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Diagonals

Given a rational function in n variables

R(x1, . . . , xn) =
P (x1, . . . , xn)

Q(x1, . . . , xn)
,

where P,Q ∈ Q[x1, . . . , xn] such that Q(0, . . . , 0) 6= 0.

Definition: The diagonal of R is defined through its multi-Taylor
expansion around (0, . . . , 0):

R(x1, . . . , xn) =

∞∑
m1=0

· · ·
∞∑

mn=0

rm1,...,mn · x
m1
1 · · ·x

mn
n ,

as the series in one variable x:

Diag
(
R(x1, . . . , xn)

)
:=

∞∑
m=0

rm,m,...,m · xm.
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Example of a Diagonal

Consider the Taylor expansion of the bivariate rational function

f(x, y) =
1

1− x− y − 2xy

= 1 + x+ y + x2 + 4xy + y2 + x3 + 7x2y + 7xy2 + . . .

= 1 + y + y2 + y3 + y4 + y5 + . . .
+ x + 4xy + 7xy2 + 10xy3 + 13xy4 + 16xy5 + . . .
+ x2 + 7x2y + 22x2y2 + 46x2y3 + 79x2y4 + 121x2y5 + . . .
+ x3 + 10x3y + 46x3y2 + 136x3y3 + 307x3y4 + 586x3y5 + . . .
+ x4 + 13x4y + 79x4y2 + 307x4y3 + 886x4y4 + 2086x4y5 + . . .
+ x5 + 16x5y + 121x5y2 + 586x5y3 + 2086x5y4 + 5944x5y5 + . . .

Then the diagonal of f is

Diag(f) = 1 + 4x+ 22x2 + 136x3 + 886x4 + 5944x5 + . . .
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Properties of Diagonals

The diagonal f(x) of every rational function has the properties:

I globally bounded: there exist integers c, d ∈ N∗, such that
df(cx) ∈ Z[[x]], and f(x) has nonzero radius of convergence.

I D-finite: there exists a nonzero differential operator
L ∈ Q[x][ d

dx ] such that L(f) = 0.

Christol’s Conjecture: The converse is also true, i.e., every series
satisfying these two properties is the diagonal of a rational function.

I This conjecture was first formulated in a paper in 1986
and is still widely open.

I It doesn’t say anything about the number of variables
in the rational function.

I One needs at least three variables, but no explicit example
requiring more than three variables is known.
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Christol’s Conjecture
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Hadamard Product

Definition: The Hadamard product of two series

f(x) =

∞∑
n=0

αn · xn and g(x) =

∞∑
n=0

βn · xn

is given by

f(x) ? g(x) =

∞∑
n=0

αn · βn · xn.

Note: Diagonals are closed under the Hadamard product, i.e.,
if two series are diagonals of rational functions, their Hadamard
product is also a diagonal of a rational function.
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Hypergeometric Series

Definition: Let (a)k := a(a+ 1) · · · (a+ k − 1). Then

pFq

(
[a1, . . . , ap], [b1, . . . , bq], x

)
:=

∞∑
k=0

(a1)k · · · (ap)k
(b1)k · · · (bq)k

· x
k

k!

Note: Any such hypergeometric function is D-finite, for example:
the classical Gauß hypergeometric 2F1([a, b], [c], x) function
satisfies Euler’s differential equation:

x(x− 1) y′′(x) + ((a+ b+ 1)x− c) y′(x) + ab y(x) = 0.

Therefore, hypergeometric functions of the form pFp−1 provide a
natural testing ground for Christol’s conjecture.

I If q < p−1 then the pFq series has zero radius of convergence.

I If q > p− 1 then the pFq series cannot be globally bounded.
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Confirmation

Certain classes of hypergeometric functions confirm Christol’s
conjecture.

Theorem (Christol): Let f(x) be a hypergeometric series of the
form

f(x) = pFp−1
(
[a1, . . . , ap], [b1 . . . , bp−1], x

)
of height

h =
∣∣{1 6 j 6 p | bj ∈ Z}

∣∣ − ∣∣{1 6 j 6 p | aj ∈ Z}
∣∣

(where bp = 1). If f(x) can be written as the Hadamard product
of h globally bounded series of height 1, then f(x) is the diagonal
of a rational function.
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Example

The globally bounded hypergeometric series

f(x) = 3F2

([
1
3 ,

1
3 ,

1
3

]
, [1, 1], x

)
has height 3, and it can be written as the Hadamard product of
three hypergeometric series of height 1:

1F0

([
1
3

]
, [ ], x

)
? 1F0

([
1
3

]
, [ ], x

)
? 1F0

([
1
3

]
, [ ], x

)

By noting that 1F0([
1
3 ], [ ], x) = (1− x)−1/3, we see that f(x) is

the diagonal of an algebraic function in three variables:

f(x) = Diag
(
(1− x)−1/3 · (1− y)−1/3 · (1− z)−1/3

)
.
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Diagonals of Algebraic Functions

Theorem (Furstenberg): Any algebraic power series f(x) is the
diagonal of a rational function in two variables.

Theorem (Denef, Lipshitz): Any power series in Q [[x1, . . . , xn]],
algebraic over Q(x1, . . . , xn), is the diagonal of a rational function
in 2n variables.

Theorem (Christol): A pFp−1 hypergeometric function of
height 1 is globally bounded if and only if it is algebraic.
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Situation for 2F1 Functions

All globally bounded 2F1([a, b], [c], x) hypergeometric series are
diagonals of rational functions.

For example, let a, b ∈ Q \ Z.

I c ∈ N: in this case the 2F1 function is automatically globally
bounded and can be written as the Hadamard product of two
(algebraic) 1F0 functions.

I c ∈ Q \ Z: in this case the 2F1 function is globally bounded if
and only if it is algebraic.

Hence, this situation is not particularly interesting for our purposes.
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Situation for 3F2 Functions

When is it easy to see that a globally bounded hypergeometric
function 3F2([a, b, c], [d, e], x), a, b, c ∈ Q \ Z is a diagonal of a
rational function?

I If d, e ∈ N, because in this case it can be written as the
Hadamard product of three 1F0 algebraic functions.

I If d, e ∈ Q \ Z, because in this case the 3F2 function is
algebraic.

Hence the interesting case occurs when only one of the two
parameters d or e is rational, and the other is an integer.

But even in this case, a lot of the 3F2 functions are easily seen to
be diagonals of rational functions. . .
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Situation for 3F2 Functions

Suppose now that f(x) = 3F2([a, b, c], [d, 1], x) is globally
bounded, with the parameters a, b, c, d ∈ Q \ Z.

Then there are six ways to write this function as a Hadamard
product of hypergeometric functions:

f(x) = 2F1([a, b], [d], x) ? 1F0([c], x) = . . .

f(x) = 2F1([a, b], [1], x) ? 2F1([c, 1], [d], x) = . . .

I Both 1F0([c], x) and 2F1([a, b], [1], x) are diagonals

I Then f(x) is a diagonal if 2F1([c, 1], [d], x) or

2F1([a, b], [d], x) is a diagonal (i.e. if one of them is algebraic).

I 2F1([c, 1], [d], x) cannot be an algebraic function (Goursat).

Thus if one of 2F1([a, b], [d], x), 2F1([b, c], [d], x), 2F1([a, c], [d], x)
is algebraic, then f(x) is the diagonal of a rational function.
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Potential Counterexamples

Potential counterexamples to Christol’s conjecture were
constructed in a way that avoids them being written as “simple”
Hadamard products of algebraic functions.

Christol came up with an unresolved example to his conjecture

I G. Christol, Fonctions hypergéométriques bornées,
Groupe d’Etude d’Analyse ultramétrique, vol. 14 (1986–1987),
Exposé N◦ 8, p. 1–16.

A longer list was generated by Christol and his co-authors in 2012.

I A. Bostan, S. Boukraa, G. Christol, S. Hassani, J-M. Maillard
Ising n-fold integrals as diagonals of rational functions and
integrality of series expansions: integrality versus modularity.
Journal of Physics A: Mathematical and Theoretical 46(18)
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Exposé N◦ 8, p. 1–16.

A longer list was generated by Christol and his co-authors in 2012.

I A. Bostan, S. Boukraa, G. Christol, S. Hassani, J-M. Maillard
Ising n-fold integrals as diagonals of rational functions and
integrality of series expansions: integrality versus modularity.
Journal of Physics A: Mathematical and Theoretical 46(18)

13 / 31



Potential Counterexamples

Potential counterexamples to Christol’s conjecture were
constructed in a way that avoids them being written as “simple”
Hadamard products of algebraic functions.

Christol came up with an unresolved example to his conjecture

I G. Christol, Fonctions hypergéométriques bornées,
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Potential Counterexamples

For example, these two hypergeometric functions are globally
bounded, as they can be recast into series with integer coefficients:

3F2

([
2
9 ,

5
9 ,

8
9

]
,
[
2
3 , 1
]
, 36x

)
= 1 + 120x+ 47124x2 + 23483460x3 + . . .

3F2

([
1
9 ,

4
9 ,

7
9

]
,
[
1
3 , 1
]
, 36x

)
= 1 + 84x+ 32760x2 + 16302000x3 + . . .

But they cannot be obtained as diagonals through Hadamard
products, since the following series are not globally bounded:

2F1

([
2
9 ,

5
9

]
,
[
2
3

]
, x
)
, 2F1

([
2
9 ,

8
9

]
,
[
2
3

]
, x
)
, 2F1

([
5
9 ,

8
9

]
,
[
2
3

]
, x
)
,

2F1

([
1
9 ,

4
9

]
,
[
1
3

]
, x
)
, 2F1

([
4
9 ,

7
9

]
,
[
1
3

]
, x
)
, 2F1

([
1
9 ,

7
9

]
,
[
1
3

]
, x
)
.
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Not Globally Bounded

2F1

([
2
9 ,

5
9

]
,
[
2
3

]
, x
)

=

= 1 +
2/9 · 5/9
2/3 · 1

· x+
(2/9 · 11/9) · (5/9 · 14/9)

(2/3 · 5/3) · (1 · 2)
· x2 + . . .

. . .+
2 · 11 · 20 · · · (9k − 7) · 5 · 14 · 23 · · · (9k − 4)

2 · 5 · 8 · · · (3k − 1) · 1 · 2 · 3 · · · k
·
( x

27

)k
+ . . .

Let p be a prime such that p = 3k − 1 for some k.

I If p ≡ 2 mod 9 or if p ≡ 5 mod 9 then it gets cancelled in
the k-th term.

I If p ≡ 8 mod 9, then it survives in the denominator of the
k-th term.

There are infinitely many prime factors in the Taylor expansion,
and therefore the function is not globally bounded.
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Towards Christol

Theorem: The hypergeometric functions

3F2

([
2
9 ,

5
9 ,

8
9

]
,
[
2
3 , 1
]
, 27x

)
and 3F2

([
1
9 ,

4
9 ,

7
9

]
,
[
1
3 , 1
]
, 27x

)
are diagonals of rational functions.

More precisely, we have:

3F2

([
2
9 ,

5
9 ,

8
9

]
,
[
2
3 , 1
]
, 27x

)
= Diag

(
(1− x− y)1/3

1− x− y − z

)
,

3F2

([
1
9 ,

4
9 ,

7
9

]
,
[
1
3 , 1
]
, 27x

)
= Diag

(
(1− x− y)2/3

1− x− y − z

)
.

More generally, Diag

(
(1− x− y)a/b

1− x− y − z

)
is shown to evaluate to

3F2

([3a− b
3a

,
2a− b

3a
,
a− b

3a

]
,
[a− b

a
, 1
]
, 27x

)
.
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Proof

The denominator of the algebraic function
(1− x− y)a/b

(1− x− y − z)
is

expanded as a geometric series:

(1− x− y − z)−1 =

∞∑
n=0

∞∑
m=0

∞∑
l=0

(
n

m

)(
m

l

)
· xlym−lzn−m,

while the numerator can be expanded as

∞∑
k=0

(−a/b)k
k!

· (x+ y)k =

∞∑
k=0

k∑
j=0

(−a/b)k
k!

·
(
k

j

)
xjyk−j .

Multiplying these two sums and re-indexing, we obtain:

∞∑
s=0

∞∑
t=0

∞∑
u=0

xsytzu
s∑

j=0

∞∑
k=0

(−a/b)k
k!

(
k

j

)(
s+t+u−k
s+ t− k

)(
s+t−k
s− j

)
.
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Proof

Hence the diagonal coefficient of xnynzn is given by

n∑
j=0

∞∑
k=0

(−a/b)k
k!

·
(
k

j

)(
3n− k
2n− k

)(
2n− k
n− j

)
,

which by the Chu-Vandermonde identity(
2n

n

)
=

n∑
j=0

(
k

j

)(
2n− k
n− j

)
is simplified to (

2n

n

)
·

2n∑
k=0

(−a/b)k
k!

·
(

3n− k
2n− k

)
.

Now use a computer algebra tool like Mathematica or Maple
to simplify this sum further into a closed form. . .
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Proof

More precisely, we employ Zeilberger’s algorithm to find that(
2n

n

)
·

2n∑
k=0

(−a/b)k
k!

·
(

3n− k
2n− k

)
=: S(n)

satisfies the first-order recurrence

(a− 3b− 3bn) · (a− 2b− 3bn) · (a− b− 3bn) · S(n)

= b2 · (n+ 1)2 · (a− b− bn) · S(n+ 1).

Together with the initial value S(0) = 1, we get the closed form

S(n) =
33n ·

(
b−a
3b

)
n
·
(
2b−a
3b

)
n
·
(
3b−a
3b

)
n(

b−a
b

)
n
·
(
n!
)2 ,

yielding the hypergeom. function representation of the diagonal.
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Diagonals as Integrals

Note that a diagonal Diag
(
R(x, y, z)

)
can also be expressed as

〈y0z0〉R
(x
y
,
y

z
, z
)

= resy,z
1

yz
R
(x
y
,
y

z
, z
)

=

∮
1

yz
R
(x
y
,
y

z
, z
)

dy dz.

where 〈y0z0〉 denotes the constant coefficient w.r.t. y and z.

Indeed, writing

R(x, y, z) =
∑
l>0

∑
m>0

∑
n>0

rl,m,n x
lymzn

one obtains

R
(x
y
,
y

z
, z
)

=
∑
l>0

∑
m>0

∑
n>0

al,m,n x
lym−lzn−m.
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Proof by Creative Telescoping

Compute a linear differential operator that annihilates the diagonal
of our algebraic function, by applying creative telescoping to∮

1

yz
R
(x
y
,
y

z
, z
)

dy dz =

∮
(1− x/y − y/z)a/b

yz − xz − y2 − yz2
dy dz

We obtain the following telescoper of order three:

b3x2(1− 27x) ·D3
x + b2x((27a− 135b) · x− a+ 3b) ·D2

x

− b · ((9a2 − 63ab+ 114b2) · x+ ab− b2) ·Dx

+ (a− 3b) · (a− 2b) · (a− b).

One of its solutions is the claimed 3F2 hypergeometric function

3F2

([3a− b
3a

,
2a− b

3a
,
a− b

3a

]
,
[a− b

a
, 1
]
, 27x

)
.
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Software Demo
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From Algebraic to Rational

Denef and Lipshitz: For a given algebraic power series
f(x1, . . . , xn) in n variables, construct a rational function
R(x1, . . . , x2n) in 2n variables such that

Diag
(
R(x1, . . . , x2n)

)
= Diag

(
f(x1, . . . , xn)

)
.

Moreover, the “partial diagonal” of R, w.r.t. the pairs of variables

(x1, xn+1), . . . , (xn−1, x2n),

yields the algebraic power series f .

Example: We use the three-variable algebraic function

f(x, y, z) =
(1− x− y)1/3

1− x− y − z
= 1 + 2

3x+ 2
3y + z + 10

9 xy + 5
3xz + 5

3yz + 40
9 xyz + . . .
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Etale Extensions

The minimal polynomial of f = (1−x−y)1/3
1−x−y−z is given by

p(x, y, z, f) =
(
(x+ y + z − 1) · f

)3
+ 1− x− y.

Denef and Lipshitz’s theorem is formulated for étale extensions,
which basically means that ∂p

∂f has a nonzero constant coefficient.

By considering f̃ = f − 1, i.e. by removing the constant term of f ,
we can achieve an étale extension. The minimal polynomial then
reads

p̃(x, y, z, f) =
(
(x+ y + z − 1) · (f + 1)

)3
+ 1− x− y.

and indeed, ∂p̃
∂f (0, 0, 0, 0) = −3 6= 0.

24 / 31



Etale Extensions

The minimal polynomial of f = (1−x−y)1/3
1−x−y−z is given by

p(x, y, z, f) =
(
(x+ y + z − 1) · f

)3
+ 1− x− y.

Denef and Lipshitz’s theorem is formulated for étale extensions,
which basically means that ∂p

∂f has a nonzero constant coefficient.

By considering f̃ = f − 1, i.e. by removing the constant term of f ,
we can achieve an étale extension. The minimal polynomial then
reads

p̃(x, y, z, f) =
(
(x+ y + z − 1) · (f + 1)

)3
+ 1− x− y.

and indeed, ∂p̃
∂f (0, 0, 0, 0) = −3 6= 0.

24 / 31



Special Diagonal

Now, the rational function

r̃(x, y, z, f) = f2 ·
∂p̃
∂f (xf, yf, zf, f)

p̃(xf, yf, zf, f)

has the property that D
(
r̃(x, y, z, f)

)
= f̃(x, y, z), where the

operator D denotes a special kind of “diagonalization” with
respect to the last variable:

D
(∑

ai1,...,in,j · x
i1
1 · · ·x

in
n y

j
)

=
∑

j=i1+···+in

ai1,...,in,j · x
i1
1 · · ·x

in
n .

Hence D
(
r(x, y, z, f)

)
= f(x, y, z) for r(x, y, z, f) = r̃(x, y, z, f) + 1.

In our example we obtain:

r(x, y, z, f) =
3f2 · (f + 1)2 · (xf + yf + zf − 1)3

(f + 1)3 · (xf + yf + zf − 1)3 − xf − yf + 1
+ 1.
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Rational Function

Transform the rational function r (that has n+ 1 variables)
into another rational function (having 2n variables) such that
its “true” partial diagonal gives the n-variable algebraic series f .

This process consists of a sequence of n− 1 elementary steps,
each of which is adding one more variable:

r1(x, y, z, u1, v1) =
u1 · r(x, y, z, u1)− v1 · r(x, y, z, v1)

u1 − v1

r2(x, y, z, u1, u2, v2) =
u2 · r1(x, y, z, u1, u2)− v2 · r1(x, y, z, u1, v2)

u2 − v2

Then r2 is the desired rational function in six variables.
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Final Result
The hypergeometric series

3F2

([3a− b
3a

,
2a− b

3a
,
a− b

3a

]
,
[a− b

a
, 1
]
, 27x

)
.

is the diagonal of the following rational function in the six variables
x, y, z, u, v, w:

1 +
au3v (1− ux− uy − uz) (1 + u)a−1(1− ux− uy − uz)a−1

(1 + u)a(1− ux− uy − uz)a − (1− ux− uy)b(u− v)(v − w)

− av4 (1− vx− vy − vz) (1 + v)a−1(1− vx− vy − vz)a−1

(1 + v)a(1− vx− vy − vz)a − (1− vx− vy)b(u− v)(v − w)

− au3w (1− ux− uy − uz) (1 + u)a−1(1− ux− uy − uz)a−1

(1 + u)a(1− ux− uy − uz)a − (1− ux− uy)b(u− w)(v − w)

− aw4 (1− wx− wy − wz) (1 + w)a−1(1− wx− wy − wz)a−1

(1 + w)a(1− wx− wy − wz)a − (1− wx− wy)b(u− w)(v − w)
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Other Potential Counterexamples

Christol’s original example:

3F2

([
1
9 ,

4
9 ,

5
9

]
,
[
1
3 , 1
]
, 27x

)

It seems that this example cannot be treated in a similar way.

Note that our examples,

3F2

([
2
9 ,

5
9 ,

8
9

]
,
[
2
3 , 1
]
, x
)

and 3F2

([
1
9 ,

4
9 ,

7
9

]
,
[
1
3 , 1
]
, x
)
,

have an arithmetic progression in the top parameters.
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Integral Representation

Recalling the integral representation of the hypergeometric function

3F2([a, b, c], [d, e], x) =
Γ(d) Γ(e)

Γ(a) Γ(b) Γ(d− a) Γ(e− b)
×

×
∫ 1

0

∫ 1

0
ya−1zb−1(1− y)−a+d−1(1− z)−b+e−1(1−xyz)−c dy dz

one can try to find suitable algebraic functions. . .

For example, let

A(x, y, z) = (1− y)d−b−1 yb (1− xy2)−a (1− z)−c

then the telescoper of
1

yz
A
(x
y
,
y

z
, z
)

gives precisely the differential equation of 3F2([a, b, c], [d, 1], x).
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Integral Representation

Taking the parameter values a = 1
9 , b = 4

9 , c = 5
9 , d = 1

3 , one could
hope that the diagonal of the algebraic function

y4/9

(1− y)10/9 (1− xy2)1/9 (1− z)5/9

gives rise to the notorious 3F2

([
1
9 ,

4
9 ,

5
9

]
,
[
1
3 , 1
]
, 27x

)
.

But, this diagonal is zero!

Note: The diagonal of a rational function and a solution of the
corresponding telescoper are close, yet distinct notions: the
telescoper annihilates the n-fold integral over all integration cycles.
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Open Problems

Future Work:

I Show that 3F2

([
1
9 ,

4
9 ,

5
9

]
,
[
1
3 , 1
]
, 27x

)
can be expressed as a

diagonal of a rational function.

I Prove Christol’s conjecture in general. . .

Reference:

I Y. Abdelaziz, C. Koutschan, J-M. Maillard,
On Christol’s conjecture, arXiv:1912.10259.
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