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Ising History
In 1976 Wu, McCoy, Tracy and Barouchused the concept of

isomonodromic deformation to compute the scaling limit of the

diagonal correlation function of the Ising model in terms ofthe

solution of a Painlevé III equation.

In 1981 Jimbo and Miwaapplied isomonodromic deformation

theory to show that the diagonal correlation function satisfies a

Painlevé VI equation.

It is therefore extremely natural to extend this program to the

correlation function for an arbitrary position on the lattice.

However, in the following 37 years this relation has not been

discovered.

In this talk I will present recent progress.
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1. Review ofC(N,N)

The anisotropic Ising model on the square lattice is defined by

E = −
X

j,k

{Evσj,kσj+1.k + Ehσj.kσj.k+1}

and the diagonal correlation is

C(N, N) = 〈σ0,0σN,N 〉 =

a0 a−1 · · · a−N+1

a1 a0 · · · a−N+2

...
...

...

aN−1 aN−2 · · · a0

an = 1
2π

∫ 2π

0
dθeinθ

[

1−αe−iθ

1−αeiθ

]1/2

α = k = (sinh 2Ev/kT sinh 2Eh/kT )−1

Singularities atTc where

sinh 2Ev/kTc sinh 2Eh/kTc = 1
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The Jimbo-Miwa Painlevé VI

σ = t(t − 1)
d

dt
ln C(N, N) − t

4
with t = k2 for T < Tc

σ = t(t − 1)
d

dt
ln C(N, N) − 1

4
with t = k−2 for T > Tc

and in both cases derived

„

t(t − 1)
d2σ

dt2

«2

= N2

„

(t − 1)
dσ

dt
− σ

«2

− 4
dσ

dt

„

(t − 1)
dσ

dt
− σ − 1

4

« „

t
dσ

dt
− σ

«

Boundary conditions att = 0 are

C(N, N ; t) = (1 − t)1/4{1 + λ2 (1/2)N (3/2)N

4[(N + 1)!]2
tN+1(1 + O(t))} for T < Tc

C(N, N ; t) = (1 − t)1/4{tN/2 (1/2)N

N !
2F1(

1

2
, N +

1

2
, N + 1, t)

+λ2 (1/2)N ((3/2)N )2

16(N + 1)!(N + 2)!
t3N/2+2(1 + O(t))} for T > Tc

with λ = 1, (a)n = a(a + 1) · · · (a + n − 1) and(a)0 = 1.
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Comments
We note for both cases ofT < Tc andT > Tc that there are

solutions with boundary condition whereλ 6= 1. Those solutions

do not correspond to the determinants forC(N,N) but rather for

the lambda extended Fredholm determinants obtained from the

form factor expansions. We also remark that forT > Tc the term

with λ = 0 is by itself an exact solution even though it is not a

correlation function of the Ising model.
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2. Special caseν = −k for C(M,N)

The general caseC(M,N) depends on the anisotropy

ν = sinh 2Eh/kT
sinh 2Ev/kT

and moduli

k = (sinh 2Ev/kT sinh 2Eh/kT )−1 for T < Tc

k> = sinh 2Ev/kT sinh 2Eh/kT for T > Tc

We will consider the special cases

ν = −k for T < Tc

ν = −k> for T > Tc

To see why this case is special forC(M,N) we first consider

C(0, 1) andC(0, N) separately.
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C(0, 1)
We define the complete elliptic integrals

K̃(k) =
2

π

Z π/2

0

dθ

(1 − k2 sin2 θ)1/2
= 2F1(

1

2
,
1

2
; 1; k2)

Ẽ(k) =
2

π

Z π/2

0
dθ(1 − k2 sin2 θ)1/2 = 2F1(

1

2
,−1

2
; 1; k2)

Π̃(−kν, k) =
2

π

Z π/2

0

dθ

(1 + kν sin2 θ)(1 − k2 sin2 θ)1/2

and recall the ancient results that forT < Tc

C(0, 1) =
√

1 + νk{(1 + k/ν)Π̃(−νk, k) − (k/ν)K(k)}

=
√

1 + νk
2

π

Z π/2

0
dθ

(1 − k2 sin2 θ)1/2

1 + kν sin2 θ

and forT > Tc

C(0, 1) =
1

ν

p

1 + ν/k>{(1 + νk>)Π̃(−νk>, k>) − K̃(k>)}

= k
p

1 + ν/k>
2

π

Z π/2

0
dθ

1 − sin2 θ

(1 + k>ν sin2 θ)(1 − k2
> sin2 θ)1/2
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Specializeν = −k and ν = −k>

ForT < Tc whenν = −k

C(0, 1) =
√

1 − k2
2

π

∫ π/2

0

dθ
1

(1 − k2 sin2 θ)1/2

=
√

1 − k2K̃(k)

and forT > Tc whenν = −k> = 1/k

C(0, 1) = 0
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C(O,N)

The general row correlation is written as anN × N determinant

C(0, N) = 〈σ0,0σ0,N 〉 =

a0 a−1 · · · a−N+1

a1 a0 · · · a−N+2

...
...

...

aN−1 aN−2 · · · a0

an =
1

2π

Z 2π

0
dθeinθ

»

(1 − α1eiθ)(1 − α2e−iθ)

(1 − α1e−iθ)(1 − α2eiθ)

–1/2

α1 = e−2Ev/kT tanh Eh/kT, α2 = e−2Ev/kT coth Eh/kT

k =
α2 − α1

1 − α1α2
= (sinh 2EvkT sinh 2Eh/kT )−1

ν =
sinh 2Eh/kT

sinh 2Ev/kT
=

4α1α2

(α2 − α1)(1 − α1α2)
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a2m for T < Tc and ν = −k

Settingν = −k we find−α1 = α2 = α and k = 2α
1+α2

an =
1

2π

Z 2π

0
dθeinθ 1 − α2 + α(eiθ − e−iθ)

{(1 − α2e2iθ)(1 − α2e−2iθ)}1/2

This has the symetrya−n = (−1)nan and setting2θ = φ we find withm ≥ 0

a2m =
1

2π

Z 2π

0
dφei|m|φ 1 − α2

{(1 − α2eiφ)(1 − α2e−iφ)}1/2

a±(2|m|+1) = ± 1

2π

Z 2π

0
dφei|m|φ α(eiφ − 1)

{(1 − α2eiφ)(1 − α2e−iφ)}1/2

Reducea2m to a hypergeometric function

a2m = (1 − α2)α2|m| Γ(|m| + 1/2)

π1/2|m|! 2F1(|m| + 1

2
,
1

2
; |m| + 1; α4)

To write in terms ofk we use the quadratic transformation

2F1(m +
1

2
, m +

1

2
, 2m + 1; k2) = (1 + α2)2m+1

2F1(m +
1

2
,
1

2
; m + 1; α4)

a2m = (k/2)2|m|
p

1 − k2
Γ(|m| + 1/2)

π1/2|m|! 2F1(|m| + 1/2, |m| + 1/2; 2|m| + 1; k2)
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a2m+1 for T < Tc and ν = −k

Similarly

a2m+1 =

„

k

2

«2m+1 Γ(m + 1/2)

π1/2m!
{

„

k

2

«2 m + 1/2

m + 1
2F1(m +

3

2
, m +

3

2
; 2m + 3; k2)

−2F1(m +
1

2
, m +

1

2
; 2m + 1; k2)}

The two hypergeometric functions combine and thus

a±(2m+1) = ∓
„

k

2

«2|m|+1 Γ(|m| + 1/2)

π1/2|m|! 2F1(|m| + 1

2
, |m| + 1

2
; 2|m| + 2; k2)
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C(0, N) for T > Tc and ν = −k>

This case is more curious. Now we use−α1 = α−1
2 = α andk> = 2α

1+α2 and find

an = − 1

2π

Z 2π

0
dθe(n−1)iθ

»

1 − α2e2iθ

1 − α2e−2iθ

–1/2

By sendingθ → θ + π we see thatan = (−1)n−1an and thusa2n = 0

a2n+1 = − 1

2π

Z 2π

0
dθe2niθ

»

1 − α2e2iθ

1 − α2e−2iθ

–1/2

= − 1

2π

Z 2π

0
dφeniφ

»

1 − α2eiφ

1 − α2e−iφ

–1/2

which we recognize as the matrix elementsa−n of the diagonal correlation forT < Tc..
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Factorization of C(0, 2N)

It follows from a2n = 0 thatC(0, 2N + 1) = 0 and

C(0, 2N) =

a−1 a1 · · · a2N−3

a−3 a−1 · · · a2N−5

...
...

...

a−(2N−1) a−(2N−3) · · · a−1

×

a1 a3 · · · a2N−1

a−1 a1 · · · a2N−3

...
...

...

a−(2N−3) a−(2N−5) · · · a1

For example

C(0, 2) = k−2
> {Ẽ2 − (1 − k2

>)K̃2}

= k−2
> {Ẽ −

q

1 − k2
>K̃}{Ẽ +

q

1 − k2
>K̃}
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a2m+1 for T > Tc and ν = −k>

Following the same reduction proceedure used forT < Tc we find

a2n+1 =
Γ(n + 1

2
)

√
πn!

„

k>

2

«2(n−1)

4(1 −
q

1 − k2
>)

×{2F1(n − 1

2
, n +

1

2
; 2n + 1; k2

>) +
q

1 − k2
>2F1(n +

1

2
, n +

1

2
; 2n + 1; k2

>)}

and

a−(2n+1) =
Γ(n + 1

2
)

√
πn!

„

k>

2

«2(n−1)

4(1 +
q

1 − k2
>)

×{2F1(n − 1

2
, n +

1

2
; 2n + 1; k2

>) −
q

1 − k2
>2F1(n +

1

2
, n +

1

2
; 2n + 1; k2

>)}

The individual matrix elements contain the factor1 −
√

1 − k2 but these factors cancel out in the

expression forC(0, 2N) just as we saw forC(0, 2),
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Quadratic difference equations forC(M,N)

C(M, N) with N > N can be written as anN × N determinant which is NOT Toeplitz. We

will not use this but instead use quadratic difference equations relate the (high-temperature)

correlation functionsC(M, N) for T > Tc to thedual correlation Cd(M, N) for T > Tc.

defined as the low temperature correlation with the replacement: sv −→ 1
sh

andsh −→ 1
sv

s2
h · [Cd(M, N)2 − Cd(M, N − 1) · Cd(M.N + 1)]

+[C(M,N)2 − C(M − 1, N) · C(M + 1, N)] = 0,

s2
v · [Cd(M, N)2 − Cd(M − 1, N) · Cd(M + 1, N)]

+[C(M,N)2 − C(M, N − 1) · C(M, N + 1)] = 0

svsh · [Cd(M, N) · Cd(M + 1, N + 1) − Cd(M, N + 1) · Cd(M + 1, N)]

= C(M, N) · C(M + 1, N + 1) − C(M, N + 1) · C(M + 1, N),

which hold for all M and N , exceptM = 0, N = 0, where we have:

C(1, 0) = (1 + s2
h)1/2 − sh · Cd(0, 1),

C(0, 1) = (1 + s2
v)1/2 − sv · Cd(1, 0).

with sh = sinh 2Eh/kT andsv = sinh 2Ev/kT
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C(1, 2)

For example forT < Tc wherek = (svsh)−1

C(1, 2) = s2
v(s−2

v + 1)1/2

„

s−2
h (s−2

v s−2
h − 1)K̃2 + (s−2

h − 1)ẼK̃ + E2

+(s−2
v − 1)(s−2

h + 1)ẼΠ̃ − (s−2
h + 1)(s−2

v s−2
h − 1)K̃Π̃

«

.

and forT > Tc wherek> = svsh

C(1, 2) =
(s2

v + 1)1/2

s2
hsv

„

Ẽ2 − (s2
h s2

v − 1)K̃2 + (s2
h s2

v + s2
v − 2)ẼK̃

(s2
h + 1)(s2

v − 1)ẼΠ̃ + (s2
h + 1)(s2

hs2
v − 1)K̃Π̃

«

.

ForT < Tc andν = −k wheresh = i, sv = −i/k

C(1, 2) = −(1 − k2)1/2k−2{(1 − k2)K̃2 − 2ẼK̃ + Ẽ2}

ForT > Tc andν = −k> wheresh = −ik>, sv = i

C(1, 2) = 0
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3. Painlevé VI for ν = −k: Maple

I know of no reason whyC(M,N) atν = −k must satisfy a

nonlinear equation with the Painlevé property that the only

singularites which depend on the boundary conditions are poles

even though I do believe that there must be such an argument.

Furthermore I have no idea how to analytically investigate this

question.

However, recently a program calledguessfun has been developed

to search for nonlinear equations satsfied by long series

expansions. My collaborators have used this program and find

that indeedC(M,N) atν = −k does in fact satisfy a nonlinear

equation.

Ising correlationC(M, N) for ν = −k – p.19/29



Nonlinear equation for C(M,N) with T < Tc

With t = k2 and

σ = t(t − 1)
d ln C(M,N)

dt
− t

4

we have

[t(t − 1)σ′′]2 + 4{σ′(tσ′ − σ)((t − 1)σ′ − σ)

−M 2

4
(tσ′ − σ)2 − N 2

4
σ′2

+[
M 2 + N 2

4
− 1

8
(1 + (−1)M+N)]σ′(tσ′ − σ)} = 0

WhenM = N this reduces to the Jimbo-Miwa equation for the

diagonal correlationC(N,N) for T < Tc.
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Nonlinear equation for C(M,N) with T > Tc

ForM + N oddC(M,N) = 0

ForM + N even,t = k2 and

σ = t(t − 1)
d ln C(M,N)

dt
− 1

4

we have

[t(t − 1)σ′′]2 + 4{σ′(tσ′ − σ)((t − 1)σ′ − σ)}
−M 2(tσ′ − σ)2 − (N 2 + M 2 − 1)σ′(tσ′ − σ)

−N 2σ′2 − 1

4
(N 2 − M 2)σ′(tσ′ − σ)

−1

4
(N 2 − M 2)σ′ − 1

16
(N 2 − M 2) = 0
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Second order second degree equations

The search for nonlinear equations with the Painlevé property is
an ongoing field of research and is far from complete even for
equations of second order. However for equations of the form
(y′′)2 = F (y, y′, x) a solution was given by Cosgrove

(c1x3 + c2x2 + c3x + c4)2(y′′)2

= −4{c1(xy′ − y)3 + c2y′(xy′ − y)2

+c3(y′)2(xy′ − y) + c4(y′)3

+c5(xy′ − y)2 + c6y′(xy′ − y) + c7(y′)2

+c8(xy′ − y) + c9y′ + c10}

This equation is invariant under the 6 parameter group of
transformations

x̄ =
a1x + a2

a3x + a4
, ȳ =

a5y + a6x + a7

a3x + a4

with a1a4 − a2a3 = 1 anda5 6= 0.
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Okamoto’s Painlevé VI equation

The canonical form of Painlevé VI of Okamoto which depends on4 parametersn1, n2, n3, n4

h′{t(t − 1)h′′}2 + {h′(2h − (2t − 1)h′) + n1n2n3n4}2

−(h′ − n2
1)(h

′ − n2
2)(h

′ − n2
3)(h

′ − n2
4) = 0

which when expanded and cancelling the common factor ofh′ is of the Cosgrove form with

c1 = c4 = c5 = c6 = 0, c2 = −c3 = 1

c7 = −(n2
1 + n2

2 + n2
3 + n2

4)/4,

c8 = −n1n2n3n4

c9 = −(n2
1n2

2 + n2
1n2

3 + n2
1n2

4 + n2
2n2

3 + n2
2n2

4 + n2
3n2

4 − 2n1n2n3n4)/4

c10 = −(n2
1n2

2n2
3 + n2

1n2
2n2

4 + n2
1n2

3n2
4 + n2

2n2
3n2

4)/4
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Okamoto and isomonodromic deformation
Okamoto showed that the sigma form of Painlevé VI can be obtained from isomonodromic

deformation of the2 × 2 linear system with 4 singularities

dY (x)

dx
= {A0

x
+

At

x − t
+

A1

x − 1
}Y (x)

andA∞ = −(A0 + At + A1)

whereTrAk = 0 and±θk are the eigenvalues of the residue matricesAk of the linear system.

The relation between thenk and theθk is

n1 = θt + θ∞, n2 = θt − θ∞, n3 = θ0 + θ1, n4 = θ0 − θ1

We note, however, that because the sigma equation is invariant under permutations ofnk and the

change of sign of any pair ofnk that there are several different sets ofθk which lead to the same

sigma equation.
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Reduction to the Okomoto formT < Tc

Our equation is of the Cosgrove form with

c1 = c4 = 0, c2 = −c3 = 1

c5 = −M2

4
, c6 =

M2 + N2

4
− 1

8
(1 + (−1)M+N ), c7 = −N2

4
c8 = c9 = c10 = 0

To reduce our equation to the Okomoto form we need to find a linear shiftσ = h + At + B such

thatc5 = c6 = 0. This happens for

A = M2/4 andB = (N2 − M2)/8 − (1 + (−1)M+N )/16

where

c7 = −1

8
{N2 + M2 +

1

2
(1 + (−1)M+N )}

c8 =
1

16
M2{N2 − 1

2
(1 + (−1)M+N )}

c9 = − 1

64
{N2 − M2 − 1

2
(1 + (−1)M+N )}2 − 1

8
N2M2

c10 =
M2

16
B{N2 − 1

2
(1 + (−1)M+N )} − N2M4

64
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The Okamoto andθk parameters

From these expressions forc7, c8, c9, c10 we obtain the following sets of Okamoto parameters

for C(M, N) with T < Tc for ν = −k (unique up to permutations and the change of any two

signs)

ForM + N odd

n1 = n2 = N
2

, n3 = −n4 = M
2

and forM + N even

n1 = N+1
2

n2 = N−1
2

, n3 = −n4 = M
2

and thus one set ofθk for M + N evenis

(θ0, θt, θ1, θ∞) = (0, N/2, M/2, 1/2)

andfor M + N odd

(θ0, θt, θ1, θ∞) = (0, N/2, M/2, 0)

Note, however, if we permuten1 ↔ n3 that there is an equivalent set ofθk for M + N even

(θ0, θt, θ1, θ∞) = 1
4
(N − M + 1, N + M + 1, N + M − 1, M − N + 1)

and forN + M odd

(θ0, θt, θ1, θ∞) = 1
4
(N − M, N + M, N + M − 1, M − N + 1)
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4. The Forrester-Witte determinants
Forrester and Witte showed that the determinants

D
(p,p′,η,ξ)
N (t) = det

h

A
(p,p′,η,ξ)
j−k (t)

iN−1

j,k=0

with

A
(p,p′,η,ξ)
m (t) =

Γ(1 + p′)t(η−m)/2

Γ(1 + η − m)Γ(1 − η + m + p′)
2F1

»−p,−p′ + η − m

1 + η − m
, t

–

+
ξΓ(1 + p)t(m−η)/2

Γ(1 − η + m)Γ(1 + η − m + p)
2F1

»−p′,−p − η + m

1 − η + m
, t

–

has the property that

σ = t(t − 1) d
dt

ln(t
θ2
0+θ2

t −θ2
1−θ2

∞

2 (1 − t)
θ2

t +θ2
1−θ2

0−θ2
∞

+4θ1θt
2 DN )

with (θ0, θt, θ1, θ∞) = 1
2
(η, N,−N − p − p′, p − p′ + η)

satisfies the Okamoto PVI equation with

n1 = (N + p − p′ + η)/2, n2 = (N − p + p′ − η)/2,

n3 = (η − N − p − p′)/2, n4 = (η + N + p + p′)/2
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Comparison

Thus we see thatfor M + N eventhe parametersnk of T < Tc of C(M, N) for ν = −k agree

with the parametersnk of Forrester-Witte if

η = 0, p =
M − N + 1

2
, p′ =

M − N − 1

2

ForM + N oddthe parametersnk of T < Tc of C(M, N) agree with the parametersnk of

Forrester-Witte if

η = 0, p = p′ =
M − N

2

We note that for bothM + N even and odd that bothp andp′ are half an odd integer and for

N > M bothp andp′ are negative.

Forη = 0 andξ = 0 the determinants of Forrester and Witte reduce to Toeplitz determinants

with the generating function

C(φ) = (1 − keiφ)p(1 − ke−iφ)p′

WhenN = M thenp = 1/2 andp′ = −1/2 which is the generating function forC(N, N).

Ising correlationC(M, N) for ν = −k – p.28/29



5. Outstanding questions

1. How can we directly show thatC(M, N) for T < Tc andν = −k can be derived from

isomonodromic deformation theory?

2.The comparison of the computer computation of the nonlinear equation with the nonlinear

equation of the Forrester-Witte Toeplitz determinants reveals a striking equality which requires an

explanation.Do ALL C(M, N) with ν = −k for T < Tc andN > M have representations as

N × N Toeplitz determinantseven forM 6= 0 where no such representation has yet been found?

3. What are the implications of the factorization ofC(M, N) for T > Tc atν = −k> and the

quadratic transformation between thek and theα variables?

4. Why areM + N even and odd different?The two cases have been recognized since the work

of Ghosh and Shrock but is certainly not apparent in the Toeplitz determinant forC(0, N).

5. What is the relation of the bordered determinants forC(N, N + 1) of Au-Yang and Perk to

the PVI forν = −k?

6. How canC(M, N) the general case be formulated as an isomonodromic deformation problem

in two variables?Even forC(0, N) this does not seem to be known.

7. Why do two different sets ofθk give the same correlation function?
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