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Diagonals

Given a rational function in n variables

P(zy,...,24)
)

Q(z1,...,2n)

where P,Q € Q[z1,...,x,] such that Q(0,...,0) # 0.

R(.rl,...,l‘n) =

Definition: The diagonal of R is defined through its multi-Taylor
expansion around (0, ...,0):

[oe} 00
— E E mi m
R(l’l, DY ,xn) - A rml"“’mn . xl .. .xnn7

m1=0 mp=0

as the series in one variable x:

0o
Diag(R(xh K 73771)) = Z 'mm,...m * ™.
m=0
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Example of a Diagonal

Consider the Taylor expansion of the bivariate rational function

1

=l4+az+y+a®+doy+ o+ 23 + 12y + Tyt +
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Example of a Diagonal

Consider the Taylor expansion of the bivariate rational function

1

=l4+az+y+a®+doy+ o+ 23 + 12y + Tyt +

=1+ vy + ¥ + ¥ + v+ ¥ o+
+x + daxy + Txy® + 10xy® + 132yt + 162y +...
+ 22 + T2y + 222297 + 4622y + 7922yt + 121220 + ...
+ 23 + 1023y + 4623y% + 136233 + 30723y* + 5862%y° + ...
+ 2t + 132%y + 79z%? + 3072ty + 886xty? + 2086210 + ...
+ 2% + 162°y + 12125y + 5862y + 2086x°y? + 594455 + . ..
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Example of a Diagonal

Consider the Taylor expansion of the bivariate rational function

1
l—a—y—2zy

flz,y) =

=l4+az+y+a®+doy+ o+ 23 + 12y + Tyt +

=1+ y + ¥ + ¥ + ¥ o+ P

+ x + 4oy + Txy® + 10xy® + 132yt 4+ 162y + ...
+a? + T2ty + 22077 + 462%° + TOx%yt + 12120 + ...
+ 22 + 1023y + 4623y? + 1362°y° + 30723y + 586x23y° +...
+ ot + 132y + 7921y + 3072ty + 886atyt + 208621y5 + ...
+ a7 + 162% + 1212°y? + 5862°y" + 20862°y" + 594407 + ...

Then the diagonal of f is
Diag(f) = 1 + 4 + 222% + 1362° + 8862 + 59442° + . ..
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Properties of Diagonals

The diagonal f(z) of every rational function has the properties:

» globally bounded: there exist integers ¢, d € IN*, such that
df (cx) € Z[[z]], and f(z) has nonzero radius of convergence.
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Properties of Diagonals

The diagonal f(z) of every rational function has the properties:

» globally bounded: there exist integers ¢, d € IN*, such that
df (cx) € Z[[z]], and f(z) has nonzero radius of convergence.

» D-finite: there exists a nonzero differential operator
L € Q[z][££] such that L(f) = 0.

Christol’s Conjecture: The converse is also true, i.e., every series

satisfying these two properties is the diagonal of a rational function.

» This conjecture was first formulated in a paper in 1986
and is still widely open.

> It doesn’t say anything about the number of variables
in the rational function.

» One needs at least three variables, but no explicit example
requiring more than three variables is known.
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Christol's Conjecture

PROPOSITION : Toute diagonale de fraction rationnelle £ satisfait les
propriétés suivantes :
a) Elle est solution d’une équation différentielle linéaire i a
coefficients dans Q[Al
a’) Cette équation différentielle est une équation de Picard Fuchs.
b) Pour toute place p (finie ou non) de Q , le rayon de convergence
r (f) de la série f dans le corps C est non nul.
c) PZur presque toute place p de Q , onpa rp(f) =1
c’) Pour presque toute place p de Q@ , la fonction f est bornée
dans le disque DP(O,I) = (xeCp;Ix]<1}4
c"”) Pour presque toute place p de Q ,on a :

Ilfllp = sup If(x)] = 1.

xeD (0,1)
P

Seules les propriétés a) et a’) ne sont pas immédiates. On en trouvera une

démonstration dans [1]

Dans cet article nous nous proposons de tester la conjecture suivante sur

les fonctions hypergéométriques stAl

CONJECTURE : Une série entiére o qui vérifie les propriétés a), b), c),

c’) et c") est la diagonale d’une fraction rationnelle.
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Hadamard Product

Definition: The Hadamard product of two series

f(x):Zan 2" and g(x):ZBn "
n=0 n=0

is given by
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Hadamard Product

Definition: The Hadamard product of two series

f(x):Zan z"  and g(x):ZBn "
n=0 n=0

is given by
f@)xg(x) = Zan B - x".
n=0

Note: Diagonals are closed under the Hadamard product, i.e.,
if two series are diagonals of rational functions, their Hadamard
product is also a diagonal of a rational function.
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Hypergeometric Series
Definition: Let (a); := a(a+1)---(a+ k —1). Then
k

— 3 (@i () 2t
Pullan bbbl ) =2 G G,
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Pullan bbbl ) =2 G G,

Note: Any such hypergeometric function is D-finite, for example:

the classical GauB hypergeometric o F([a, b], [c], z) function
satisfies Euler’s differential equation:
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Hypergeometric Series
Definition: Let (a)k = a(a + 1) - (CL +k— ]_) Then

— 3 (@i () 2t
Pullan bbbl ) =2 G G,

Note: Any such hypergeometric function is D-finite, for example:
the classical GauB hypergeometric o F([a, b], [c], z) function
satisfies Euler's differential equation:

r(x—1)y" () + ((a+b+ 1)z —c)y(z) +aby(x) = 0.

Therefore, hypergeometric functions of the form ,Fj,_; provide a
natural testing ground for Christol's conjecture.

» If ¢ < p—1 then the ,F} series has zero radius of convergence.
» If ¢ > p — 1 then the ,F} series cannot be globally bounded.
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Confirmation

Certain classes of hypergeometric functions confirm Christol’s
conjecture.

Theorem (Christol): Let f(z) be a hypergeometric series of the
form

f(x) = pr—l ([al, e ,a,p], [bl e ;bp—l]; $)
of height

h=[{1<j<plbjez} - {1<j<pla; e}

(where b, = 1). If f(x) can be written as the Hadamard product
of h globally bounded series of height 1, then f(z) is the diagonal
of a rational function.
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Example

The globally bounded hypergeometric series

@) =3 ([5, 53], (1, 1),2)

has height 3, and it can be written as the Hadamard product of
three hypergeometric series of height 1:

o ([5] [ 2) B (5] 0 2) aFo([5] [0, 2)
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Example

The globally bounded hypergeometric series

@) =3 ([5, 53], (1, 1),2)

has height 3, and it can be written as the Hadamard product of
three hypergeometric series of height 1:

o ([5] [ 2) B (5] 0 2) aFo([5] [0, 2)

By noting that 1F0([%], [],2) = (1 —z)~"/3, we see that f(z) is
the diagonal of an algebraic function in three variables:

f(z) = Diag((1 — )3 (1 —y)"/3. (1= 2)71/3),
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Diagonals of Algebraic Functions

Theorem (Furstenberg): Any algebraic power series f(x) is the
diagonal of a rational function in two variables.
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Diagonals of Algebraic Functions

Theorem (Furstenberg): Any algebraic power series f(x) is the
diagonal of a rational function in two variables.

Theorem (Denef, Lipshitz): Any power series in Q [[z1, ..., zy]],
algebraic over Q(x1,...,xy,), is the diagonal of a rational function
in 2n variables.
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Diagonals of Algebraic Functions

Theorem (Furstenberg): Any algebraic power series f(x) is the
diagonal of a rational function in two variables.

Theorem (Denef, Lipshitz): Any power series in Q [[z1, ..., zy]],
algebraic over Q(x1,...,xy,), is the diagonal of a rational function
in 2n variables.

Theorem (Christol): A ,F,_; hypergeometric function of
height 1 is globally bounded if and only if it is algebraic.
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Situation for 2F1 Functions

All globally bounded 2F([a, b], [c], z) hypergeometric series are
diagonals of rational functions.
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Situation for 2F1 Functions

All globally bounded 2F([a, b], [c], z) hypergeometric series are
diagonals of rational functions.

For example, let a,b € Q \ Z.

> c € N: in this case the 9 F function is automatically globally
bounded and can be written as the Hadamard product of two
(algebraic) 1 Fy functions.

» c € Q\ Z: in this case the o F function is globally bounded if
and only if it is algebraic.

Hence, this situation is not particularly interesting for our purposes.
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Situation for 3F2 Functions
When is it easy to see that a globally bounded hypergeometric

function 3Fy([a,b, ], [d,e],z), a,b,c € Q \ Z is a diagonal of a
rational function?
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Situation for 3F2 Functions

When is it easy to see that a globally bounded hypergeometric
function 3Fy([a,b, ], [d,e],z), a,b,c € Q \ Z is a diagonal of a
rational function?

» If d,e € N, because in this case it can be written as the
Hadamard product of three 1 Fy algebraic functions.

» If d,e € Q \ Z, because in this case the 3F5 function is
algebraic.

Hence the interesting case occurs when only one of the two
parameters d or e is rational, and the other is an integer.

But even in this case, a lot of the 3F5 functions are easily seen to
be diagonals of rational functions. ..
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Situation for 3F2 Functions

Suppose now that f(x) = 3Fs([a,b, cl, [d, 1], z) is globally
bounded, with the parameters a,b,c,d € Q \ Z.
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Suppose now that f(x) = 3Fs([a,b, cl, [d, 1], z) is globally
bounded, with the parameters a,b,c,d € Q \ Z.

Then there are six ways to write this function as a Hadamard
product of hypergeometric functions:

~

&
Il

[\

Fl([aﬂb}v[d]vx) * 1F0([C],$) =
Fl([a7b}v[1]7x) * 2F1([Cv 1]a[d]?$) =

~
—~
S
I
[\
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Situation for 3F2 Functions

Suppose now that f(x) = 3Fs([a,b, cl, [d, 1], z) is globally
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Situation for 3F2 Functions

Suppose now that f(x) = 3Fs([a,b, cl, [d, 1], z) is globally
bounded, with the parameters a,b,c,d € Q \ Z.

Then there are six ways to write this function as a Hadamard
product of hypergeometric functions:

f(z) = 2F1([a,b],[d],z) * 1Fo([c], ) =...
f(z) = 2F1([a,b],[1],2) * 2F1([c, 1), [d],z) = ...

» Both 1 Fy([c],z) and 2Fi([a,b], [1],z) are diagonals
» Then f(z) is a diagonal if 2F1(([ 1], [d], z) or

9F1([a,b],[d], z) is a diagonal (i.e. if one of them is algebraic).

» 9F([c,1],[d], z) cannot be an algebraic function (Goursat).

Thus if one of o F ([a, b], [d], x), 2F1([b, c], [d], x), 2F1([a, c], [d], x)
is algebraic, then f(x) is the diagonal of a rational function.

12 /31



Potential Counterexamples
Potential counterexamples to Christol’s conjecture were

constructed in a way that avoids them being written as “simple”
Hadamard products of algebraic functions.

13/31



Potential Counterexamples

Potential counterexamples to Christol’s conjecture were
constructed in a way that avoids them being written as “simple”
Hadamard products of algebraic functions.

Christol came up with an unresolved example to his conjecture

» G. Christol, Fonctions hypergéométriques bornées,
Groupe d'Etude d'Analyse ultramétrique, vol. 14 (1986-1987),
Exposé N° 8, p. 1-16.

13/31



Potential Counterexamples

Potential counterexamples to Christol’s conjecture were
constructed in a way that avoids them being written as “simple”
Hadamard products of algebraic functions.

Christol came up with an unresolved example to his conjecture

» G. Christol, Fonctions hypergéométriques bornées,
Groupe d'Etude d'Analyse ultramétrique, vol. 14 (1986-1987),
Exposé N° 8, p. 1-16.

A longer list was generated by Christol and his co-authors in 2012.

» A. Bostan, S. Boukraa, G. Christol, S. Hassani, J-M. Maillard
Ising n-fold integrals as diagonals of rational functions and
integrality of series expansions: integrality versus modularity.
Journal of Physics A: Mathematical and Theoretical 46(18)
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Potential Counterexamples

For example, these two hypergeometric functions are globally
bounded, as they can be recast into series with integer coefficients:

3Py ([2,3,8], [3,1],3%) = 1 + 120z + 471242% + 234834602 + . ..

@\l\’)
@\Cﬂ
©|oo

sFy([3,8,1], [3,1],3%) = 1 + 84z + 327602> + 163020002° + . ..

@\»b-
©l~
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Potential Counterexamples

For example, these two hypergeometric functions are globally

bounded, as they can be recast into series with integer coefficients:

©|oo

33 ([5,

(Q\l\’)
@\Cﬂ

32 ([5: 5

@\\1

But they cannot be obtained as diagonals through Hadamard
products, since the following series are not globally bounded:

211([5. 51, [5.0), 2F1([5. 51 [5].2) 2F1([5. 5], [5].2),

211 ([5.5) [5].2). 2P1([5. 5] [5).0). 2F1([5. 8] [5].)-

@\U‘
©|0o

@\»—A
Ol

.81, [2,1],3%) = 1+ 1202 + 471242 4 234834602° + . ..

], [3,1],3%) = 1 + 84z + 3276022 + 163020002> + ...

14 / 31



Not Globally Bounded

2F1([3, 3], [3]:2) =
2/9-5/9 (2/9-11/9) - (5/9-14/9)
2/3.1 " (2/3-5/3)-(1-2)

2.11.20...(9k_7).5.14-23---(9k‘—4)‘<£)k
2-5-8---3k—1)-1-2-3---k 27

— 14+

+ ...
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» If p=2 mod 9orif p=5 mod 9 then it gets cancelled in
the k-th term.
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Not Globally Bounded

2F1([3, 3], [3]:2) =
2/9-5/9 (2/9-11/9) - (5/9-14/9)
2/3.1 " (2/3-5/3)-(1-2)

2.11-20---(9k —7)-5-14-23--- (9% — 4) <£)k+
2.5.8---(3k—1)-1-2-3---k 27) T

=1+

Let p be a prime such that p = 3k — 1 for some k.

» If p=2 mod 9orif p=5 mod 9 then it gets cancelled in
the k-th term.

> If p=8 mod 9, then it survives in the denominator of the
k-th term.

There are infinitely many prime factors in the Taylor expansion,
and therefore the function is not globally bounded.
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Towards Christol
Theorem: The hypergeometric functions
315 ([5, 5,50, [5.1],272) and 51o([5. 5. 5] [5. 1], 272)

are diagonals of rational functions.
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382 ([5. 5,51 [5:1].272) and 5P ([5. 5. 5] [5.1].270)

are diagonals of rational functions.
More precisely, we have:

o )1/3
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3 l—z—y—=z
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Towards Christol
Theorem: The hypergeometric functions

382 ([5. 5,51 [5:1].272) and 5P ([5. 5. 5] [5.1].270)

are diagonals of rational functions.

More precisely, we have:

 (A—z—y)'/?
oFa([3 531 [31).270) = Ding (=200,

 ((A—z—y)*?
oFa([h 431, (4,1, 270) = Ding (=220,

1— 72— a/b
More generally, Diag(W) is shown to evaluate to
—r—y-—
3a—b 2a—b a—b] ra—">
A5 T )
a2 3a 3a 3a a v
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Proof
(1—z—y)"

The denominator of the algebraic function ———— is
. o 1—xz—y—2)
expanded as a geometric series:

v EEE ) e

n=0m=0 [=0
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Proof
(1—z—y)"

The denominator of the algebraic function ———— is
. o 1—xz—y—2)
expanded as a geometric series:

o0 o0 oo
oy = S () ()t
n=0m=0 [=0
while the numerator can be expanded as

> (—a/b) L A A
SO g2 Sy CO (B

k=0 ’ =0 j= J
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Proof

1—1p— a/b
The denominator of the algebraic function % is
. o 1—xz—y—2)
expanded as a geometric series:
(0.9} o oo
ey =2 S (1) ()t
n=0m=0 [=0

while the numerator can be expanded as

> (—a/b > K (—a/b AN
¥
k=0 k=0 j=0

Multiplying these two sums and re-indexing, we obtain:

oo o0 o0

ZZZ@“S . UZZ a/b <]> <s+t+u—k> (s—i—t—‘k).

s+t—Fk s —
s=0 t=0 u=0 7=0 k=0 + J
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Proof

Hence the diagonal coefficient of x™y"2" is given by

Sy ()G G
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Proof

Hence the diagonal coefficient of x™y"2" is given by

Z Z a/b kN (3n—k\ (2n —k
iJ\2n—k)\n—j)’
which by the Chu-Vandermonde identity

()= )0

() (),

k=0

is simplified to

Now use a computer algebra tool like Mathematica or Maple

to simplify this sum further into a closed form. ..
18 /31



Proof

More precisely, we employ Zeilberger's algorithm to find that

(o) G () s

k=0

satisfies the first-order recurrence

(a—3b—3bn)-(a—2b—3bn)-(a—>b—3bn)-S(n)
=b*-(n+1)% - (a—b—bn)-S(n+1).
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Proof

More precisely, we employ Zeilberger's algorithm to find that

()&= () s

k=0

satisfies the first-order recurrence

(a—3b—3bn)-(a—2b—3bn)-(a—>b—3bn)-S(n)
=b*-(n+1)% - (a—b—bn)-S(n+1).

Together with the initial value S(0) = 1, we get the closed form

3 (), (%Y, (%Y,

R Gt

yielding the hypergeom. function representation of the diagonal.

)
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Diagonals as Integrals

Note that a diagonal Diag(R(a;,y,z)) can also be expressed as

1 1
<y0z0>R<E,y,z> = Tesy, . —R(E,y,z> = %R(x,y,z>dydz.
y z Yyz y z Yz Yy z

where (31°20) denotes the constant coefficient w.r.t. i and z.
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Diagonals as Integrals

Note that a diagonal Diag(R(a;,y,z)) can also be expressed as

1 1
<y0z0>R<§,y,z> = Tesy, . —R(E Y z) = %R(x,y,z>dydz.
y z Yyz y z Yz Yy z

where (31°20) denotes the constant coefficient w.r.t. i and z.

Indeed, writing

xy, Zzzrlmnxy 2"

>0 m=>0n>0

one obtains

( ) Zzzalmnxlmlnm

>0 m>=20n>0
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Proof by Creative Telescoping

Compute a linear differential operator that annihilates the diagonal
of our algebraic function, by applying creative telescoping to

1 1—x/y— a/b
7{R<x, y,z) dydz :7{ (L=x/y = y/2) 5 dydz
y = Z

Yz yz—xz—y*—y
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Proof by Creative Telescoping

Compute a linear differential operator that annihilates the diagonal
of our algebraic function, by applying creative telescoping to

1 1—x/y— a/b
7{R<x, y,z) dydz :7{ ( [y = y/?) dydz
yz \y z Yz —xz — Y% — yz2

We obtain the following telescoper of order three:

b2?(1 — 27x) - D3 + b*x((27a — 135b) - 2 — a + 3b) - D?
—b-((9a% — 63ab + 114b?) - = + ab — b?) - D,
+ (a—3b) - (a—2b)- (a—0).
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Proof by Creative Telescoping

Compute a linear differential operator that annihilates the diagonal
of our algebraic function, by applying creative telescoping to

1 1—x/y— a/b
7{R<x, y,z) dydz :7{ ( [y = y/?) dydz
yz \y z Yz —xz — Y% — yz2

We obtain the following telescoper of order three:

b2?(1 — 27x) - D3 + b*x((27a — 135b) - 2 — a + 3b) - D?
—b-((9a% — 63ab + 114b?) - = + ab — b?) - D,
+ (a —3b) - (a—2b) - (a—b).

One of its solutions is the claimed 3F5, hypergeometric function

3F2([3a3; b’ 2a3; b’ a:s_ab}’ [a;b’l}’”w)'
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In[1]):=

outal-

n[4]-

outj4l=

n[s]:=

outfs}-

In[8]:=

outf6}=

Software Demo

<< RISC'HolonomicFunctions®

HolonomicFunctions Package version 1.7.3 (21-Mar-2017)
written by Christoph Koutschan

Copyright Research Institute for Symbolic Computation (RISC),
Johannes Kepler University, Linz, Austria

--= Type ?HolonomicFunctions for help.

alg=(1-x-y)"(1/3)/(1-x-y-2)3}

intg = ExpandAll[(alg /. {x=>x/y, y>sy/z}) /(yz)]
(1% lel-z
\ y z/

oy ez ey zeyz?

CreativeTelescoping[intg, Der[y], {Der[x], Der[z]}1[[1]]

[(144x72* - T2x2°+92° +72x2" -182° - 36x2°+92°) D2+ (-6x° z-972x°z-3x2"+324x" 2* - 12x2° -3x 2") Dy

(264x7z-180x 2" -324x" 2" +247° + 366 x 2° - 66 2° - 1T4x2°+422°) D, + (16 X" 46 x 7 -540%" 2+ 62" +308x 2" -

(144x7z-72x2°+92° +72x2° 182" -36x2°+92°) DD+ (24%x" -24%x2+324x" 2+92" - 6x2 -272°-68x2° +1

(48xz+62°+108%x2° -482°+62°) D+ (8x+162+180xz-T42z +102°), (-144%° +72x" z-9xz - 72x 2° + 18>

(-336 %" +138x2+108x" 2-92° - 132x2° +182° +48 %2> -92") Dy + (-24x2+2472° +36x2° -302° +62%) Dy + (-6

CreativeTelescoping([%, Der[z]][[1]]
[(-27 x* + 729 %%) D} + (-72 x + 3402 x”) Dj + (-18 + 2538 ) Dy + 80}

Annihilator [HypergeometricPFQ[{2/9,5/9, 8/9}, {2/3, 1}, 2T x], Der([x]]

[(-27%* + 729%x%) D} + (- 72 % + 3402 x*) D} + (-18 + 2538 x) D, + 80}
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From Algebraic to Rational

Denef and Lipshitz: For a given algebraic power series
f(z1,...,2,) in n variables, construct a rational function
R(zx1,...,x9,) in 2n variables such that

Diag(R(:L‘l, e 33'2n)) = Diag(f(xl, e a:n))

23 /31



From Algebraic to Rational

Denef and Lipshitz: For a given algebraic power series
f(z1,...,2,) in n variables, construct a rational function
R(zx1,...,x9,) in 2n variables such that

Diag(R(:L‘l, e x2n)) = Diag(f(xl, e a:n))
Moreover, the “partial diagonal” of R, w.r.t. the pairs of variables
(‘rla xn+1)7 R (xn—h .'1:'2”)7

yields the algebraic power series f.
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From Algebraic to Rational

Denef and Lipshitz: For a given algebraic power series
f(z1,...,2,) in n variables, construct a rational function
R(zx1,...,x9,) in 2n variables such that

Diag(R(xl, e Q:Qn)) = Diag(f(xl, e a:n))
Moreover, the “partial diagonal” of R, w.r.t. the pairs of variables
(1, Znt1)y- -+ (Tn—1, T2n),

yields the algebraic power series f.

Example: We use the three-variable algebraic function

_(—z—y)'s
f(mayvz)_ 1—1'—3/—2

=1+22+4+2y+z+ Yoy + Szz + 3yz + Layz + ...
3 3 9 3 3 9
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Etale Extensions

(1—z—y)/3

The minimal polynomial of f = ——

is given by

p(x,y,z,f):((x—l—y—i—z—l)f)3+1—x—y

Denef and Lipshitz’s theorem is formulated for étale extensions,
which basically means that g—? has a nonzero constant coefficient.
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Etale Extensions

(1—z—y)/3

m is giVen by

The minimal polynomial of f =

p(x,y,z,f)Z((ﬂU—l-y—I—z—l)f)3+1—x—y

Denef and Lipshitz’s theorem is formulated for étale extensions,
which basically means that g—? has a nonzero constant coefficient.

By considering f=f-1ie by removing the constant term of f,
we can achieve an étale extension. The minimal polynomial then
reads

Py, s f)=(@+y+z-1)-(f+1))° +1—z—y.

and indeed, %ﬁ(o, 0,0,0) = —3 # 0.
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Special Diagonal
Now, the rational function

F@fyf.2f. 1)
fvyf, 2f, f)

p(x
has the property that D( (x,y, 2, f) ) x , Y, 2), where the
operator D denotes a special kind of “diagonalization” with
respect to the last variable:

P,y 2, f) = f*

E e d ) § et
D( a'llv---ﬂnﬂ xl xnny ) - allv in,g ]. ‘rnn'

j=ti1++in
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Special Diagonal
Now, the rational function

F@fyf.2f. 1)
fvyf,Zf, f)

p(x
has the property that D( (x,y, 2, f) ) x , Y, 2), where the
operator D denotes a special kind of “diagonalization” with
respect to the last variable:

P,y 2, f) = f*

N PR M A N s B
D(E Qiy,..in,g " L1 xnny)— E Qiqyyin,d ~ L1 Ty

j=ittin

Hence D(r(x7yaza f)) = f(xay7 Z) for 7’(95731727 f) = f(x,y,z,f) +1
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Special Diagonal
Now, the rational function

) yp(xf, yf,2f, f)
ﬁyﬁzﬁ f)

p(x
has the property that D( (x,y, 2, f) ) x , Y, 2), where the
operator D denotes a special kind of “diagonalization” with
respect to the last variable:

F(z,y,2, f) = f~"

. e i J ) el
D(E Qiy,..in,g " L1 xnny)— E Qisyin,j * TL o T

j=ti1++in

Hence D(r(x7yaza f)) = f(xay7 Z) for 7’(95731727 f) = f(x,y,z,f) +1

In our example we obtain:

3f2-(f+ 1) (af +yf+2f — 1)

T(ZL'?y?Z’f): +]‘

(f+1)3-(af +yf+zf =13 —af —yf+1
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Rational Function

Transform the rational function r (that has n + 1 variables)
into another rational function (having 2n variables) such that
its “true” partial diagonal gives the n-variable algebraic series f.
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Rational Function

Transform the rational function r (that has n + 1 variables)
into another rational function (having 2n variables) such that
its “true” partial diagonal gives the n-variable algebraic series f.

This process consists of a sequence of n — 1 elementary steps,
each of which is adding one more variable:

uj - r(m,y,z,ul) — U1~ T($7y,2,'l)1)
Uy — U1

7”1(%1/7 Z, UL, Ul) =
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Rational Function

Transform the rational function r (that has n + 1 variables)
into another rational function (having 2n variables) such that
its “true” partial diagonal gives the n-variable algebraic series f.

This process consists of a sequence of n — 1 elementary steps,
each of which is adding one more variable:

uj - r(m,y,z,ul) — U1~ T($7y,2,'l)1)
Uy — U1

7”1(%1/7 Z, UL, Ul) =

ug - T1($,y72,u1,u2) — V2 T1($>y72,u1,02>
ug — V9

r2(way7 Z, U1, U2, UQ) =

Then 7y is the desired rational function in six variables.
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Final Result

The hypergeometric series

([P S L )

is the diagonal of the following rational function in the six variables
Ty Yy 2y Uy U, W

awdv (1 —uxr —uy — uz) (14+u)* (1 — ur — uy — uz)**
(1+u)(1 —ur —uy —uz)® — (1 —uz — uy)?(u —v)(v — w)
B vt (1 —ve — vy —vz) (1 +0) 11 — vz — vy — vz)o!
(14+v)2(1 —vr —vy —v2)% — (1 —ve —vy)b(u —v)(v —w)
B awdw (1 —uz —uy — uz) (1 +u)* (1 — ur — uy — uz)*?
1+l —ur —uy —uz)®— (1 —ur — uy)b(u — w)(v — w)
B aw* (1 — wz — wy — wz) (1 +w)* 11 —wr — wy — wz)*!
(1+w)*(1 —wr —wy —wz2)* — (1 —wzr —wy)?(u —w)(v—w)

1+
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Other Potential Counterexamples

Christol's original example:

JB([5.4.31. [3,1),272)
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Other Potential Counterexamples
Christol's original example:

382 ([5. 5,51 [5:1],272)

It seems that this example cannot be treated in a similar way.
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Other Potential Counterexamples

Christol's original example:

B[, 4.31. [3.1),272)

It seems that this example cannot be treated in a similar way.

Note that our examples,
sFo([5.3:5]- (3. 1],2) and 3Py ([5.5. 5], [5.1],2),

have an arithmetic progression in the top parameters.
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Integral Representation
Recalling the integral representation of the hypergeometric function

I'(d)I'(e)
T(a)T(b)T(d - a)T(e — b)

// a—1 b 1 y)_a+d_1(1—2)_b+6_1(1—.’ITyZ)_C dydz

one can try to find suitable algebraic functions. ..

sFy([a,b, ], [d, €], x) =
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Integral Representation
Recalling the integral representation of the hypergeometric function

I'(d)I'(e)
T(a)T(b)T(d - a)T(e — b)

// a—1 b 1 y)_a+d_1(1—2)_b+6_1(1—.’ITyZ)_C dydz

one can try to find suitable algebraic functions. ..

sFy([a,b, ], [d, €], x) =

For example, let
Az, y,2) = (1—y) " (1 —ay®) " (1—2)"°
then the telescoper of

Ly(EL)

gives precisely the differential equation of 3F5([a, b, c], [d, 1], ).
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Integral Representation

Taking the parameter values a = §,b=§,c = 3,d =

hope that the diagonal of the algebraic function

%, one could

49

(1 _ y)10/9 (1 _ xy2)1/9 (1 _ 2)5/9

gives rise to the notorious 3F2([%, %, g], [%, 1} , 27:1:).
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Integral Representation

Taking the parameter values a = %,b = %,c = g,d = é one could

hope that the diagonal of the algebraic function

49

(1 _ y)10/9 (1 _ xy2)1/9 (1 _ 2)5/9

gives rise to the notorious 3F2([%, %, g], [%, 1} , 27:1:).

But, this diagonal is zero!
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Integral Representation

Taking the parameter values a = %,b = %,c =2 d=1 one could

=3,
hope that the diagonal of the algebraic function

1
3

49

(=) (1= ) P (1= 27

gives rise to the notorious 3/ ([3, 3, 2], [3,1],27z).

But, this diagonal is zero!
Note: The diagonal of a rational function and a solution of the

corresponding telescoper are close, yet distinct notions: the
telescoper annihilates the n-fold integral over all integration cycles.

30 /31



Open Problems

Future Work:
> Show that 3F5([3, 5, 2], [4,1],272) can be expressed as a
diagonal of a rational function.

» Prove Christol's conjecture in general. ..
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Open Problems

Future Work:
> Show that 3F5([3, 5, 2], [4,1],272) can be expressed as a
diagonal of a rational function.

» Prove Christol's conjecture in general. ..

Reference:

» Y. Abdelaziz, C. Koutschan, J-M. Maillard,
On Christol’s conjecture, arXiv:1912.10259.
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