzb)péb) )‘fzb)c pgb)Pz(;c) gb)cd = pgb)0£d>



Definition of the coupling constants

U({Qav}) =W > bl + Ukt > g+ U2 > oLy

a<b<c a<b<le<d a<b
} : (4) } : (4)
+ Uk ;3 )\abc O-abcd
a<b<c a<b<c<d

* Coupling constants defined through derivatives evaluated at O,
whose expressions must not depend on the order of the truncation

* Additional reorganization of the invariants (implemented order by
order explicitly)

* Number of derivatives grows more rapidly that the number of
invariants (under-constrained system of equations)

* Always possible to find a solution but the solution is not unigue

53Uk 52Uk
¢ 0Qab0Qbc0Qca | = Wi 5Qab o = [1(Qr, Wi, Uk 1, Uk 2;n)
52L{k 52uk
- = Q7 (2
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| owest order truncation

Te[{Qab}] = /x {Z; S (0:Qu(@)” + Wy Y ufé)c}

a<b a<b<c

*RG flow of three parameters by differentiating the exact RG equation
(and evaluating the expressions for uniform configurations Q., = Q)

o 0L 63Ty om)¢ d ( 62Ty )
5Qab 5Qab5chdQca Q %4 dq2 5Qab(Q)5Qab(_Q) Qr’/q2=0
Litim regulator — Ry(q*) = Z,(k* — ¢*)0(k* — ¢?)
* Fixed point == Recast the RG equations in a dimensionless form
Introduce scaling dimensions and dimensionless quantities
o Qp=FkY"?1Z 20 o Wy = K223 P,

; OZk:(

_0 OWk:

o q=kq o Ri(q®) = k* Zrvi(q°)
2y _ [(1@ —1]ebed o1 a2
% Pk;ab,cd<q ) — (Fk + Rk) . =k Zk pk(Q )
q,—

. . . E\
* Running anomalous dimension: Z;_,q ~ (K) — M. = —k O log Zy,



Results: anomalous dimension

 Nontrivial fixed point {q*,0*} below six dimension (in addition to
the Gaussian fixed point {q; = 0,0, = 0})
1.0— —

<

~0.5

0

* The critical fixed point is found from dy=6 down to d;=2.97
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- Simulations
— e—RG
— Padé

- NPRG
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6—d

 Drastic improvement over the perturbative RG

* Near d=6 the NPRG exactly reproduces the 1-loop perturbative RG

calculation [Harris & Lubensky ('76)]



Results: correlation length exponent

* Linear stability analysis of the RG b
flow equations around the critical FP At
3.00 . Simulations
2.5) — e-RG
2.00 — Padé
. 1.5/ * NPRG

1.0
0.5

0.0
—O. I l
30 05 1.0 15 20 25 30

6—d




Dimens|

onless potential at the critical FP

A
U . . .
o0 e.g., Ising model: The dimensionless

potential at the FP has a shape that resembles

Dimensionful

©
— the shape of the dimensionful potential in the
- symmetry broken phase of a finite-size system
O T >1T., >
= ¢ o F¥
O Au (\\'\a\ a““\ """ T

R enu.

_ —1/2
_ kd/Q 1Zk / hk
kduk
-------- |........¢............................................................... []

_ d ¢
Ld/2—1—|—n/2> — &Xp [_L U<Ld/2—1+n/2>]

Indication of the
symmetry-breaking scenario!




Results: dimensionless masses

2 _ —
d Uk({Q"’b})‘ > n(n — 1 X nin —1) mass matrix
5Qb05Qef Qx 2 2
1 “longitudinal” mode M}, m* ;= —2q"* > 0

n-1 “anomalous” modes My ==
n(n-3)/2 “replicon” modes Mg

2.5;

m% = 0 (by construction at this
order of the truncation)
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Quartic order truncation

7 independent flowing parameters — Zi, Qx, Wk, Uk 1, Uk 2, Uk 2, Uk 4
0.00me —

—0.050 e, :
_o.10l T, j The critical FP no longer
P, | extends down to a
= —0.15; “oents

dimension between 2 and 3

020 . NPRO- cubic . - (it disappears around d=5.4)
_ o=+ NPRG-quartic A . )

0.25 :
- NPRG-quartic B

0 0.2 0.4 0.6 0.8
6—d 1.0

0.8
Typical behavior of an /
accidental collapse with 0.6/

—0.38

spurious fixed points g 04’“"'"
(also observed in the O(N) ' . NPRG- cubic
model studied with the NPRG 0.2| -~ NPRG- quartic A
with similar truncation |
schemes [Delamotte]) 0'8.0 - 0:2 - OL4 - 0:6 - 0.8

6—d



Negative dimensionless replicon mass

0.25————————————— |
-« NPRG-cubic i
0.20; - NPRG-quarticA . “
~ + NPRG-quarticB " ]
L0150 e
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0.05 .....,.-:: .......................
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0.0Q/ ™
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—0.001;
This might suggest that —0.002;

replica symmetry should be  *£ _0.003

broken in the spin glass

N —0.004
phase for all finite-size

systems —0.005}

~0.008

Over the range of
dimensions where the FP
exists the dimensionless
replicon mass is negative

- NPRG-cubic

- NPRG- quartic A

- NPRG-quartic B |
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Summary and perspectives

* NPRG approach for the critical behavior of spin glasses at
zero magnetic field

e First implementation of the NPRG for glassy systems
characterized by an overlap field

e Approximation scheme that preserves explicitly the symmetry of
the theory at each order of the truncation

e Good quantitative and qualitative description down to d=3

« Spurious fixed points when higher order truncations are
considered

e The dimensionless replicon mass is negative at the FP

* Future work & perspectives
 Study different kinds regulators (in progress)
e Expand around a full-RSB minimum [De Dominicis & al ('97)]

* Develop a functional NPRG approximation scheme to avoid field
expansions



Transition in presence of an external field

A — . [Charbonneau & Yaida ('17)]
T d=06-+c¢€

Gaussian FP

basin of
attraction

critical
surface

Not all microscopic models
belongs to the basin of
attraction of the critical FP

C : Stud_y the fIOV\_/ (_)f_ the potential

oupling Constants —»  starting from initial conditions
corresponding to the

microscopic EA Hamiltonian




NPRG vs perturbative RG

* Advantages

* More intuitive physical interpretation

e Technically easier (all computations are performed at the level of
1-loop)

e |t allows (in principle) to find non-perturbative fixed points

e |t allows to recover exactly the du-€, d.+€ and I/N expansions at
first order within a unique framework

* Disadvantages

e The accuracy and reliability of the results depend on the quality of
the ansatz for the Gibbs free-energy. Based on the physical
intuition. One needs to individuate (and preserve) all the
symmetries of the theory

* There is a certain degree of arbitrariety (e.g., choice of the
regulator, definition of the coupling constants, ...)

* No systematic way to improve the approximations



