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Ising History

In 1976 Wu, McCoy, Tracy and Barouaised the concept of
Isomonodromic deformation to compute the scaling limitha t
diagonal correlation function of the Ising model in termgod
solution of a Painleve Il equation.

In 1981 Jimbo and Miwapplied isomonodromic deformation
theory to show that the diagonal correlation function $iagsa
Painlevé VI equation.

It Is therefore extremely natural to extend this progranmhto t
correlation function for an arbitrary position on the legl
However, in the following 37 years this relation has not been
discovered.

In this talk | will present recent progress.
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1. Review ofC(N, N)
The anisotropic Ising model on the square lattice is defined |

E=— Z{Evgj,k(fj-|—1,k + Epoj k0 ki1})
7,k

and the diagonal correlation is

ao a_1 a_N+1
a ag o A_N42
C(N,N) = (00,00N,N) =] .
anN-—1 anN—2 ag

- . PRRYY:
a, = == f02 dfHein? {1—04@ 9}

27 1—oet?
a =k = (sinh2E, /kT sinh 2E,, /kT) ™+
Singularities aff,, where
sinh 2F, /kT,.sinh 2E, /kT,. = 1
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The Jimbo-Miwa Painlevé VI

d t
o =t(t — 1)£ InC(N,N) — 7 with ¢ = k* for T < T.
d 1 5
and in both cases derived

(t(t—l)%)Q = N? ((t—l)i—z —a>2 —42—: ((t—l)z—j — 0 — i) (ti—z —0)

Boundary conditions & = 0 are

C(N,N;t) = (1 —t)1/4{1 + A2 (Z(Qz)ijEi/)?])zN tNFHL + O@)} for T < T
C(N,N;t) = (1 — t)1/4{tN/2—(1/]5!)N 2F1(%, N+ % N +1,t)

(1/2)N((3/2)n)* 3wy
NN N Lt A+ OW)) for T > T

withA =1, (a)p =ala+1)---(a+n—1)and(a)g = 1.
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Comments

We note for both cases @f < T,. andl’ > T, that there are
solutions with boundary condition wheke# 1. Those solution:
do not correspond to the determinantsdqrV, N') but rather fo
the lambda extended Fredholm determinants obtained frem
form factor expansions. We also remark thatfor- T, the term
with A = 0 Is by itself an exact solution even though it is not :
correlation function of the Ising model.
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2. Special case = —k for C(M, N)

The general casé(M, N) depends on the anisotropy

__ sinh2E}, /KT
~ sinh2FE, /kT

and moduli
k = (sinh 2E,/kT sinh 2E;, /kT)~! for T < T,
ks =sinh 2F, /KT sinh 2E,, /ET for T > T,
We will consider the special cases

v=—k for T <1,
v=—ks for T > 1T,

To see why this case is special 10t M, N) we first consider
C'(0,1) andC'(0, N') separately.
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C(0,1)

We define the complete elliptic integrals

. 2 [7/2 df 11
K(k) = — = o F —,—;1;k2
() W/O (1— k2sin20)1/2  ° 1303 )
. 2 [7/2 1 1
E(k) = —/ do(1 — k%sin? 0)1/2 =y Fy (=, —=;1; k?)
m™Jo 2 2
s 2 [7/2 do
I(—kv, k) = =
(=, k) T /0 (1 + kvsin? 0)(1 — k2 sin? 9)1/2

and recall the ancient results that fBr< T,

C(0,1) = V14 vk{(1 + k/v)II(—vk, k) — (k/v)K(k)}

™/2 (1 —k2?sin?0)1/2

2
= V1 k— do
T 7T/0 1 4 krsin? 6

and forT > T,
C(0,1) = = \/1+V/k>{1+vk> (—vks>,k>) — K(k>)}

1 —sinZ 60

/2
= k+/1 k~ — df
v/ >7r/0 (1 + k>vsin? 0)(1 — k2 sin? §)1/2
i ng(M N)forv = —k—p.9/2
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Specializer = —kandv = —k-

ForT < T.wheny = —k

2 (™2 1
C(0,1) =vV1—k’— do
(0,1) 7'('/0 (1 — k2sin*§)1/2
=1 — k2K (k)
and forT > T, whenv = —k. = 1/k

C(0,1) =0
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C(O, N)

The general row correlation is written as anx N determinant

ao a_—1 . A_N+41
ai ao crr A N42
C(0,N) = (00,000,N) =
anN—1 anN—2 e ao

1/2

B L
n — : ;
27 Jo (1 — e~ 9)(1 — agei?)

a1 = e 2Bu/kT tanh By, JkT, ag = e 2Ev/FT coth B, /KT

k=—2""1 _ (sinh2E,kT sinh 2E), /kT) "
I —arae
sinh2Ey, /KT dag g

sinh 2E, /kT (a2 —a1)(1l — a1az)
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sy, fOr I'<T.and v = —k

i — i — _ _ 2«
Settingr = —kwefind—a; = as = a and k = a2
ap = i o7 deeiné’ 1 - O‘2.+ a(eiO — 6—@19)
2™ Jo {(1 — a2e2i9)(1 — aze—me)}l/z

This has the symetry_,, = (—1)"a,, and setting26 = ¢ we find withm > 0
1 [27 . 1 —a?
m = — dpetl™|® . .
2 2m /O ve {(1 - a2ei?)(1 — a2e~19)}1/2
a(e’® —1)
{(1 - a?ei?)(1 — aZe—19)}1/2

1 27 o
ai(2|m|+1):i%/0 dge’ ™

Reducens,, to a hypergeometric function

['(lm| +1/2)
2\ 2|m]
a’)a wl/2|m)!

11
azm = (1 — F1(|m|+5,§;|m|+1;044)

To write in terms ofk we use the quadratic transformation

1 1 11
2F1(m+ o,m+ 5, 2m + LE%) = (1+a®)?" o Fi (m + 55 mT 1;a)

r 1/2
azm = (k/2)""™1 V1 — k2 ('T/'Jm(' Ly Py (jml + 1/2, ] + 172 2/m] + 15 £2)
T .
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aomer fOr T'<T.andv = —k

Similarly
N2 Tm4+1/2) (k\? m+1/2 3 3 5
aA2m+1 = (5) 771/2m! {(5) m——|—12F1(m+ §,m+ §,2m+3,k )

1 1
—oF1(m + §,m—|— 5;2m—i— 1;k2)}

The two hypergeometric functions combine and thus

k>2|m|+1 T'(jm|+1/2)

= F ! Lo 2; k*
A4 (2m+1) = + 5 7T1/2|m|! 2 1(|m| + 57 |m| + 57 |m| + 25 )
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CO,N)forT>T.andv = —k-

This case is more curious. Now we use:; = a; ' = a andks = 1+ > and find
2m (n—1)i 2,2i0 71/2
o n—1i)1
ap = / dbe {1_(12 —2@9i|

By sendingd — 6 + = we see that,, = (—1)""la, and thusazz, = 0

6 11/2
. _i 27 d962ni0 1 — 052627’
T Ton 1 — a2e—2t0
s 11/2
= L[ gperie [ Lm0
21 Jo 1 — a2et®

which we recognize as the matrix elemeats,, of the diagonal correlation far' < T-...

Ising correlationC' (M, N) forv = —k —p.14/2



Factorization of C'(0,2NV)

It follows from as,, = 0 thatC'(0,2N + 1) = 0 and

a—1 ai "t G2N-3

a—3 a—1 "t A2N-—5
C(0,2N) =

a_(2N-1) Qa—(2N-3) - Aa-1

ail as "t A2N-1

a—1 ai "t A2N-3

X
a_(2N-3) Qa—(2N-5) -~ al

For example

C(0,2) = kZ*{E?* — (1 - k2)K?}
=kI{E — /1 - kK2 K}{E+ /1 - k2K}
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Aomer fOr T'>T.and v = —k-

Following the same reduction proceedure usedifotr T, we find

T(n+3) (ks \2("™
agn+1 = \/En!Q < 5 ) 41 —4/1—k2)

1 1 , 1 1 ,
x{2F1(n — §,n—|— 5;2n—|—1;k>) +4/1 — k2 2F1(n+ §,n—}— 5;2n+1;k>)}

and

T(n+3) (ks 2"V /

1 1 1 1
x{2F1(n — E,n—|— 5;2n—|—1;k2>) — /1 —k22F1(n+ E,n—i— 5;2n—|—1;k2>)}

The individual matrix elements contain the factor v/1 — k2 but these factors cancel out in
expression fol”' (0, 2V) just as we saw fo€’'(0, 2),
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Quadratic difference equations forC'(M, N)

C (M, N) with N > N can be written as afv x N determinant which is NOT Toeplitz. We
will not use this but instead use quadratic difference aqoatrelate the (high-temperature)
correlation functionsC'(M, N) for T > T, to thedual correlation Cy(M, N) forT > Te.
defined as the low temperature correlation with the replacem, — i andk;, — ——

Sv

§2 . [Cq(M,N)?> —Cq(M,N —1)- Cq(M.N 4+ 1)]

+[C(M,N)* —C(M —1,N)- C(M +1,N)] =0,

sy - [Ca(M,N)? = Cy(M = 1,N)- Cq(M + 1, N)]

+[C(M,N)? —C(M,N —1)- C(M,N+1)] =0

svsp - [Cq(M,N)- Cq(M +1,N+1) —Cyq(M,N +1)- Cq(M + 1, N)]
=C(M,N)-C(M+1,N+1) —C(M,N+1)- C(M+1,N),

which hold for all M and N, exceptM = 0, N = 0, where we have:

C(1,0) = (14 s2)1/2 — 5, - C4(0,1),
C(0,1) = (1 +52)"? — s, - Ca(1,0).

with s, = sinh 2F}, /kT ands, = sinh 2FE,, /kT
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C(1,2)

For example fofl" < T, wherek = (sysp,) !

C(1,2) = s2(s;2 +1)1/2 <3h2(3v25h2 —1)K? + (3}72 — 1)EK + E*

+(sy2 = 1)(s; 2+ 1B — (s;, 2 + 1)(sy %5, ° — 1)Rﬁ>.

and forT > T. wherek~ = sy sy,

2

2 4 1\1/2 /.
C(1,2) = (S’“js) <E2 (282 — K2+ (282 + 52 —2)EK
h v

(52 +1)(s2 — 1)ETL + (s + 1)(s352 — 1)l~(l:[>

ForT < T.andv = —k wheres,, =1, s, = —i/k

C(1,2) = —(1 — k2)Y2k2{(1 — k*)K? — 2EK + E*}

ForT > T, andv = —k~ wheres;, = —tk~>, sy = 1

C(1,2) =0
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3. Painlevé VI for v = —k: Maple

| know of no reason why'(M, N) atr = —k must satisfy a
nonlinear equation with the Painleve property that the only
singularites which depend on the boundary conditions al&sp
even though | do believe that there must be such an argume
Furthermore | have no idea how to analytically investighats t
guestion.

However, recently a program callgdessfun has been develop
to search for nonlinear equations satsfied by long series
expansions. My collaborators have used this program and fi
that indeed’ (M, N) atv = —k does in fact satisfy a nonlinea
equation.
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Nonlinear equation for C(M, N) with T' < T,

With t = k2 and

dinC' (M, N t

we have

tt — 1)o")? +4{c'(to’ —o)((t — 1)o’ — o)
M*> N?

—T(ta’ —0)* — T
—I—[M IN — é(l + (=DM (to' — o)} =0

WhenM = N this reduces to the Jimbo-Miwa equation for tt
diagonal correlatiod' (N, N) for T' < T...
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Nonlinear equation for C(M, N) with T" > T,

ForM + N oddC(M,N) =10
For M + N even,t = k? and

dinC (M, N 1

we have

t(t — 1)o")* +4{c'(to’ —o)((t — 1)o’ — o)}

—M?*(to’ — 0)? — (N? + M* — 1)’ (to’ — o)

—N?*0"* — i(N2 — M*)o'(to’ — o)

1 1
—7(N* = M%)o" — —(N* = M?) =0
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Second order second degree equations

The search for nonlinear equations with the Painleve ptg

DRl

an ongoing field of research and is far from complete even f
equations of second order. However for equations of the fori

(y")* = F(y,y, z) a solution was given by Cosgrove

(cla:3 + cox? + c3x + 04)2(?//)2
= —4{c1(zy —y)° + 29/ (zy — v)°
+es(y) (zy' —y) + ea(¥')?
+es(zy' —y)? + ey (xy' —y) + er(y)
+cs(zy’ —y) + coy’ +cro0}

2

This equation Is invariant under the 6 parameter group of

transformations

= ai1x + as 7= asy + aex + ary
agac—|—a4’ asx + aq

with a1aq4 — a2a3 = 1 andas # 0.

Ising correlationC' (M, N) forv = —k —p.22/2



Okamoto’s Painleve VI equation

The canonical form of Painlevé VI of Okamoto which dependd garameters, na, n3, na
R {t(t — DR"}Y? + {W' (2h — (2t — 1)) + ninangng}?
—(h' = nd) (W —n3) (W —n3)(h' —n3) =0

which when expanded and cancelling the common factér @ of the Cosgrove form with

cir=cq4=c5=c =0, coa=—c3 =1

cr = —(ni +nj3 4+ n3 +n3)/4,

cg = —M1N2n3N4

cog = —(n?n3 + nin3 + ning + nini + nsnj + ning — 2ninonsng)/4
c10 = —(nin3n3 + ningnj +ningng + ningni)/4
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Okamoto and isomonodromic deformation

Okamoto showed that the sigma form of Painlevé VI can be nbthirom isomonodromic
deformation of the& x 2 linear system with 4 singularities

dY (z) _cAo L A A

dx T x—t r—1

andA. = —(AQ + A + Al)
whereTrA, = 0 and+6,, are the eigenvalues of the residue matridesof the linear system.
The relation between the,, and thed,, is

ni1 = 0¢ + 0oo, N2 = 0t — 0o, n3 = 0p + 01, ng = 6g — 01
We note, however, that because the sigma equation is inwanmaler permutations of;, and the

change of sign of any pair af;, that there are several different setggfwhich lead to the sam
sigma equation.
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Reduction to the Okomoto form71" < 7.,

Our equation is of the Cosgrove form with

To reduce our equation to the Okomoto form we need to find afiskiftc = h + At + B sucl

thatcs = cg = 0. This happens for

A=M?/4andB = (N2 — M?)/8 — (1 + (—1)M+N)/16

where

1 1
cr = _g{N2 + M? + 5(1 + (=M

1 1
= —M?*{N? — (1 + (—=1)M+N
8 = 15 { 2( +(=1) )}
1 1 1
co = —6—4{N2 — M? — 5(1 + (—1)MFTNN2 _ Z N2 2

M2

N2 M4

cro = S BIN? = (14 (-1)M )}
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The Okamoto and#,, parameters

From these expressions fof, cs, cg, c19 we obtain the following sets of Okamoto paramet
for C'(M, N) with T' < T, for v = —k (unique up to permutations and the change of any tv
signs)

ForM + N odd

ny =ng = ngz—n4:M

N
2 2

and forM + N even

N+1 N—1 M
n=S50 ma =S5, ma=-—ng=5

and thus one set &%, for M + N evenis
(807 0t,01, 900) — (07 N/27 M/27 1/2)

andfor M -+ N odd
(60,0¢,01,0c) = (0, N/2, M /2,0)

Note, however, if we permute; < n3 that there is an equivalent set@&f for M + N even
(60,0t,01,000) = 3(N—M+1, N+ M+1,N+M—1,M — N +1)

and for/N + M odd

(60,6¢,01,000) = (N —M,N+M,N+M —1,M — N +1)
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4. The Forrester-Witte determinants

Forrester and Witte showed that the determinants

(20" m:€) 4y _ (0" &) 1 F
D (t) = det [Aj_k, (t)]j,kzo
with
A(p,p’,n,é)(t) _ I(1+p/)tn—m)/2 F {—p, —p' +n—m t}
" L(14n—m)[(1—n+m+p) l+n—m
E0(1 + p)t(m=—m/2 . {—p’,—p—ner t}
241 )
rl—m+m)'l+n—m+p) 1—n+m
has the property that
62 +62 62 62 624162 02 —-62_ 44616
c=t{t—1)Lin@t =T (1-t) 2 — Dn)

with (6o, 0¢,01,000) = 5(n, N,—N —p—p',p—p' +n)

satisfies the Okamoto PVI equation with

ni=N+p—p' +n)/2, no=(N—-p+p —n)/2,
n3=MN—-N—-p—p)/2, na=n+N+p+p')/2
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Comparison

Thus we see thdbr M + N eventhe parametera, of T' < T, of C(M, N) for v = —k agree
with the parametera;, of Forrester-Witte if

M-N+1 , M-N-1
pr— 2 s p pr—

n=20, p

For M + N oddthe parametera;, of T' < T, of C(M, N) agree with the parametenrs, of
Forrester-Witte if

We note that for botldl/ + NV even and odd that boghandp’ are half an odd integer and for
N > M bothp andp’ are negative.

Forn = 0 and¢ = 0 the determinants of Forrester and Witte reduce to Toepditerthinants
with the generating function

C(¢) = (1 — ke!®)P(1 — ke~ i®)?’

WhenN = M thenp = 1/2 andp’ = —1/2 which is the generating function far (N, N).
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5. Outstanding gquestions

1. How can we directly show that' (M, N) for T' < T, andv = —k can be derived from
iIsomonodromic deformation theory?

2.The comparison of the computer computation of the noafieguation with the nonlinear

equation of the Forrester-Witte Toeplitz determinanteady a striking equality which requires
explanationDo ALL C'(M, N) withv = —kforT < T. andN > M have representations &
N x N Toeplitz determinanteven forM # 0 where no such representation has yet been fo

3. What are the implications of the factorization@{ M, N) for T' > T, atv = —k~ and the
guadratic transformation between thand thex variables?

4. Why areM + N even and odd differentPhe two cases have been recognized since the \
of Ghosh and Shrock but is certainly not apparent in the Taegéterminant folC'(0, V).

5. What is the relation of the bordered determinantsdorV, NV + 1) of Au-Yang and Perk to
the PVI forv = —k?

6. How canC'(M, N) the general case be formulated as an isomonodromic defiormabblem
in two variablesEven forC'(0, N) this does not seem to be known.

7. Why do two different sets df;, give the same correlation function?
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