RFEIM-like criticality: Intuitive argument

The equilibrium reference configuration acts as a quenched disorder
[Franz & al “11]

\/\/ \/\/ \/\/ Local fluctuations of the
reference configuration

Local fluctuations of the shape of
\/\/ \/\/ \/ the Franz-Parisi potential

Overlap p(x) Magnetization m(x)
Configurational entropy S. Magnetic field h
Barrier Y Ferromagnetic coupling .J

Random-field random-bond Ising model



What do we need to compute?

e Choose an equilibrium reference L BH(Ce)
configuration at random P(Ceq) =€ /Z

e Probability that the system has an overlap profile p(x) with the reference
configuration

1

e SICeal = 3 =) 5 () — Qx(C, Ceo)]
C

e Introduce 1 + 1 replicas (n — 0) to average over Ceq

e~ SerllPalO}] o §7 =BH(Cea) =BT, H(Ca >H5 — Qx(Ca, Ceq)]
Caaceq

e The cumulants of S can be computed through an expansion in increasing
number of free replica sums [LeDoussal '03; Tarjus & Tissier ‘04]

Srep [{Pa (X 281 Pa(x)] — % Z So[pa(X), pp(x)] + - -

a,b=1

S1[p(x)] = Slp(x)|Ceq] Sa[p1(x), p2(x)] = S[p1 (x)[Ceq]S[p2(x)[Ceq]




The terminal critical point [Biroli & al ‘14]

Study the long wave-length fluctuations of the overlap by integrating out
the other degrees of freedom for fixed profiles of pq(X)

Sl(p)_ecp t T:TC
Pa (X) = Pc + Pa (X)
The overlap qap(X)
become “massive’
Do D

Saddle-point approximation
+
gradient expansion

* Scalar field theory with random
field and random couplings

Sarlpo)] = [ ax{ ¢ [700)" + 2220 + 20 4 200 — it |

Higher order terms are expected to be irrelevant at criticality [Balog & al ‘“14]



Conseqguences of the mapping

The most relevant term at RFIM universality class controlled
criticality is the random field by a zero temperature fixed point

Does the transition exists when all fluctuations beyond mean-field

theory are taken into account?
Variance of the
/ random field
RFIM on a cubic lattice

[Middleton & Fisher '02] Q*

~ Surface tension
[Dzero & al '05]
[Franz & Montanari ‘07]

We found values compatible with the existence of a transition for the

Ginzburg-Landau functional, and too large for the existence of a transition
in d=3for the KacC 3-spin

Deriving the parameters of the effective theory should be possible in

numerical simulations of small-size systems
[Berthier & Jack ’15; Rilquin & al '16]



Mapping in the vicinity of Tk: The REM

Much more Long-wavelength fluctuations associated with
challenging diverging point-to-set spatial correlations

An illustrative exemple: The REM (The simplest model with a RFOT)

The energies E(C) of the configurations C={S7,...,Sn} are i.i.d. Gaussian
random variables with zero mean and variance N/2 [Derrida '81]

- States and configurations coincide
- The overlap is a binary variable, pa=0, 1

2 n 2 n 2
Srep[{pa,}] — (N1n2 — B4N> Zpa - 64N (Z:lpa> + cst

a=1

Replicated action for a Ising spin coupled to a disordered Gaussian
magnetic field (0-dimensional RFIM) [Biroli & al "17]

Heg = (H + 5h)0
H = N(n2 - 82/4)/2 = N(B% — 6)/8 5% = §2N/8



Coupled REMs with a finite number of states

On each site i there are 2 configurations, C; = {1,...,2M1 [Franz & al '08]
E’i' 19 —
ZEZJCZ,C ;(Ci,Cj) =0
2\/_ i#] Eij(Ci, C) Eij (€, C;) = Moc, c:0c; ¢

Average over the disorder and over the reference configuration

o~ Srep[{Pa}] Z TN Lins as Oca, c55ca c? H
{Ca a,1

560‘ Cﬁ5ca 5 — 1 _I_ n _|_ QZpapa —I_ anbqab
a7#b

paa CO Ca

The only undetermined case corresponds to p’, = 0, pi, = 0
Pa=1py=1=C=C], C7=C] = g, =1
ph=1 p,=0=C!=C}, C; #C) = ¢, =0
Pl =0, pi=1=C2£C C0=C = ¢, =0



Average effective Hamiltonian

Set all replica fields equal (pfz = pi Va,1) and keep only the terms of
order nin the expression S;ep

| 1 |
S1/{p'}| can only be a function of ¢ = ~ sz (global overlap with Ceq)

S1(c)
Akin to the computation of the
Franz-Parisi potential

81(6) ~ KO -+ K1€—|— K262 -+ K363 -+ K4C4 + ...

* This naturally leads to an infinite number of multi-body couplings
- Exact expressions of the couplings for M > 1



Variance of the effective Hamiltonian

e Divide the nreplicas in two Do =DP1 Vi, Ya=1,....,m
groups of n7 and nzreplicas pz — p% Vi, Ya=n1+1,...,n

* Keep only the terms of order n1 nzin the expression S;ep,

e Divide the N sites in four groups
NCl NCQ N612 N(l—Cl—CQ—Clg)

pr=1,p2=0 p=0,po=1 p1=1,ps=1 p1=0,p2=0

So[{pY, vy} can only be a function of ¢1, ¢z, ci2:
1 i i 1 i i 1 i g
L= N ZP1(1 —P3), €2 = N sz(l —Pp1), C12 = N ZP1P2

e Expand Szin powers of ¢1, c2, c12
Exact asymptotic expressions for M > 1



The effective Hamiltonian Biroli & al '17]

Random-field random-bond fully connected Ising model with
multi-body interactions and higher order random terms (¢* = 2p* — 1)

BHog = Z<H+ Shy)ot — Z (Jz 5ng)0in
i

; N VN
20090 +— Zaajaa—l—
©,J, k7 3,7,k 1%
Exact asymptotic expressions of the coupling constants for M > 1
- M 2 2 M52
—  MPp?
M 32 M B2
5Jij5<]kl ~ 3 (5ik5jl + 57;15jk) 5h25<]]k 1258 (57,] + 5zk)

Could be generalized to other MF models
(BUT in other MF models the overlap is not a 2-state variable!)



Supercooled liguids in finite dimensions

Two “low-T” variational approximations

Scanning all possible We account for the effect of the
1 overlap profiles with the correlations induced by
"I reference configuration is amorphous order by restricting
an impossible task. to arbitrarily specific patterns
Still the problem of tracing Variational approximation
2.| outthe gqup remains hardly for the gapin the form of
tractable 1-RSB matrices

Reproduce the results via a translationally invariant effective Hamiltonian:
Ising model with random-field and random-bond disorder and long-range
competing multi-body interactions

BHeg = — Z(Jg +6J;)0 07 + Z (H + 6h;) 0" + % Z Jo(|ri —r5)) otod + ...
(2,5) U i#]

Long-range interactions are tracked back to the diverging (point-to-set)

correlations associated with amorphous order induced by the specific

configurations of the overlap patterns [Biroli & al '17]



Conclusions

e An effective description of the fluctuations of the overlap with a
reference configuration in terms of RFIM-like theories emerges in a
general, robust, natural and transparent way

e Multi-body (and possibly long-range) effective interactions are
tightly related to the diverging (point-to-set) correlations close to
Tk and to the complex structure of the Franz-Parisi potential

e Qualitative and semi-quantitative information on the existence of
the Kauzmann transition

e |dentify the mechanisms which might alter or destroy the RFOT
transition in finite dimensions

« Multi-body competing interactions and/or higher order random terms

* If the random-bond fluctuations become larger than the eftective
ferromagnetic coupling a spin-glass physics might set in
[Moore & Yeo '06]



Perspectives & Open guestions

e Generalize the mapping to other mean-field and Ka¢ RFOT models
e Improve the variational approximation used for finite-dimensional systems

e Estimate the surface tension and of the fluctuations of the potential for more
realistic models (e.g., hard spheres)

e Use the effective theory in direct conjunction with numerical simulations of
glass-former models of small size [Rulquin & al *16]

* Determination of the key eftective coupling constants
» Use the effective model as a benchmark for the original model

e No obvious mapping from the dynamics of the glass-forming liquid
to that of the effective theory.

- A complete characterization of the dynamics of glassy systems is much
more challenging: this requires a full understanding of the activated
dynamics of a system evolving in a rugged energy landscape

- Bridge the gap between RFOT theory and Kinetically Constrained
Models [Rulquin & al '16]
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