Diagonals of Rational Functions

Christoph Koutschan
(joint work with Youssef Abdelaziz and Jean-Marie Maillard)

Johann Radon Institute for Computational and Applied Mathematics (RICAM)
Austrian Academy of Sciences

10 February 2020
DART X, The Graduate Center CUNY, New York

ÖAW RICAM

Diagonals

Given a rational function in n variables

$$
R\left(x_{1}, \ldots, x_{n}\right)=\frac{P\left(x_{1}, \ldots, x_{n}\right)}{Q\left(x_{1}, \ldots, x_{n}\right)}
$$

where $P, Q \in \mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$ such that $Q(0, \ldots, 0) \neq 0$.
Definition: The diagonal of R is defined through its multi-Taylor expansion around $(0, \ldots, 0)$:

$$
R\left(x_{1}, \ldots, x_{n}\right)=\sum_{m_{1}=0}^{\infty} \cdots \sum_{m_{n}=0}^{\infty} r_{m_{1}, \ldots, m_{n}} \cdot x_{1}^{m_{1}} \cdots x_{n}^{m_{n}}
$$

as the series in one variable x :

$$
\operatorname{Diag}\left(R\left(x_{1}, \ldots, x_{n}\right)\right):=\sum_{m=0}^{\infty} r_{m, m, \ldots, m} \cdot x^{m}
$$

Example of a Diagonal

Consider the Taylor expansion of the bivariate rational function

$$
\begin{aligned}
f(x, y) & =\frac{1}{1-x-y-2 x y} \\
& =1+x+y+x^{2}+4 x y+y^{2}+x^{3}+7 x^{2} y+7 x y^{2}+\ldots
\end{aligned}
$$

Example of a Diagonal

Consider the Taylor expansion of the bivariate rational function

$$
\begin{aligned}
& f(x, y)=\frac{1}{1-x-y-2 x y} \\
& \quad=1+x+y+x^{2}+4 x y+y^{2}+x^{3}+7 x^{2} y+7 x y^{2}+\ldots \\
& =1+y+y^{2}+y^{3}+c y^{4}+y^{5}+\ldots \\
& +x+4 x y+7 x y^{2}+10 x y^{3}+13 x y^{4}+16 x y^{5}+\ldots \\
& +x^{2}+7 x^{2} y+22 x^{2} y^{2}+46 x^{2} y^{3}+79 x^{2} y^{4}+121 x^{2} y^{5}+\ldots \\
& +x^{3}+10 x^{3} y+46 x^{3} y^{2}+136 x^{3} y^{3}+307 x^{3} y^{4}+586 x^{3} y^{5}+\ldots \\
& +x^{4}+13 x^{4} y+79 x^{4} y^{2}+307 x^{4} y^{3}+886 x^{4} y^{4}+2086 x^{4} y^{5}+\ldots \\
& +x^{5}+16 x^{5} y+121 x^{5} y^{2}+586 x^{5} y^{3}+2086 x^{5} y^{4}+5944 x^{5} y^{5}+\ldots
\end{aligned}
$$

Example of a Diagonal

Consider the Taylor expansion of the bivariate rational function

$$
\begin{aligned}
& f(x, y)=\frac{1}{1-x-y-2 x y} \\
& \quad=1+x+y+x^{2}+4 x y+y^{2}+x^{3}+7 x^{2} y+7 x y^{2}+\ldots \\
& =1+y+y^{2}+y^{3}+c y^{4}+y^{5}+\ldots \\
& +x+4 x y+7 x y^{2}+10 x y^{3}+13 x y^{4}+16 x y^{5}+\ldots \\
& +x^{2}+7 x^{2} y+22 x^{2} y^{2}+46 x^{2} y^{3}+79 x^{2} y^{4}+121 x^{2} y^{5}+\ldots \\
& +x^{3}+10 x^{3} y+46 x^{3} y^{2}+136 x^{3} y^{3}+307 x^{3} y^{4}+586 x^{3} y^{5}+\ldots \\
& +x^{4}+13 x^{4} y+79 x^{4} y^{2}+307 x^{4} y^{3}+886 x^{4} y^{4}+2086 x^{4} y^{5}+\ldots \\
& +x^{5}+16 x^{5} y+121 x^{5} y^{2}+586 x^{5} y^{3}+2086 x^{5} y^{4}+5944 x^{5} y^{5}+\ldots
\end{aligned}
$$

Then the diagonal of f is

$$
\operatorname{Diag}(f)=1+4 x+22 x^{2}+136 x^{3}+886 x^{4}+5944 x^{5}+\ldots
$$

Properties of Diagonals

The diagonal $f(x)$ of every rational function has the properties:

- globally bounded: there exist integers $c, d \in \mathbb{N}^{*}$, such that $d f(c x) \in \mathbb{Z}[[x]]$, and $f(x)$ has nonzero radius of convergence.

Properties of Diagonals

The diagonal $f(x)$ of every rational function has the properties:

- globally bounded: there exist integers $c, d \in \mathbb{N}^{*}$, such that $d f(c x) \in \mathbb{Z}[[x]]$, and $f(x)$ has nonzero radius of convergence.
- D-finite: there exists a nonzero differential operator $L \in \mathbb{Q}[x]\left[\frac{d}{d x}\right]$ such that $L(f)=0$.

Properties of Diagonals

The diagonal $f(x)$ of every rational function has the properties:

- globally bounded: there exist integers $c, d \in \mathbb{N}^{*}$, such that $d f(c x) \in \mathbb{Z}[[x]]$, and $f(x)$ has nonzero radius of convergence.
- D-finite: there exists a nonzero differential operator $L \in \mathbb{Q}[x]\left[\frac{d}{d x}\right]$ such that $L(f)=0$.

Christol's Conjecture: The converse is also true, i.e., every series satisfying these two properties is the diagonal of a rational function.

Properties of Diagonals

The diagonal $f(x)$ of every rational function has the properties:

- globally bounded: there exist integers $c, d \in \mathbb{N}^{*}$, such that $d f(c x) \in \mathbb{Z}[[x]]$, and $f(x)$ has nonzero radius of convergence.
- D-finite: there exists a nonzero differential operator $L \in \mathbb{Q}[x]\left[\frac{d}{d x}\right]$ such that $L(f)=0$.

Christol's Conjecture: The converse is also true, i.e., every series satisfying these two properties is the diagonal of a rational function.

- This conjecture was first formulated in a paper in 1986 and is still widely open.

Properties of Diagonals

The diagonal $f(x)$ of every rational function has the properties:

- globally bounded: there exist integers $c, d \in \mathbb{N}^{*}$, such that $d f(c x) \in \mathbb{Z}[[x]]$, and $f(x)$ has nonzero radius of convergence.
- D-finite: there exists a nonzero differential operator $L \in \mathbb{Q}[x]\left[\frac{d}{d x}\right]$ such that $L(f)=0$.

Christol's Conjecture: The converse is also true, i.e., every series satisfying these two properties is the diagonal of a rational function.

- This conjecture was first formulated in a paper in 1986 and is still widely open.
- It doesn't say anything about the number of variables in the rational function.

Properties of Diagonals

The diagonal $f(x)$ of every rational function has the properties:

- globally bounded: there exist integers $c, d \in \mathbb{N}^{*}$, such that $d f(c x) \in \mathbb{Z}[[x]]$, and $f(x)$ has nonzero radius of convergence.
- D-finite: there exists a nonzero differential operator $L \in \mathbb{Q}[x]\left[\frac{d}{d x}\right]$ such that $L(f)=0$.

Christol's Conjecture: The converse is also true, i.e., every series satisfying these two properties is the diagonal of a rational function.

- This conjecture was first formulated in a paper in 1986 and is still widely open.
- It doesn't say anything about the number of variables in the rational function.
- One needs at least three variables, but no explicit example requiring more than three variables is known.

Christol's Conjecture

PROPOSITION : Toute diagonale de fraction rationnelle f satisfait les propriétés suivantes :
a) Elle est solution d'une équation différentielle linéaire L à coefficients dans $\mathbb{Q}[\lambda]$.
a') Cette équation différentielle est une equation de Picard Fuchs.
b) Pour toute place p (finie ou non) de \mathbb{Q}, le rayon de convergence $r_{p}(f)$ de la série f dans le corps \mathbb{C}_{p} est non nul.
c) Pour presque toute place p de 0 , on a $r_{p}(f)=1$.
c') Pour presque toute place p de \mathbb{Q}, la fonction f est bornée dans le disque $D_{p}(0,1)=\left\{x \in \mathbb{C}_{p} ;|x|<1\right\}$.
$c^{\prime \prime}$) Pour presque toute place p de \mathbb{Q},on a :

$$
\|f\|_{p}=\sup _{x \in D_{p}(0,1)}|f(x)|=1
$$

Seules les propriétés a) et a') ne sont pas immédiates. On en trouvera une démonstration dans [1].

Dans cet article nous nous proposons de tester la conjecture suivante sur les fonctions hypergémétriques F_{s-1} :

CONJECTURE : Une série entière f qui vérifie les propriétés a), b), c), $\left.c^{\prime}\right)$ et $\left.c^{\prime \prime}\right)$ est la diagonale d'une fraction rationnelle.

Hadamard Product

Definition: The Hadamard product of two series

$$
f(x)=\sum_{n=0}^{\infty} \alpha_{n} \cdot x^{n} \quad \text { and } \quad g(x)=\sum_{n=0}^{\infty} \beta_{n} \cdot x^{n}
$$

is given by

$$
f(x) \star g(x)=\sum_{n=0}^{\infty} \alpha_{n} \cdot \beta_{n} \cdot x^{n}
$$

Hadamard Product

Definition: The Hadamard product of two series

$$
f(x)=\sum_{n=0}^{\infty} \alpha_{n} \cdot x^{n} \quad \text { and } \quad g(x)=\sum_{n=0}^{\infty} \beta_{n} \cdot x^{n}
$$

is given by

$$
f(x) \star g(x)=\sum_{n=0}^{\infty} \alpha_{n} \cdot \beta_{n} \cdot x^{n}
$$

Note: Diagonals are closed under the Hadamard product, i.e., if two series are diagonals of rational functions, their Hadamard product is also a diagonal of a rational function.

Hypergeometric Series

Definition: Let $(a)_{k}:=a(a+1) \cdots(a+k-1)$. Then

$$
{ }_{p} F_{q}\left(\left[a_{1}, \ldots, a_{p}\right],\left[b_{1}, \ldots, b_{q}\right], x\right):=\sum_{k=0}^{\infty} \frac{\left(a_{1}\right)_{k} \cdots\left(a_{p}\right)_{k}}{\left(b_{1}\right)_{k} \cdots\left(b_{q}\right)_{k}} \cdot \frac{x^{k}}{k!}
$$

Hypergeometric Series

Definition: Let $(a)_{k}:=a(a+1) \cdots(a+k-1)$. Then

$$
{ }_{p} F_{q}\left(\left[a_{1}, \ldots, a_{p}\right],\left[b_{1}, \ldots, b_{q}\right], x\right):=\sum_{k=0}^{\infty} \frac{\left(a_{1}\right)_{k} \cdots\left(a_{p}\right)_{k}}{\left(b_{1}\right)_{k} \cdots\left(b_{q}\right)_{k}} \cdot \frac{x^{k}}{k!}
$$

Note: Any such hypergeometric function is D-finite, for example: the classical Gauß hypergeometric ${ }_{2} F_{1}([a, b],[c], x)$ function satisfies Euler's differential equation:

$$
x(x-1) y^{\prime \prime}(x)+((a+b+1) x-c) y^{\prime}(x)+a b y(x)=0 .
$$

Hypergeometric Series

Definition: Let $(a)_{k}:=a(a+1) \cdots(a+k-1)$. Then

$$
{ }_{p} F_{q}\left(\left[a_{1}, \ldots, a_{p}\right],\left[b_{1}, \ldots, b_{q}\right], x\right):=\sum_{k=0}^{\infty} \frac{\left(a_{1}\right)_{k} \cdots\left(a_{p}\right)_{k}}{\left(b_{1}\right)_{k} \cdots\left(b_{q}\right)_{k}} \cdot \frac{x^{k}}{k!}
$$

Note: Any such hypergeometric function is D-finite, for example: the classical Gauß hypergeometric ${ }_{2} F_{1}([a, b],[c], x)$ function satisfies Euler's differential equation:

$$
x(x-1) y^{\prime \prime}(x)+((a+b+1) x-c) y^{\prime}(x)+a b y(x)=0 .
$$

Therefore, hypergeometric functions of the form ${ }_{p} F_{p-1}$ provide a natural testing ground for Christol's conjecture.

Hypergeometric Series

Definition: Let $(a)_{k}:=a(a+1) \cdots(a+k-1)$. Then

$$
{ }_{p} F_{q}\left(\left[a_{1}, \ldots, a_{p}\right],\left[b_{1}, \ldots, b_{q}\right], x\right):=\sum_{k=0}^{\infty} \frac{\left(a_{1}\right)_{k} \cdots\left(a_{p}\right)_{k}}{\left(b_{1}\right)_{k} \cdots\left(b_{q}\right)_{k}} \cdot \frac{x^{k}}{k!}
$$

Note: Any such hypergeometric function is D-finite, for example: the classical Gauß hypergeometric ${ }_{2} F_{1}([a, b],[c], x)$ function satisfies Euler's differential equation:

$$
x(x-1) y^{\prime \prime}(x)+((a+b+1) x-c) y^{\prime}(x)+a b y(x)=0 .
$$

Therefore, hypergeometric functions of the form ${ }_{p} F_{p-1}$ provide a natural testing ground for Christol's conjecture.

- If $q<p-1$ then the ${ }_{p} F_{q}$ series has zero radius of convergence.

Hypergeometric Series

Definition: Let $(a)_{k}:=a(a+1) \cdots(a+k-1)$. Then

$$
{ }_{p} F_{q}\left(\left[a_{1}, \ldots, a_{p}\right],\left[b_{1}, \ldots, b_{q}\right], x\right):=\sum_{k=0}^{\infty} \frac{\left(a_{1}\right)_{k} \cdots\left(a_{p}\right)_{k}}{\left(b_{1}\right)_{k} \cdots\left(b_{q}\right)_{k}} \cdot \frac{x^{k}}{k!}
$$

Note: Any such hypergeometric function is D-finite, for example: the classical Gauß hypergeometric ${ }_{2} F_{1}([a, b],[c], x)$ function satisfies Euler's differential equation:

$$
x(x-1) y^{\prime \prime}(x)+((a+b+1) x-c) y^{\prime}(x)+a b y(x)=0 .
$$

Therefore, hypergeometric functions of the form ${ }_{p} F_{p-1}$ provide a natural testing ground for Christol's conjecture.

- If $q<p-1$ then the ${ }_{p} F_{q}$ series has zero radius of convergence.
- If $q>p-1$ then the ${ }_{p} F_{q}$ series cannot be globally bounded.

Confirmation

Certain classes of hypergeometric functions confirm Christol's conjecture.

Theorem (Christol): Let $f(x)$ be a hypergeometric series of the form

$$
f(x)={ }_{p} F_{p-1}\left(\left[a_{1}, \ldots, a_{p}\right],\left[b_{1} \ldots, b_{p-1}\right], x\right)
$$

of height

$$
h=\left|\left\{1 \leqslant j \leqslant p \mid b_{j} \in \mathbb{Z}\right\}\right|-\left|\left\{1 \leqslant j \leqslant p \mid a_{j} \in \mathbb{Z}\right\}\right|
$$

(where $b_{p}=1$). If $f(x)$ can be written as the Hadamard product of h globally bounded series of height 1 , then $f(x)$ is the diagonal of a rational function.

Example

The globally bounded hypergeometric series

$$
f(x)={ }_{3} F_{2}\left(\left[\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right],[1,1], x\right)
$$

has height 3, and it can be written as the Hadamard product of three hypergeometric series of height 1 :

$$
{ }_{1} F_{0}\left(\left[\frac{1}{3}\right],[], x\right) \star{ }_{1} F_{0}\left(\left[\frac{1}{3}\right],[], x\right) \star{ }_{1} F_{0}\left(\left[\frac{1}{3}\right],[], x\right)
$$

Example

The globally bounded hypergeometric series

$$
f(x)={ }_{3} F_{2}\left(\left[\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right],[1,1], x\right)
$$

has height 3, and it can be written as the Hadamard product of three hypergeometric series of height 1 :

$$
{ }_{1} F_{0}\left(\left[\frac{1}{3}\right],[], x\right) \star{ }_{1} F_{0}\left(\left[\frac{1}{3}\right],[], x\right) \star{ }_{1} F_{0}\left(\left[\frac{1}{3}\right],[], x\right)
$$

By noting that ${ }_{1} F_{0}\left(\left[\frac{1}{3}\right],[], x\right)=(1-x)^{-1 / 3}$, we see that $f(x)$ is the diagonal of an algebraic function in three variables:

$$
f(x)=\operatorname{Diag}\left((1-x)^{-1 / 3} \cdot(1-y)^{-1 / 3} \cdot(1-z)^{-1 / 3}\right)
$$

Diagonals of Algebraic Functions

Theorem (Furstenberg): Any algebraic power series $f(x)$ is the diagonal of a rational function in two variables.

Diagonals of Algebraic Functions

Theorem (Furstenberg): Any algebraic power series $f(x)$ is the diagonal of a rational function in two variables.

Theorem (Denef, Lipshitz): Any power series in $\mathbb{Q}\left[\left[x_{1}, \ldots, x_{n}\right]\right]$, algebraic over $\mathbb{Q}\left(x_{1}, \ldots, x_{n}\right)$, is the diagonal of a rational function in $2 n$ variables.

Diagonals of Algebraic Functions

Theorem (Furstenberg): Any algebraic power series $f(x)$ is the diagonal of a rational function in two variables.

Theorem (Denef, Lipshitz): Any power series in $\mathbb{Q}\left[\left[x_{1}, \ldots, x_{n}\right]\right]$, algebraic over $\mathbb{Q}\left(x_{1}, \ldots, x_{n}\right)$, is the diagonal of a rational function in $2 n$ variables.

Theorem (Christol): $\mathrm{A}_{p} F_{p-1}$ hypergeometric function of height 1 is globally bounded if and only if it is algebraic.

Situation for 2F1 Functions

All globally bounded ${ }_{2} F_{1}([a, b],[c], x)$ hypergeometric series are diagonals of rational functions.

Situation for 2F1 Functions

All globally bounded ${ }_{2} F_{1}([a, b],[c], x)$ hypergeometric series are diagonals of rational functions.

For example, let $a, b \in \mathbb{Q} \backslash \mathbb{Z}$.

- $c \in \mathbb{N}$: in this case the ${ }_{2} F_{1}$ function is automatically globally bounded and can be written as the Hadamard product of two (algebraic) ${ }_{1} F_{0}$ functions.

Situation for 2F1 Functions

All globally bounded ${ }_{2} F_{1}([a, b],[c], x)$ hypergeometric series are diagonals of rational functions.

For example, let $a, b \in \mathbb{Q} \backslash \mathbb{Z}$.

- $c \in \mathbb{N}$: in this case the ${ }_{2} F_{1}$ function is automatically globally bounded and can be written as the Hadamard product of two (algebraic) ${ }_{1} F_{0}$ functions.
- $c \in \mathbb{Q} \backslash \mathbb{Z}$: in this case the ${ }_{2} F_{1}$ function is globally bounded if and only if it is algebraic.

Situation for 2F1 Functions

All globally bounded ${ }_{2} F_{1}([a, b],[c], x)$ hypergeometric series are diagonals of rational functions.

For example, let $a, b \in \mathbb{Q} \backslash \mathbb{Z}$.

- $c \in \mathbb{N}$: in this case the ${ }_{2} F_{1}$ function is automatically globally bounded and can be written as the Hadamard product of two (algebraic) ${ }_{1} F_{0}$ functions.
- $c \in \mathbb{Q} \backslash \mathbb{Z}$: in this case the ${ }_{2} F_{1}$ function is globally bounded if and only if it is algebraic.

Hence, this situation is not particularly interesting for our purposes.

Situation for 3F2 Functions

When is it easy to see that a globally bounded hypergeometric function ${ }_{3} F_{2}([a, b, c],[d, e], x), a, b, c \in \mathbb{Q} \backslash \mathbb{Z}$ is a diagonal of a rational function?

Situation for 3F2 Functions

When is it easy to see that a globally bounded hypergeometric function ${ }_{3} F_{2}([a, b, c],[d, e], x), a, b, c \in \mathbb{Q} \backslash \mathbb{Z}$ is a diagonal of a rational function?

- If $d, e \in \mathbb{N}$, because in this case it can be written as the Hadamard product of three ${ }_{1} F_{0}$ algebraic functions.

Situation for 3F2 Functions

When is it easy to see that a globally bounded hypergeometric function ${ }_{3} F_{2}([a, b, c],[d, e], x), a, b, c \in \mathbb{Q} \backslash \mathbb{Z}$ is a diagonal of a rational function?

- If $d, e \in \mathbb{N}$, because in this case it can be written as the Hadamard product of three ${ }_{1} F_{0}$ algebraic functions.
- If $d, e \in \mathbb{Q} \backslash \mathbb{Z}$, because in this case the ${ }_{3} F_{2}$ function is algebraic.

Situation for 3F2 Functions

When is it easy to see that a globally bounded hypergeometric function ${ }_{3} F_{2}([a, b, c],[d, e], x), a, b, c \in \mathbb{Q} \backslash \mathbb{Z}$ is a diagonal of a rational function?

- If $d, e \in \mathbb{N}$, because in this case it can be written as the Hadamard product of three ${ }_{1} F_{0}$ algebraic functions.
- If $d, e \in \mathbb{Q} \backslash \mathbb{Z}$, because in this case the ${ }_{3} F_{2}$ function is algebraic.

Hence the interesting case occurs when only one of the two parameters d or e is rational, and the other is an integer.

Situation for 3F2 Functions

When is it easy to see that a globally bounded hypergeometric function ${ }_{3} F_{2}([a, b, c],[d, e], x), a, b, c \in \mathbb{Q} \backslash \mathbb{Z}$ is a diagonal of a rational function?

- If $d, e \in \mathbb{N}$, because in this case it can be written as the Hadamard product of three ${ }_{1} F_{0}$ algebraic functions.
- If $d, e \in \mathbb{Q} \backslash \mathbb{Z}$, because in this case the ${ }_{3} F_{2}$ function is algebraic.

Hence the interesting case occurs when only one of the two parameters d or e is rational, and the other is an integer.

But even in this case, a lot of the ${ }_{3} F_{2}$ functions are easily seen to be diagonals of rational functions...

Situation for 3F2 Functions

Suppose now that $f(x)={ }_{3} F_{2}([a, b, c],[d, 1], x)$ is globally bounded, with the parameters $a, b, c, d \in \mathbb{Q} \backslash \mathbb{Z}$.

Situation for 3F2 Functions

Suppose now that $f(x)={ }_{3} F_{2}([a, b, c],[d, 1], x)$ is globally bounded, with the parameters $a, b, c, d \in \mathbb{Q} \backslash \mathbb{Z}$.

Then there are six ways to write this function as a Hadamard product of hypergeometric functions:

$$
f(x)={ }_{2} F_{1}([a, b],[d], x) \star{ }_{1} F_{0}([c], x) \quad=\ldots
$$

Situation for 3F2 Functions

Suppose now that $f(x)={ }_{3} F_{2}([a, b, c],[d, 1], x)$ is globally bounded, with the parameters $a, b, c, d \in \mathbb{Q} \backslash \mathbb{Z}$.

Then there are six ways to write this function as a Hadamard product of hypergeometric functions:

$$
\begin{aligned}
& f(x)={ }_{2} F_{1}([a, b],[d], x) \star{ }_{1} F_{0}([c], x) \\
& f(x)={ }_{2} F_{1}([a, b],[1], x) \star{ }_{2} F_{1}([c, 1],[d], x)=\ldots
\end{aligned}
$$

Situation for 3F2 Functions

Suppose now that $f(x)={ }_{3} F_{2}([a, b, c],[d, 1], x)$ is globally bounded, with the parameters $a, b, c, d \in \mathbb{Q} \backslash \mathbb{Z}$.

Then there are six ways to write this function as a Hadamard product of hypergeometric functions:

$$
\begin{aligned}
& f(x)={ }_{2} F_{1}([a, b],[d], x) \star{ }_{1} F_{0}([c], x) \\
& f(x)=\ldots \\
& { }_{2} F_{1}([a, b],[1], x) \star{ }_{2} F_{1}([c, 1],[d], x)=\ldots
\end{aligned}
$$

- Both ${ }_{1} F_{0}([c], x)$ and ${ }_{2} F_{1}([a, b],[1], x)$ are diagonals

Situation for 3F2 Functions

Suppose now that $f(x)={ }_{3} F_{2}([a, b, c],[d, 1], x)$ is globally bounded, with the parameters $a, b, c, d \in \mathbb{Q} \backslash \mathbb{Z}$.

Then there are six ways to write this function as a Hadamard product of hypergeometric functions:

$$
\begin{aligned}
& f(x)={ }_{2} F_{1}([a, b],[d], x) \star{ }_{1} F_{0}([c], x)=\ldots \\
& f(x)={ }_{2} F_{1}([a, b],[1], x) \star{ }_{2} F_{1}([c, 1],[d], x)=\ldots
\end{aligned}
$$

- Both ${ }_{1} F_{0}([c], x)$ and ${ }_{2} F_{1}([a, b],[1], x)$ are diagonals
- Then $f(x)$ is a diagonal if ${ }_{2} F_{1}([c, 1],[d], x)$ or ${ }_{2} F_{1}([a, b],[d], x)$ is a diagonal (i.e. if one of them is algebraic).

Situation for 3F2 Functions

Suppose now that $f(x)={ }_{3} F_{2}([a, b, c],[d, 1], x)$ is globally bounded, with the parameters $a, b, c, d \in \mathbb{Q} \backslash \mathbb{Z}$.

Then there are six ways to write this function as a Hadamard product of hypergeometric functions:

$$
\begin{aligned}
& f(x)={ }_{2} F_{1}([a, b],[d], x) \star{ }_{1} F_{0}([c], x)=\ldots \\
& f(x)={ }_{2} F_{1}([a, b],[1], x) \star{ }_{2} F_{1}([c, 1],[d], x)=\ldots
\end{aligned}
$$

- Both ${ }_{1} F_{0}([c], x)$ and ${ }_{2} F_{1}([a, b],[1], x)$ are diagonals
- Then $f(x)$ is a diagonal if ${ }_{2} F_{1}([c, 1],[d], x)$ or ${ }_{2} F_{1}([a, b],[d], x)$ is a diagonal (i.e. if one of them is algebraic).
- ${ }_{2} F_{1}([c, 1],[d], x)$ cannot be an algebraic function (Goursat).

Situation for 3F2 Functions

Suppose now that $f(x)={ }_{3} F_{2}([a, b, c],[d, 1], x)$ is globally bounded, with the parameters $a, b, c, d \in \mathbb{Q} \backslash \mathbb{Z}$.

Then there are six ways to write this function as a Hadamard product of hypergeometric functions:

$$
\begin{aligned}
& f(x)={ }_{2} F_{1}([a, b],[d], x) \star{ }_{1} F_{0}([c], x)=\ldots \\
& f(x)={ }_{2} F_{1}([a, b],[1], x) \star{ }_{2} F_{1}([c, 1],[d], x)=\ldots
\end{aligned}
$$

- Both ${ }_{1} F_{0}([c], x)$ and ${ }_{2} F_{1}([a, b],[1], x)$ are diagonals
- Then $f(x)$ is a diagonal if ${ }_{2} F_{1}([c, 1],[d], x)$ or ${ }_{2} F_{1}([a, b],[d], x)$ is a diagonal (i.e. if one of them is algebraic).
- ${ }_{2} F_{1}([c, 1],[d], x)$ cannot be an algebraic function (Goursat).

Thus if one of ${ }_{2} F_{1}([a, b],[d], x),{ }_{2} F_{1}([b, c],[d], x),{ }_{2} F_{1}([a, c],[d], x)$ is algebraic, then $f(x)$ is the diagonal of a rational function.

Potential Counterexamples

Potential counterexamples to Christol's conjecture were constructed in a way that avoids them being written as "simple" Hadamard products of algebraic functions.

Potential Counterexamples

Potential counterexamples to Christol's conjecture were constructed in a way that avoids them being written as "simple" Hadamard products of algebraic functions.

Christol came up with an unresolved example to his conjecture

- G. Christol, Fonctions hypergéométriques bornées, Groupe d'Etude d'Analyse ultramétrique, vol. 14 (1986-1987), Exposé ${ }^{\circ} 8$, p. 1-16.

Potential Counterexamples

Potential counterexamples to Christol's conjecture were constructed in a way that avoids them being written as "simple" Hadamard products of algebraic functions.

Christol came up with an unresolved example to his conjecture

- G. Christol, Fonctions hypergéométriques bornées, Groupe d'Etude d'Analyse ultramétrique, vol. 14 (1986-1987), Exposé ${ }^{\circ}$ 8, p. 1-16.

A longer list was generated by Christol and his co-authors in 2012.

- A. Bostan, S. Boukraa, G. Christol, S. Hassani, J-M. Maillard Ising n-fold integrals as diagonals of rational functions and integrality of series expansions: integrality versus modularity. Journal of Physics A: Mathematical and Theoretical 46(18)

Potential Counterexamples

For example, these two hypergeometric functions are globally bounded, as they can be recast into series with integer coefficients:
${ }_{3} F_{2}\left(\left[\frac{2}{9}, \frac{5}{9}, \frac{8}{9}\right],\left[\frac{2}{3}, 1\right], 3^{6} x\right)=1+120 x+47124 x^{2}+23483460 x^{3}+\ldots$
${ }_{3} F_{2}\left(\left[\frac{1}{9}, \frac{4}{9}, \frac{7}{9}\right],\left[\frac{1}{3}, 1\right], 3^{6} x\right)=1+84 x+32760 x^{2}+16302000 x^{3}+\ldots$

Potential Counterexamples

For example, these two hypergeometric functions are globally bounded, as they can be recast into series with integer coefficients:
${ }_{3} F_{2}\left(\left[\frac{2}{9}, \frac{5}{9}, \frac{8}{9}\right],\left[\frac{2}{3}, 1\right], 3^{6} x\right)=1+120 x+47124 x^{2}+23483460 x^{3}+\ldots$
${ }_{3} F_{2}\left(\left[\frac{1}{9}, \frac{4}{9}, \frac{7}{9}\right],\left[\frac{1}{3}, 1\right], 3^{6} x\right)=1+84 x+32760 x^{2}+16302000 x^{3}+\ldots$

But they cannot be obtained as diagonals through Hadamard products, since the following series are not globally bounded:

$$
\begin{aligned}
& { }_{2} F_{1}\left(\left[\frac{2}{9}, \frac{5}{9}\right],\left[\frac{2}{3}\right], x\right), \quad{ }_{2} F_{1}\left(\left[\frac{2}{9}, \frac{8}{9}\right],\left[\frac{2}{3}\right], x\right), \quad{ }_{2} F_{1}\left(\left[\frac{5}{9}, \frac{8}{9}\right],\left[\frac{2}{3}\right], x\right), \\
& { }_{2} F_{1}\left(\left[\frac{1}{9}, \frac{4}{9}\right],\left[\frac{1}{3}\right], x\right), \quad{ }_{2} F_{1}\left(\left[\frac{4}{9}, \frac{7}{9}\right],\left[\frac{1}{3}\right], x\right),
\end{aligned}{ }_{2} F_{1}\left(\left[\frac{1}{9}, \frac{7}{9}\right],\left[\frac{1}{3}\right], x\right) .
$$

Not Globally Bounded

$$
\begin{aligned}
& { }_{2} F_{1}\left(\left[\frac{2}{9}, \frac{5}{9}\right],\left[\frac{2}{3}\right], x\right)= \\
& =1+\frac{2 / 9 \cdot 5 / 9}{2 / 3 \cdot 1} \cdot x+\frac{(2 / 9 \cdot 11 / 9) \cdot(5 / 9 \cdot 14 / 9)}{(2 / 3 \cdot 5 / 3) \cdot(1 \cdot 2)} \cdot x^{2}+\ldots \\
& \quad \ldots+\frac{2 \cdot 11 \cdot 20 \cdots(9 k-7) \cdot 5 \cdot 14 \cdot 23 \cdots(9 k-4)}{2 \cdot 5 \cdot 8 \cdots(3 k-1) \cdot 1 \cdot 2 \cdot 3 \cdots k} \cdot\left(\frac{x}{27}\right)^{k}+\ldots
\end{aligned}
$$

Not Globally Bounded

$$
\begin{aligned}
& { }_{2} F_{1}\left(\left[\frac{2}{9}, \frac{5}{9}\right],\left[\frac{2}{3}\right], x\right)= \\
& =1+\frac{2 / 9 \cdot 5 / 9}{2 / 3 \cdot 1} \cdot x+\frac{(2 / 9 \cdot 11 / 9) \cdot(5 / 9 \cdot 14 / 9)}{(2 / 3 \cdot 5 / 3) \cdot(1 \cdot 2)} \cdot x^{2}+\ldots \\
& \quad \ldots+\frac{2 \cdot 11 \cdot 20 \cdots(9 k-7) \cdot 5 \cdot 14 \cdot 23 \cdots(9 k-4)}{2 \cdot 5 \cdot 8 \cdots(3 k-1) \cdot 1 \cdot 2 \cdot 3 \cdots k} \cdot\left(\frac{x}{27}\right)^{k}+\ldots
\end{aligned}
$$

Let p be a prime such that $p=3 k-1$ for some k.

Not Globally Bounded

$$
\begin{aligned}
& { }_{2} F_{1}\left(\left[\frac{2}{9}, \frac{5}{9}\right],\left[\frac{2}{3}\right], x\right)= \\
& =1+\frac{2 / 9 \cdot 5 / 9}{2 / 3 \cdot 1} \cdot x+\frac{(2 / 9 \cdot 11 / 9) \cdot(5 / 9 \cdot 14 / 9)}{(2 / 3 \cdot 5 / 3) \cdot(1 \cdot 2)} \cdot x^{2}+\ldots \\
& \quad \ldots+\frac{2 \cdot 11 \cdot 20 \cdots(9 k-7) \cdot 5 \cdot 14 \cdot 23 \cdots(9 k-4)}{2 \cdot 5 \cdot 8 \cdots(3 k-1) \cdot 1 \cdot 2 \cdot 3 \cdots k} \cdot\left(\frac{x}{27}\right)^{k}+\ldots
\end{aligned}
$$

Let p be a prime such that $p=3 k-1$ for some k.

- If $p \equiv 2 \bmod 9$ or if $p \equiv 5 \bmod 9$ then it gets cancelled in the k-th term.

Not Globally Bounded

$$
\begin{aligned}
& { }_{2} F_{1}\left(\left[\frac{2}{9}, \frac{5}{9}\right],\left[\frac{2}{3}\right], x\right)= \\
& =1+\frac{2 / 9 \cdot 5 / 9}{2 / 3 \cdot 1} \cdot x+\frac{(2 / 9 \cdot 11 / 9) \cdot(5 / 9 \cdot 14 / 9)}{(2 / 3 \cdot 5 / 3) \cdot(1 \cdot 2)} \cdot x^{2}+\ldots \\
& \quad \ldots+\frac{2 \cdot 11 \cdot 20 \cdots(9 k-7) \cdot 5 \cdot 14 \cdot 23 \cdots(9 k-4)}{2 \cdot 5 \cdot 8 \cdots(3 k-1) \cdot 1 \cdot 2 \cdot 3 \cdots k} \cdot\left(\frac{x}{27}\right)^{k}+\ldots
\end{aligned}
$$

Let p be a prime such that $p=3 k-1$ for some k.

- If $p \equiv 2 \bmod 9$ or if $p \equiv 5 \bmod 9$ then it gets cancelled in the k-th term.
- If $p \equiv 8 \bmod 9$, then it survives in the denominator of the k-th term.

Not Globally Bounded

${ }_{2} F_{1}\left(\left[\frac{2}{9}, \frac{5}{9}\right],\left[\frac{2}{3}\right], x\right)=$

$$
\begin{aligned}
= & 1+\frac{2 / 9 \cdot 5 / 9}{2 / 3 \cdot 1} \cdot x+\frac{(2 / 9 \cdot 11 / 9) \cdot(5 / 9 \cdot 14 / 9)}{(2 / 3 \cdot 5 / 3) \cdot(1 \cdot 2)} \cdot x^{2}+\ldots \\
& \ldots+\frac{2 \cdot 11 \cdot 20 \cdots(9 k-7) \cdot 5 \cdot 14 \cdot 23 \cdots(9 k-4)}{2 \cdot 5 \cdot 8 \cdots(3 k-1) \cdot 1 \cdot 2 \cdot 3 \cdots k} \cdot\left(\frac{x}{27}\right)^{k}+\ldots
\end{aligned}
$$

Let p be a prime such that $p=3 k-1$ for some k.

- If $p \equiv 2 \bmod 9$ or if $p \equiv 5 \bmod 9$ then it gets cancelled in the k-th term.
- If $p \equiv 8 \bmod 9$, then it survives in the denominator of the k-th term.
There are infinitely many prime factors in the Taylor expansion, and therefore the function is not globally bounded.

Towards Christol

Theorem: The hypergeometric functions

$$
{ }_{3} F_{2}\left(\left[\frac{2}{9}, \frac{5}{9}, \frac{8}{9}\right],\left[\frac{2}{3}, 1\right], 27 x\right) \quad \text { and } \quad{ }_{3} F_{2}\left(\left[\frac{1}{9}, \frac{4}{9}, \frac{7}{9}\right],\left[\frac{1}{3}, 1\right], 27 x\right)
$$

are diagonals of rational functions.

Towards Christol

Theorem: The hypergeometric functions

$$
{ }_{3} F_{2}\left(\left[\frac{2}{9}, \frac{5}{9}, \frac{8}{9}\right],\left[\frac{2}{3}, 1\right], 27 x\right) \quad \text { and } \quad{ }_{3} F_{2}\left(\left[\frac{1}{9}, \frac{4}{9}, \frac{7}{9}\right],\left[\frac{1}{3}, 1\right], 27 x\right)
$$

are diagonals of rational functions.
More precisely, we have:

$$
\begin{aligned}
& { }_{3} F_{2}\left(\left[\frac{2}{9}, \frac{5}{9}, \frac{8}{9}\right],\left[\frac{2}{3}, 1\right], 27 x\right)=\operatorname{Diag}\left(\frac{(1-x-y)^{1 / 3}}{1-x-y-z}\right), \\
& { }_{3} F_{2}\left(\left[\frac{1}{9}, \frac{4}{9}, \frac{7}{9}\right],\left[\frac{1}{3}, 1\right], 27 x\right)=\operatorname{Diag}\left(\frac{(1-x-y)^{2 / 3}}{1-x-y-z}\right) .
\end{aligned}
$$

Towards Christol

Theorem: The hypergeometric functions

$$
{ }_{3} F_{2}\left(\left[\frac{2}{9}, \frac{5}{9}, \frac{8}{9}\right],\left[\frac{2}{3}, 1\right], 27 x\right) \quad \text { and } \quad{ }_{3} F_{2}\left(\left[\frac{1}{9}, \frac{4}{9}, \frac{7}{9}\right],\left[\frac{1}{3}, 1\right], 27 x\right)
$$

are diagonals of rational functions.
More precisely, we have:

$$
\begin{aligned}
& { }_{3} F_{2}\left(\left[\frac{2}{9}, \frac{5}{9}, \frac{8}{9}\right],\left[\frac{2}{3}, 1\right], 27 x\right)=\operatorname{Diag}\left(\frac{(1-x-y)^{1 / 3}}{1-x-y-z}\right), \\
& { }_{3} F_{2}\left(\left[\frac{1}{9}, \frac{4}{9}, \frac{7}{9}\right],\left[\frac{1}{3}, 1\right], 27 x\right)=\operatorname{Diag}\left(\frac{(1-x-y)^{2 / 3}}{1-x-y-z}\right) .
\end{aligned}
$$

More generally, $\operatorname{Diag}\left(\frac{(1-x-y)^{a / b}}{1-x-y-z}\right)$ is shown to evaluate to

$$
{ }_{3} F_{2}\left(\left[\frac{3 a-b}{3 a}, \frac{2 a-b}{3 a}, \frac{a-b}{3 a}\right],\left[\frac{a-b}{a}, 1\right], 27 x\right) .
$$

Proof

The denominator of the algebraic function $\frac{(1-x-y)^{a / b}}{(1-x-y-z)}$ is
expanded as a geometric series:

$$
(1-x-y-z)^{-1}=\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \sum_{l=0}^{\infty}\binom{n}{m}\binom{m}{l} \cdot x^{l} y^{m-l} z^{n-m}
$$

Proof

The denominator of the algebraic function $\frac{(1-x-y)^{a / b}}{(1-x-y-z)}$ is
expanded as a geometric series:

$$
(1-x-y-z)^{-1}=\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \sum_{l=0}^{\infty}\binom{n}{m}\binom{m}{l} \cdot x^{l} y^{m-l} z^{n-m}
$$

while the numerator can be expanded as

$$
\sum_{k=0}^{\infty} \frac{(-a / b)_{k}}{k!} \cdot(x+y)^{k}=\sum_{k=0}^{\infty} \sum_{j=0}^{k} \frac{(-a / b)_{k}}{k!} \cdot\binom{k}{j} x^{j} y^{k-j}
$$

Proof

The denominator of the algebraic function $\frac{(1-x-y)^{a / b}}{(1-x-y-z)}$ is
expanded as a geometric series:

$$
(1-x-y-z)^{-1}=\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \sum_{l=0}^{\infty}\binom{n}{m}\binom{m}{l} \cdot x^{l} y^{m-l} z^{n-m}
$$

while the numerator can be expanded as

$$
\sum_{k=0}^{\infty} \frac{(-a / b)_{k}}{k!} \cdot(x+y)^{k}=\sum_{k=0}^{\infty} \sum_{j=0}^{k} \frac{(-a / b)_{k}}{k!} \cdot\binom{k}{j} x^{j} y^{k-j}
$$

Multiplying these two sums and re-indexing, we obtain:

$$
\sum_{s=0}^{\infty} \sum_{t=0}^{\infty} \sum_{u=0}^{\infty} x^{s} y^{t} z^{u} \sum_{j=0}^{s} \sum_{k=0}^{\infty} \frac{(-a / b)_{k}}{k!}\binom{k}{j}\binom{s+t+u-k}{s+t-k}\binom{s+t-k}{s-j}
$$

Proof

Hence the diagonal coefficient of $x^{n} y^{n} z^{n}$ is given by

$$
\sum_{j=0}^{n} \sum_{k=0}^{\infty} \frac{(-a / b)_{k}}{k!} \cdot\binom{k}{j}\binom{3 n-k}{2 n-k}\binom{2 n-k}{n-j}
$$

Proof

Hence the diagonal coefficient of $x^{n} y^{n} z^{n}$ is given by

$$
\sum_{j=0}^{n} \sum_{k=0}^{\infty} \frac{(-a / b)_{k}}{k!} \cdot\binom{k}{j}\binom{3 n-k}{2 n-k}\binom{2 n-k}{n-j}
$$

which by the Chu-Vandermonde identity

$$
\binom{2 n}{n}=\sum_{j=0}^{n}\binom{k}{j}\binom{2 n-k}{n-j}
$$

Proof

Hence the diagonal coefficient of $x^{n} y^{n} z^{n}$ is given by

$$
\sum_{j=0}^{n} \sum_{k=0}^{\infty} \frac{(-a / b)_{k}}{k!} \cdot\binom{k}{j}\binom{3 n-k}{2 n-k}\binom{2 n-k}{n-j}
$$

which by the Chu-Vandermonde identity

$$
\binom{2 n}{n}=\sum_{j=0}^{n}\binom{k}{j}\binom{2 n-k}{n-j}
$$

is simplified to

$$
\binom{2 n}{n} \cdot \sum_{k=0}^{2 n} \frac{(-a / b)_{k}}{k!} \cdot\binom{3 n-k}{2 n-k}
$$

Proof

Hence the diagonal coefficient of $x^{n} y^{n} z^{n}$ is given by

$$
\sum_{j=0}^{n} \sum_{k=0}^{\infty} \frac{(-a / b)_{k}}{k!} \cdot\binom{k}{j}\binom{3 n-k}{2 n-k}\binom{2 n-k}{n-j}
$$

which by the Chu-Vandermonde identity

$$
\binom{2 n}{n}=\sum_{j=0}^{n}\binom{k}{j}\binom{2 n-k}{n-j}
$$

is simplified to

$$
\binom{2 n}{n} \cdot \sum_{k=0}^{2 n} \frac{(-a / b)_{k}}{k!} \cdot\binom{3 n-k}{2 n-k}
$$

Now use a computer algebra tool like Mathematica or Maple to simplify this sum further into a closed form...

Proof

More precisely, we employ Zeilberger's algorithm to find that

$$
\binom{2 n}{n} \cdot \sum_{k=0}^{2 n} \frac{(-a / b)_{k}}{k!} \cdot\binom{3 n-k}{2 n-k}=: S(n)
$$

satisfies the first-order recurrence

$$
\begin{aligned}
& (a-3 b-3 b n) \cdot(a-2 b-3 b n) \cdot(a-b-3 b n) \cdot S(n) \\
& =b^{2} \cdot(n+1)^{2} \cdot(a-b-b n) \cdot S(n+1)
\end{aligned}
$$

Proof

More precisely, we employ Zeilberger's algorithm to find that

$$
\binom{2 n}{n} \cdot \sum_{k=0}^{2 n} \frac{(-a / b)_{k}}{k!} \cdot\binom{3 n-k}{2 n-k}=: S(n)
$$

satisfies the first-order recurrence

$$
\begin{aligned}
& (a-3 b-3 b n) \cdot(a-2 b-3 b n) \cdot(a-b-3 b n) \cdot S(n) \\
& =b^{2} \cdot(n+1)^{2} \cdot(a-b-b n) \cdot S(n+1)
\end{aligned}
$$

Together with the initial value $S(0)=1$, we get the closed form

$$
S(n)=\frac{3^{3 n} \cdot\left(\frac{b-a}{3 b}\right)_{n} \cdot\left(\frac{2 b-a}{3 b}\right)_{n} \cdot\left(\frac{3 b-a}{3 b}\right)_{n}}{\left(\frac{b-a}{b}\right)_{n} \cdot(n!)^{2}}
$$

yielding the hypergeom. function representation of the diagonal.

Diagonals as Integrals

Note that a diagonal $\operatorname{Diag}(R(x, y, z))$ can also be expressed as

$$
\left\langle y^{0} z^{0}\right\rangle R\left(\frac{x}{y}, \frac{y}{z}, z\right)=\operatorname{res}_{y, z} \frac{1}{y z} R\left(\frac{x}{y}, \frac{y}{z}, z\right)=\oint \frac{1}{y z} R\left(\frac{x}{y}, \frac{y}{z}, z\right) \mathrm{d} y \mathrm{~d} z .
$$

where $\left\langle y^{0} z^{0}\right\rangle$ denotes the constant coefficient w.r.t. y and z.

Diagonals as Integrals

Note that a diagonal $\operatorname{Diag}(R(x, y, z))$ can also be expressed as

$$
\left\langle y^{0} z^{0}\right\rangle R\left(\frac{x}{y}, \frac{y}{z}, z\right)=\operatorname{res}_{y, z} \frac{1}{y z} R\left(\frac{x}{y}, \frac{y}{z}, z\right)=\oint \frac{1}{y z} R\left(\frac{x}{y}, \frac{y}{z}, z\right) \mathrm{d} y \mathrm{~d} z .
$$

where $\left\langle y^{0} z^{0}\right\rangle$ denotes the constant coefficient w.r.t. y and z.
Indeed, writing

$$
R(x, y, z)=\sum_{l \geqslant 0} \sum_{m \geqslant 0} \sum_{n \geqslant 0} r_{l, m, n} x^{l} y^{m} z^{n}
$$

one obtains

$$
R\left(\frac{x}{y}, \frac{y}{z}, z\right)=\sum_{l \geqslant 0} \sum_{m \geqslant 0} \sum_{n \geqslant 0} a_{l, m, n} x^{l} y^{m-l} z^{n-m}
$$

Proof by Creative Telescoping

Compute a linear differential operator that annihilates the diagonal of our algebraic function, by applying creative telescoping to

$$
\oint \frac{1}{y z} R\left(\frac{x}{y}, \frac{y}{z}, z\right) \mathrm{d} y \mathrm{~d} z=\oint \frac{(1-x / y-y / z)^{a / b}}{y z-x z-y^{2}-y z^{2}} \mathrm{~d} y \mathrm{~d} z
$$

Proof by Creative Telescoping

Compute a linear differential operator that annihilates the diagonal of our algebraic function, by applying creative telescoping to

$$
\oint \frac{1}{y z} R\left(\frac{x}{y}, \frac{y}{z}, z\right) \mathrm{d} y \mathrm{~d} z=\oint \frac{(1-x / y-y / z)^{a / b}}{y z-x z-y^{2}-y z^{2}} \mathrm{~d} y \mathrm{~d} z
$$

We obtain the following telescoper of order three:

$$
\begin{aligned}
& b^{3} x^{2}(1-27 x) \cdot D_{x}^{3}+b^{2} x((27 a-135 b) \cdot x-a+3 b) \cdot D_{x}^{2} \\
& -b \cdot\left(\left(9 a^{2}-63 a b+114 b^{2}\right) \cdot x+a b-b^{2}\right) \cdot D_{x} \\
& +(a-3 b) \cdot(a-2 b) \cdot(a-b)
\end{aligned}
$$

Proof by Creative Telescoping

Compute a linear differential operator that annihilates the diagonal of our algebraic function, by applying creative telescoping to

$$
\oint \frac{1}{y z} R\left(\frac{x}{y}, \frac{y}{z}, z\right) \mathrm{d} y \mathrm{~d} z=\oint \frac{(1-x / y-y / z)^{a / b}}{y z-x z-y^{2}-y z^{2}} \mathrm{~d} y \mathrm{~d} z
$$

We obtain the following telescoper of order three:

$$
\begin{aligned}
& b^{3} x^{2}(1-27 x) \cdot D_{x}^{3}+b^{2} x((27 a-135 b) \cdot x-a+3 b) \cdot D_{x}^{2} \\
& -b \cdot\left(\left(9 a^{2}-63 a b+114 b^{2}\right) \cdot x+a b-b^{2}\right) \cdot D_{x} \\
& +(a-3 b) \cdot(a-2 b) \cdot(a-b)
\end{aligned}
$$

One of its solutions is the claimed ${ }_{3} F_{2}$ hypergeometric function

$$
{ }_{3} F_{2}\left(\left[\frac{3 a-b}{3 a}, \frac{2 a-b}{3 a}, \frac{a-b}{3 a}\right],\left[\frac{a-b}{a}, 1\right], 27 x\right) .
$$

Software Demo

$\ln [1]==\ll$ RISC` HolonomicFunctions`

```
HolonomicFunctions Package version 1.7.3 (21-Mar-2017)
written by Christoph Koutschan
Copyright Research Institute for Symbolic Computation (RISC),
Johannes Kepler University, Linz, Austria
```

--> Type ?HolonomicFunctions for help.
$\ln [2]:=\operatorname{alg}=(1-x-y)^{\wedge}(1 / 3) /(1-x-y-z) ;$
intg $=$ ExpandAll[(alg $/ \cdot\{x \rightarrow x / y, y \rightarrow y / z\}) /(y z)]$
$O \operatorname{Ot}[3]=\frac{\left(1-\frac{x}{y}-\frac{y}{z}\right)^{1 / 3}}{-y^{2}-x z+y z-y z^{2}}$
$\operatorname{In}[4]:=$ CreativeTelescoping[intg, $\operatorname{Der}[y],\{\operatorname{Der}[x], \operatorname{Der}[z]\}][[1]]$
Out[4]= \{

$$
\begin{aligned}
& \left.144 x^{2} z^{2}-72 x z^{3}+9 z^{4}+72 x z^{4}-18 z^{5}-36 x z^{5}+9 z^{6}\right) D_{z}^{2}+\left(-6 x^{2} z-972 x^{3} z-3 x z^{2}+324 x^{2} z^{2}-12 x z^{3}-3 x z^{4}\right) D_{x} \\
& \left(264 x^{2} z-180 \times z^{2}-324 x^{2} z^{2}+24 z^{3}+366 x z^{3}-66 z^{4}-174 x z^{4}+42 z^{5}\right) D_{z}+\left(16 x^{2}-46 x z-540 x^{2} z+6 z^{2}+308 x z^{2}-\right. \\
& \left(144 x^{2} z-72 \times z^{2}+9 z^{3}+72 x z^{3}-18 z^{4}-36 x z^{4}+9 z^{5}\right) D_{x} D_{z}+\left(24 x^{2}-24 x z+324 x^{2} z+9 z^{2}-6 x z^{2}-27 z^{3}-60 x z^{3}+1\right. \\
& \left(48 \times z+6 z^{2}+108 \times z^{2}-48 z^{3}+6 z^{4}\right) D_{z}+\left(8 x+16 z+180 x z-74 z^{2}+10 z^{3}\right),\left(-144 x^{3}+72 x^{2} z-9 x z^{2}-72 x^{2} z^{2}+18\right) \\
& \left(-336 x^{2}+138 \times z+108 x^{2} z-9 z^{2}-132 x z^{2}+18 z^{3}+48 \times z^{3}-9 z^{4}\right) D_{x}+\left(-24 \times z+24 z^{2}+36 x z^{2}-30 z^{3}+6 z^{4}\right) D_{z}+(-64
\end{aligned}
$$

$\operatorname{In}[5]:=$ CreativeTelescoping[\%, $\operatorname{Der}[z]][[1]]$
Out[5] $=\left\{\left(-27 x^{2}+729 x^{3}\right) D_{x}^{3}+\left(-72 x+3402 x^{2}\right) D_{x}^{2}+(-18+2538 x) D_{x}+80\right\}$
$\ln [6]:=$ Annihilator [HypergeometricPFQ[\{2/9,5/9, 8/9\}, $\{\mathbf{2} / \mathbf{3}, \mathbf{1}\}, 27 \mathrm{x}]$, $\operatorname{Der}[\mathrm{x}]$]
Out[6] $=\left\{\left(-27 x^{2}+729 x^{3}\right) D_{x}^{3}+\left(-72 x+3402 x^{2}\right) D_{x}^{2}+(-18+2538 x) D_{x}+80\right\}$

From Algebraic to Rational

Denef and Lipshitz: For a given algebraic power series $f\left(x_{1}, \ldots, x_{n}\right)$ in n variables, construct a rational function $R\left(x_{1}, \ldots, x_{2 n}\right)$ in $2 n$ variables such that

$$
\operatorname{Diag}\left(R\left(x_{1}, \ldots, x_{2 n}\right)\right)=\operatorname{Diag}\left(f\left(x_{1}, \ldots, x_{n}\right)\right)
$$

From Algebraic to Rational

Denef and Lipshitz: For a given algebraic power series $f\left(x_{1}, \ldots, x_{n}\right)$ in n variables, construct a rational function $R\left(x_{1}, \ldots, x_{2 n}\right)$ in $2 n$ variables such that

$$
\operatorname{Diag}\left(R\left(x_{1}, \ldots, x_{2 n}\right)\right)=\operatorname{Diag}\left(f\left(x_{1}, \ldots, x_{n}\right)\right)
$$

Moreover, the "partial diagonal" of R, w.r.t. the pairs of variables

$$
\left(x_{1}, x_{n+1}\right), \ldots,\left(x_{n-1}, x_{2 n}\right)
$$

yields the algebraic power series f.

From Algebraic to Rational

Denef and Lipshitz: For a given algebraic power series $f\left(x_{1}, \ldots, x_{n}\right)$ in n variables, construct a rational function $R\left(x_{1}, \ldots, x_{2 n}\right)$ in $2 n$ variables such that

$$
\operatorname{Diag}\left(R\left(x_{1}, \ldots, x_{2 n}\right)\right)=\operatorname{Diag}\left(f\left(x_{1}, \ldots, x_{n}\right)\right)
$$

Moreover, the "partial diagonal" of R, w.r.t. the pairs of variables

$$
\left(x_{1}, x_{n+1}\right), \ldots,\left(x_{n-1}, x_{2 n}\right)
$$

yields the algebraic power series f.
Example: We use the three-variable algebraic function

$$
\begin{aligned}
f(x, y, z) & =\frac{(1-x-y)^{1 / 3}}{1-x-y-z} \\
& =1+\frac{2}{3} x+\frac{2}{3} y+z+\frac{10}{9} x y+\frac{5}{3} x z+\frac{5}{3} y z+\frac{40}{9} x y z+\ldots
\end{aligned}
$$

Etale Extensions

The minimal polynomial of $f=\frac{(1-x-y)^{1 / 3}}{1-x-y-z}$ is given by

$$
p(x, y, z, f)=((x+y+z-1) \cdot f)^{3}+1-x-y .
$$

Denef and Lipshitz's theorem is formulated for étale extensions, which basically means that $\frac{\partial p}{\partial f}$ has a nonzero constant coefficient.

Etale Extensions

The minimal polynomial of $f=\frac{(1-x-y)^{1 / 3}}{1-x-y-z}$ is given by

$$
p(x, y, z, f)=((x+y+z-1) \cdot f)^{3}+1-x-y
$$

Denef and Lipshitz's theorem is formulated for étale extensions, which basically means that $\frac{\partial p}{\partial f}$ has a nonzero constant coefficient.

By considering $\tilde{f}=f-1$, i.e. by removing the constant term of f, we can achieve an étale extension. The minimal polynomial then reads

$$
\tilde{p}(x, y, z, f)=((x+y+z-1) \cdot(f+1))^{3}+1-x-y .
$$

and indeed, $\frac{\partial \tilde{p}}{\partial f}(0,0,0,0)=-3 \neq 0$.

Special Diagonal

Now, the rational function

$$
\tilde{r}(x, y, z, f)=f^{2} \cdot \frac{\frac{\partial \tilde{p}}{\partial f}(x f, y f, z f, f)}{\tilde{p}(x f, y f, z f, f)}
$$

has the property that $\mathcal{D}(\tilde{r}(x, y, z, f))=\tilde{f}(x, y, z)$, where the operator \mathcal{D} denotes a special kind of "diagonalization" with respect to the last variable:

$$
\mathcal{D}\left(\sum a_{i_{1}, \ldots, i_{n}, j} \cdot x_{1}^{i_{1}} \cdots x_{n}^{i_{n}} y^{j}\right)=\sum_{j=i_{1}+\cdots+i_{n}} a_{i_{1}, \ldots, i_{n}, j} \cdot x_{1}^{i_{1}} \cdots x_{n}^{i_{n}}
$$

Special Diagonal

Now, the rational function

$$
\tilde{r}(x, y, z, f)=f^{2} \cdot \frac{\frac{\partial \tilde{p}}{\partial f}(x f, y f, z f, f)}{\tilde{p}(x f, y f, z f, f)}
$$

has the property that $\mathcal{D}(\tilde{r}(x, y, z, f))=\tilde{f}(x, y, z)$, where the operator \mathcal{D} denotes a special kind of "diagonalization" with respect to the last variable:

$$
\mathcal{D}\left(\sum a_{i_{1}, \ldots, i_{n}, j} \cdot x_{1}^{i_{1}} \cdots x_{n}^{i_{n}} y^{j}\right)=\sum_{j=i_{1}+\cdots+i_{n}} a_{i_{1}, \ldots, i_{n}, j} \cdot x_{1}^{i_{1}} \cdots x_{n}^{i_{n}}
$$

Hence $\mathcal{D}(r(x, y, z, f))=f(x, y, z)$ for $r(x, y, z, f)=\tilde{r}(x, y, z, f)+1$.

Special Diagonal

Now, the rational function

$$
\tilde{r}(x, y, z, f)=f^{2} \cdot \frac{\frac{\partial \tilde{p}}{\partial f}(x f, y f, z f, f)}{\tilde{p}(x f, y f, z f, f)}
$$

has the property that $\mathcal{D}(\tilde{r}(x, y, z, f))=\tilde{f}(x, y, z)$, where the operator \mathcal{D} denotes a special kind of "diagonalization" with respect to the last variable:

$$
\mathcal{D}\left(\sum a_{i_{1}, \ldots, i_{n}, j} \cdot x_{1}^{i_{1}} \cdots x_{n}^{i_{n}} y^{j}\right)=\sum_{j=i_{1}+\cdots+i_{n}} a_{i_{1}, \ldots, i_{n}, j} \cdot x_{1}^{i_{1}} \cdots x_{n}^{i_{n}}
$$

Hence $\mathcal{D}(r(x, y, z, f))=f(x, y, z)$ for $r(x, y, z, f)=\tilde{r}(x, y, z, f)+1$.
In our example we obtain:

$$
r(x, y, z, f)=\frac{3 f^{2} \cdot(f+1)^{2} \cdot(x f+y f+z f-1)^{3}}{(f+1)^{3} \cdot(x f+y f+z f-1)^{3}-x f-y f+1}+1
$$

Rational Function

Transform the rational function r (that has $n+1$ variables) into another rational function (having $2 n$ variables) such that its "true" partial diagonal gives the n-variable algebraic series f.

Rational Function

Transform the rational function r (that has $n+1$ variables) into another rational function (having $2 n$ variables) such that its "true" partial diagonal gives the n-variable algebraic series f.

This process consists of a sequence of $n-1$ elementary steps, each of which is adding one more variable:

$$
r_{1}\left(x, y, z, u_{1}, v_{1}\right)=\frac{u_{1} \cdot r\left(x, y, z, u_{1}\right)-v_{1} \cdot r\left(x, y, z, v_{1}\right)}{u_{1}-v_{1}}
$$

Rational Function

Transform the rational function r (that has $n+1$ variables) into another rational function (having $2 n$ variables) such that its "true" partial diagonal gives the n-variable algebraic series f.

This process consists of a sequence of $n-1$ elementary steps, each of which is adding one more variable:

$$
\begin{aligned}
r_{1}\left(x, y, z, u_{1}, v_{1}\right) & =\frac{u_{1} \cdot r\left(x, y, z, u_{1}\right)-v_{1} \cdot r\left(x, y, z, v_{1}\right)}{u_{1}-v_{1}} \\
r_{2}\left(x, y, z, u_{1}, u_{2}, v_{2}\right) & =\frac{u_{2} \cdot r_{1}\left(x, y, z, u_{1}, u_{2}\right)-v_{2} \cdot r_{1}\left(x, y, z, u_{1}, v_{2}\right)}{u_{2}-v_{2}}
\end{aligned}
$$

Rational Function

Transform the rational function r (that has $n+1$ variables) into another rational function (having $2 n$ variables) such that its "true" partial diagonal gives the n-variable algebraic series f.

This process consists of a sequence of $n-1$ elementary steps, each of which is adding one more variable:

$$
\begin{aligned}
r_{1}\left(x, y, z, u_{1}, v_{1}\right) & =\frac{u_{1} \cdot r\left(x, y, z, u_{1}\right)-v_{1} \cdot r\left(x, y, z, v_{1}\right)}{u_{1}-v_{1}} \\
r_{2}\left(x, y, z, u_{1}, u_{2}, v_{2}\right) & =\frac{u_{2} \cdot r_{1}\left(x, y, z, u_{1}, u_{2}\right)-v_{2} \cdot r_{1}\left(x, y, z, u_{1}, v_{2}\right)}{u_{2}-v_{2}}
\end{aligned}
$$

Then r_{2} is the desired rational function in six variables.

Final Result

The hypergeometric series

$$
{ }_{3} F_{2}\left(\left[\frac{3 a-b}{3 a}, \frac{2 a-b}{3 a}, \frac{a-b}{3 a}\right],\left[\frac{a-b}{a}, 1\right], 27 x\right) .
$$

is the diagonal of the following rational function in the six variables x, y, z, u, v, w :

$$
\begin{aligned}
& 1+\frac{a u^{3} v(1-u x-u y-u z)(1+u)^{a-1}(1-u x-u y-u z)^{a-1}}{(1+u)^{a}(1-u x-u y-u z)^{a}-(1-u x-u y)^{b}(u-v)(v-w)} \\
& -\frac{a v^{4}(1-v x-v y-v z)(1+v)^{a-1}(1-v x-v y-v z)^{a-1}}{(1+v)^{a}(1-v x-v y-v z)^{a}-(1-v x-v y)^{b}(u-v)(v-w)} \\
& -\frac{a u^{3} w(1-u x-u y-u z)(1+u)^{a-1}(1-u x-u y-u z)^{a-1}}{(1+u)^{a}(1-u x-u y-u z)^{a}-(1-u x-u y)^{b}(u-w)(v-w)} \\
& -\frac{a w^{4}(1-w x-w y-w z)(1+w)^{a-1}(1-w x-w y-w z)^{a-1}}{(1+w)^{a}(1-w x-w y-w z)^{a}-(1-w x-w y)^{b}(u-w)(v-w)}
\end{aligned}
$$

Other Potential Counterexamples

Christol's original example:

$$
{ }_{3} F_{2}\left(\left[\frac{1}{9}, \frac{4}{9}, \frac{5}{9}\right],\left[\frac{1}{3}, 1\right], 27 x\right)
$$

Other Potential Counterexamples

Christol's original example:

$$
{ }_{3} F_{2}\left(\left[\frac{1}{9}, \frac{4}{9}, \frac{5}{9}\right],\left[\frac{1}{3}, 1\right], 27 x\right)
$$

It seems that this example cannot be treated in a similar way.

Other Potential Counterexamples

Christol's original example:

$$
{ }_{3} F_{2}\left(\left[\frac{1}{9}, \frac{4}{9}, \frac{5}{9}\right],\left[\frac{1}{3}, 1\right], 27 x\right)
$$

It seems that this example cannot be treated in a similar way.
Note that our examples,

$$
{ }_{3} F_{2}\left(\left[\frac{2}{9}, \frac{5}{9}, \frac{8}{9}\right],\left[\frac{2}{3}, 1\right], x\right) \quad \text { and } \quad{ }_{3} F_{2}\left(\left[\frac{1}{9}, \frac{4}{9}, \frac{7}{9}\right],\left[\frac{1}{3}, 1\right], x\right),
$$

have an arithmetic progression in the top parameters.

Integral Representation

Recalling the integral representation of the hypergeometric function

$$
\begin{aligned}
& { }_{3} F_{2}([a, b, c],[d, e], x)=\frac{\Gamma(d) \Gamma(e)}{\Gamma(a) \Gamma(b) \Gamma(d-a) \Gamma(e-b)} \times \\
\times & \int_{0}^{1} \int_{0}^{1} y^{a-1} z^{b-1}(1-y)^{-a+d-1}(1-z)^{-b+e-1}(1-x y z)^{-c} \mathrm{~d} y \mathrm{~d} z
\end{aligned}
$$

one can try to find suitable algebraic functions. . .

Integral Representation

Recalling the integral representation of the hypergeometric function

$$
\begin{aligned}
& { }_{3} F_{2}([a, b, c],[d, e], x)=\frac{\Gamma(d) \Gamma(e)}{\Gamma(a) \Gamma(b) \Gamma(d-a) \Gamma(e-b)} \times \\
\times & \int_{0}^{1} \int_{0}^{1} y^{a-1} z^{b-1}(1-y)^{-a+d-1}(1-z)^{-b+e-1}(1-x y z)^{-c} \mathrm{~d} y \mathrm{~d} z
\end{aligned}
$$

one can try to find suitable algebraic functions. . .
For example, let

$$
A(x, y, z)=(1-y)^{d-b-1} y^{b}\left(1-x y^{2}\right)^{-a}(1-z)^{-c}
$$

then the telescoper of

$$
\frac{1}{y z} A\left(\frac{x}{y}, \frac{y}{z}, z\right)
$$

gives precisely the differential equation of ${ }_{3} F_{2}([a, b, c],[d, 1], x)$.

Integral Representation

Taking the parameter values $a=\frac{1}{9}, b=\frac{4}{9}, c=\frac{5}{9}, d=\frac{1}{3}$, one could hope that the diagonal of the algebraic function

$$
\frac{y^{4 / 9}}{(1-y)^{10 / 9}\left(1-x y^{2}\right)^{1 / 9}(1-z)^{5 / 9}}
$$

gives rise to the notorious ${ }_{3} F_{2}\left(\left[\frac{1}{9}, \frac{4}{9}, \frac{5}{9}\right],\left[\frac{1}{3}, 1\right], 27 x\right)$.

Integral Representation

Taking the parameter values $a=\frac{1}{9}, b=\frac{4}{9}, c=\frac{5}{9}, d=\frac{1}{3}$, one could hope that the diagonal of the algebraic function

$$
\frac{y^{4 / 9}}{(1-y)^{10 / 9}\left(1-x y^{2}\right)^{1 / 9}(1-z)^{5 / 9}}
$$

gives rise to the notorious ${ }_{3} F_{2}\left(\left[\frac{1}{9}, \frac{4}{9}, \frac{5}{9}\right],\left[\frac{1}{3}, 1\right], 27 x\right)$.
But, this diagonal is zero!

Integral Representation

Taking the parameter values $a=\frac{1}{9}, b=\frac{4}{9}, c=\frac{5}{9}, d=\frac{1}{3}$, one could hope that the diagonal of the algebraic function

$$
\frac{y^{4 / 9}}{(1-y)^{10 / 9}\left(1-x y^{2}\right)^{1 / 9}(1-z)^{5 / 9}}
$$

gives rise to the notorious ${ }_{3} F_{2}\left(\left[\frac{1}{9}, \frac{4}{9}, \frac{5}{9}\right],\left[\frac{1}{3}, 1\right], 27 x\right)$.
But, this diagonal is zero!
Note: The diagonal of a rational function and a solution of the corresponding telescoper are close, yet distinct notions: the telescoper annihilates the n-fold integral over all integration cycles.

Open Problems

Future Work:

- Show that ${ }_{3} F_{2}\left(\left[\frac{1}{9}, \frac{4}{9}, \frac{5}{9}\right],\left[\frac{1}{3}, 1\right], 27 x\right)$ can be expressed as a diagonal of a rational function.
- Prove Christol's conjecture in general...

Open Problems

Future Work:

- Show that ${ }_{3} F_{2}\left(\left[\frac{1}{9}, \frac{4}{9}, \frac{5}{9}\right],\left[\frac{1}{3}, 1\right], 27 x\right)$ can be expressed as a diagonal of a rational function.
- Prove Christol's conjecture in general...

Reference:

- Y. Abdelaziz, C. Koutschan, J-M. Maillard, On Christol's conjecture, arXiv:1912.10259.

