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To be or not to be integrable ...
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First past the post ...
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At least two concepts: Yang-Baxter integrability versus
integrability of the birational symmetries

• YBE (and their higher dimensional generalizations) necessarily
yield commuting transfer matrices TN for any size N , which
necessarily yield algebraic varieties which are preserved by
birational automorphisms generated by the inversion relations.
Generically the composition of two inversion relations yield
infinite order generators of these birational symmetries. YBE
→ canonical parametrization in terms of algebraic varieties with
an infinite set of birational automorphisms. The algebraic
varieties are not of the “general type”, they are highly selected
algebraic varieties: elliptic curves, Enriques surfaces, K3 surfaces,
Abelian varieties, etc ...

• Discrete dynamical systems corresponding to the iteration of
these infinite order birational symmetries.
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At least two concepts: Yang-Baxter integrability versus
integrability of the birational symmetries

To be Yang-Baxter-integrable you need the infinite order
birational symmetries to be integrable: the growth of the
degree of the infinite order birational generators has to be a
polynomial growth. Conversely the integrability of the
birational symmetries is a necessary, but not sufficient
condition to be YB-integrable. For instance the sixteen vertex
model corresponds to an integrable foliation of its CP15 parameter
space in terms of ellipic curves, it is not (generically)
YB-integrable. An exponential growth means that the model
cannot be Yang-Baxter-integrable. At least, we know what
non-integrable is ...

5 / 61



Algebraic Statistical Mechanics

6 / 61



Algebraic Statistical Mechanics

7 / 61



Algebraic Statistical Mechanics

8 / 61



Algebraic Statistical Mechanics

9 / 61



Algebraic Statistical Mechanics

Yang-Baxter integrability versus integrability of the birational
symmetries

We have properties of more arithmetic and algebraic geometry
nature. The series expansions of these holonomic functions can be
recast into series expansions with integer coefficients. This raises
the question of the “modularity” in these problems: beyond the
occurrence of many modular forms, we also see the emergence of
Calabi-Yau ODEs. Calabi-Yau manifolds are, after K3 surfaces,
the “next” generalization of elliptic curves. We have a natural
emergence (in lattice stat. mech.) of algebraic varieties with an
infinite set of birational symmetries. These algebraic varieties
have thus zero canonical class, Kodaira dimension zero (zero
canonical class, corresponding to admitting flat metrics and Ricci
flat metrics, respectively.). We, now, understand the emergence
of Calabi-Yau manifolds: Abelian varieties and Calabi-Yau
manifolds (in dimension one, elliptic curves; in dimension two,
complex tori and K3 surfaces) have Kodaira dimension zero.
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Ising n-fold integrals : the χ(n)’s

The magnetic susceptibility of the two-dimensional Ising model can
be written as an infinite sum of n-folds integrals holonomic
functions:

χ(w) =

∞∑
n=1

χ(n)(w).

The magnetic susceptibility χ is not a holonomic function, it is
not D-finite: χ is not solution of a linear differential equation. It
is much more involved.

We are even going to see that the full susceptibility χ has a (unit
circle) natural boundary, in the complex k-plane.

|k| = 1 is a natural boundary of χ(k).
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Ising n-fold integrals : the χ(n)’s

As far as series expansion are concerned, the holonomic χ̃(n)’s
expand as a series with integer coefficients:

χ̃(n)(w) = 2n · wn2 · κn(w),

where:

κn(w) = 1 + 4n2 · w2 + 2 · (4n4 + 13n2 + 1) · w4

+
p6(n)

3
· w6 +

p8(n)

3
· w8 +

p10(n)

15
· w10 + · · ·

p6(n) = 8 · (n2 + 4) (4n4 + 23n2 + 3),

p8(n) = · (32n8 + 624n6 + 4006n4 + 8643n2 + 1404),

p10(n) = 4 · (n2 + 8) · (32n8 + 784n6 + 6238n4

+16271n2 + 3180).
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Ising n-fold integrals : χ(5)

The five-particle contribution χ̃(5) of the susceptibility of the Ising
model is solution of an order-33 linear differential operator which
has a direct-sum factorization (DFactorLCLM in Maple): the
selected linear combination

χ̃(5) − 1

2
χ̃(3) +

1

120
χ̃(1),

is solution of an order-29 (globally nilpotent) linear differential
operator

L29 = L5 · L12 · L̃1 · L11,

where:

L11 = (Z2 ·N1)⊕ V2 ⊕ (F3 · F2 · Ls
1).
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Z2 in χ(2): a modular form

The solution of the linear differential operator Z2 can be expressed
in terms of the 2F1 hypergeometric function up to a modular
invariant pull-back:

S =
(

Ω · Mx

)1/12
× 2F1

(
[

1

12
,

5

12
]; [1]; Mx

)
, where:

Ω =
1

1728

(1− 4x)6 (1− x)6

x · (1 + 3x + 4x2)2 (1 + 2x)6
,

Mx = 1728
x · (1 + 3x + 4x2)2 (1 + 2x)6 (1− 4x)6 (1− x)6

(1 + 7x+ 4x2)3 · P 3
,

P = 1 + 237x + 1455x2 + 4183x3 + 5820x4 + 3792x5 + 64x6.

It is a modular form.
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Ising n-fold integrals : χ(6)

Similarly χ̃(6) is solution of an order-52 linear differential operator
which has a direct-sum factorization: the selected linear
combination

χ̃(6) − 2

3
χ̃(4) +

2

45
χ̃(2),

is solution of an order-46 (globally nilpotent) linear differential
operator

L46 = L6 · L23 · L17,

where: L17 = L̃5 ⊕ L3 ⊕ (L4 · L̃3 · L2),

L̃5 =

(
d

dx
− 1

x

)
⊕
(
L1,3 · (L1,2 ⊕ L1,1 ⊕Dx)

)
.
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The “Quarks” in χ(5) and χ(6)

Quasi-trivial order-one (globally nilpotent) linear differential

operators: L̃1, N1, L
s
1, L1,n −→ Dx − 1

N ·
d ln(R(x))

dx

V2, L2, L3, L5 and L6 are respectively equivalent
(homomorphic) to LE , to the symmetric square of LE and to the
symmetric fourth and fifth power of LE .
Remain to understand the “very nature” of:

F2, F3, L̃3, L4 and: L12, L23

The order-12 operator L12 has been shown to be irreducible and
not equivalent to symmetric product of differential operators of
smaller orders.

L23: beyond current computational resources ?
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The puzzling L4: preliminary results on L4

Preliminary calculations show that L4 cannot be reduced to
elliptic functions, modular forms, and it is not 4F3-solvable if one
restricts to rational pull-backs.
Is this operator going to be a counter-example to our favourite
“mantra” that the Ising model is nothing but the theory of elliptic
curves and other modular forms ?

Computing the exterior square of the linear differential operator
L4, one finds an order-six linear differential operator with the
direct sum decomposition

ext(2)(L4) = Ñ1 ⊕N5,

where Ñ1 has a rational function solution. Along this line L4

has a symplectic differential Galois group SP (4, C).
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The puzzling L4: preliminary results on L4

Along a globally nilpotent line, the L4 operator is “more” than a
G-operator, with its associated G-series. The series solution
(analytical at x = 0) sol(L4) is a series with integer coefficients
in the variable y = x/2:

sol(L4) = 175 + 34398 y + 4017125 y2 + 362935156 y3

+28020752579 y4 + 1943802285620 y5 + 124761498220195 y6

+7549851868859190 y7 + 436341703365296321 y8

+24309515324321362986 y9 + 1314618756208478845353 y10

+69377289961823319909960 y11

+3588051829563766082490527 y12

+182471551181260556637299032 y13

+9150139649421210256395488775 y14 + · · ·
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L4 is a Hadamard product of two elliptic curves:

it is a Calabi-Yau operator !

Seeking for 4F3 hypergeometric functions up to homomorphisms,
and assuming an algebraic pull-back with the square root
extension, (1 − 16 · w2)1/2, we actually found that the solution of
L4 can be expressed in terms of a selected 4F3

4F3

(
[1/2, 1/2, 1/2, 1/2], [1, 1, 1]; z

)
= 2F1

(
[1/2, 1/2], [1]; z

)
? 2F1

(
[1/2, 1/2], [1]; z

)
,

where: z =
(1 + (1 − 16 · w2)1/2

1 − (1 − 16 · w2)1/2

)4
where the pull-back z is nothing but the fourth power of the
modulus k of the elliptic functions !
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Differential algebra viewpoint: the differential Galois group

SR(Ext2(L
(left)
12 )) =

P312(x)

A131(L̃1 · L11) · D211(x)
, with:

D211(x) = x18 · (2x− 1)2 (x− 1)12 (x+ 1)2 (2x+ 1)13 (4x+ 1)22

(4x− 1)24(4x2 − 2x− 1)2 (4x2 + 3x+ 1)14 (x2 − 3x+ 1)2

(8x2 + 4x+ 1)8(4x3 − 3x2 − x+ 1)6 (4x3 − 5x2 + 7x− 1)8

(4x4 + 15x3 + 20x2 + 8x+ 1)6,

where P312(x) is a polynomial of degree 312, and where
A131(L̃1 · L11) is the apparent polynomial of the product L̃1 · L11.

The differential Galois group of L
(left)
12 is included in the

symplectic group Sp(12, C).
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Differential algebra viewpoint: the differential Galois group

L23 = L21 · L̃2.

SR(Sym2(L21)) =
P714(x)

D529(x)
, where:

D529(x) = x13 · (1− 16x)56 (1− 4x)63 (1− 9x)47 (1− 25x)63

× (1− x)47 (1− 10x+ 29x2)57 (1− x+ 16x2)63,

where P714 is a polynomial of degree 714.

The differential Galois group of L21 is included in the
orthogonal group SO(21, C).
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The χ(n)’s are diagonal of rational functions.

Let us consider the series of χ̃(3)/8/w9

1 + 36w2 + 4w3 + 884w13 + 196w5 + 18532w6 + · · ·

Let us now consider this very series modulo the prime p = 2. It
reads the quite lacunary series

1 + w8 + w24 + w56 + w120 + w248 + w504 + w1016 + · · · ,

In fact,modulo the prime p = 2, H(w) = χ̃(3)/8 is, actually, an
algebraic function, solution of the quadratic equation:

H(w)2 + w · H(w) + w10 = 0 mod 2.

25 / 61



Algebraic Statistical Mechanics

The χ(n)’s are diagonal of rational functions.

In fact, the series for χ̃(3), or for any χ̃(n), modulo any prime,
reduces to an algebraic function (the complexity of the algebraic
functions growing with p).
This is, in fact, the consequence of the fact that the χ(n)’s are
diagonal of rational functions.

Definition of the diagonal of series of several complex variables:

F
(
z1, z2, . . . , zn

)
=

∞∑
m1 =0

∞∑
m2 =0

· · ·
∞∑

mn =0

Fm1,m2, ...,mn · z
m1
1 zm2

2 · · · zmn
n ,

Diag
(
F
(
z1, z2, . . . , zn

))
=

∞∑
m=0

Fm,m, ...,m · zm.
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Pedagogical examples of diagonal of rational functions.

Let us consider the rational function of three complex variables
F = 1/(1− z2 − z3 − z1z2 − z1z3). Its diagonal reads:

1 + 4z + 36z2 + 400z3 + 4900z4 + 63504z5 + · · ·

which is nothing but the complete elliptic integral of the first kind

∑
m≥0

(
2m

m

)2

· zm = 2F1

(
[
1

2
,

1

2
], [1], 16 z

)
Such diagonals of rational functions are highly selected
functions: they are solutions of G-operators. They are also
functions that are always algebraic mod. any prime p. They fill
the gap between algebraic functions and G-series: they can be
seen as generalisations of algebraic functions.
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Mathematical examples of diagonal of rational functions.

Rational functions of three, or four variables: R = 1/(1 − P ),
deg(P )x, y, z, w ≤ 1, coefficients of the monomials in {0, 1}.
For P = x + y + z + x y + x z + y z, the diagonal reads:

Diag(R) = 1 + 12x + 366x2 + 13800x3 + 574650x4 + · · ·

= Q(x)−1/4 · 2F1

(
[

1

12
,

5

12
], [1],

P (x)

Q(x)3

)
, where:

Q(x) = 1 − 48x − 24x2,

P (x) = 1728 · x3 · (x+ 2)3 · (1 − 54x − 28x2),

Four variables: 876 cases, 1 of order 1, 2 of order 2, 20 of order
3, 128 of order 4, 240 of order 5, 231 of order 6, 155 of order 7, 41
of order 9, 7 of order 10, all correspond to SO(n, C) differential
Galois groups !!! For P = x y z +w x + y z +w + x + y + z,
one has a SO(6, C) decomposition:
(A1B1C1D3 +A1B1 + A1D3 + C1D3 + 1) · r(x).
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Towards Modularity: far beyond modular forms

The linear differential operators are globally nilpotent, which
means that the operators are not only Fuchsian, they are such
that their p-curvatures are nilpotent, and all their critical
exponents are rational numbers, ... This is a consequence of the
fact that the holonomic functions are diagonal of rational
functions, which yields (globally bounded) series that can be
recast into series with integer coefficients. Together with these
properties of algebraic-geometry and arithmetic nature, one
also has properties of more differential algebra and differential
geometry nature, as can be seen with the emergence of selected
differential Galois groups, consequence of homomorphisms of
the operators with their adjoint.
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Differential algebra viewpoint: the differential Galois group

L[2] = (U2 · U1 + 1) · r(x),

L[3] = (U3 · U2 · U1 + U1 + U3) · r(x),

L[4] = (U4 · U3 · U2 · U1

+U4 · U1 + U2 · U1 + U4 · U3 + 1) · r(x),

L[5] = (U5 · U4 · U3 · U2 · U1 + U5 · U4 · U1 + U5 · U2 · U1

+U5 · U2 · U1 + U5 · U4 · U3 + U3 · U2 · U1

+U1 + U3 + U5) · r(x), · · ·

L[N ] = UN · L[N−1] + L[N−2].

adjoint(L[N ]) · L[N−1] = adjoint(L[N−1]) · L[N ].
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Differential algebra viewpoint: the differential Galois group

Using a criterion of Namikawa, Batyrev and Kreuzer found 30241
reflexive 4-polytopes such that the corresponding Calabi-Yau
hypersurfaces are smoothable by a flat deformation. In particular,
they found 210 reflexive 4-polytopes defining 68 topologically
different Calabi-Yau 3-folds with h11 = 1, P. Lairez obtained
recently, in a systematic analysis, a set of 210 explicit linear
differential operators annihilating periods arising from mirror
symmetries (associated with reflexive 4-polytopes defining 68
topologically different Calabi-Yau 3-folds). These periods are also
diagonals of rational functions. We found the decomposition of
these linear differential operators, for instance

L12 = (M2 · N2 · P2 · Q2 · R4 + M2 · N2 · R4 + M2 · Q2 · R4

+M2 · N2 · P2 + P2 · Q2 · R4 + M2 + P2 + R4) · r(x).
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Differential Galois group for lattice Green functions ODEs

We have been able to find the linear differential operator of the
seven-dimensional fcc lattice Green function. It is an order-11
operator.

G7Dfcc
11 = (U5 · U4 · U3 · U2 · U1 + U5 · U4 · U1 + U5 · U2 · U1

+U5 · U4 · U3 + U3 · U2 · U1 + U1 + U3 + U5) · r(x),

where r(x) is a rational function, where U2, U3, U4 and U5 are
order-one self-adjoint operators, and where U1 is an order-seven
self-adjoint operator. G7Dfcc

11 is non-trivially homomorphic to
its adjoint

adjoint(L10) · G7Dfcc
11 = adjoint

(
G7Dfcc

11

)
· L10.

The 11-dimensional fcc operator is of order 27 (2464 coeff. are
necessary), the 12-dimensional fcc operator is of order 32 (3618
coeff. are necessary).
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SECOND PART of the TALK: SPECULATIONS

A LONG WAY TO GENERALIZE MODULAR FORMS and
other CALABI-YAU

MODULARITY: A WORK IN PROGRESS

FROM LINEAR ODEs to NON-LINEAR ODEs

FROM THE MODULUS k, TO THE NOME q (mirror maps)
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TEASING: Towards a deeper understanding of the full
susceptibility χ

The elliptic parametrization of the Ising model must play a
fundamental role. Along this line two different types of
transformations should be considered:

• the isogenies of the elliptic curves τ → N · τ , the simplest
being the Landen transformation k → 2

√
k/(1 + k); they do

correspond to exact generators of the renormalization group:

k −→ 2
√
k

1 + k
, τ → N · τ

• the modular group

τ −→ a τ + b

c τ + d
, a d − b c = 1,
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How do the χ(n) transform under the isogenies (i.e. the
renormalization group) and the modular group ?

Let us recall that χ(2) reads

χ(2) =
k4

64
· 2F1

(
[
3

2
,

5

2
], [3], k2

)
,

and that its Landen transform reads:

χ
(2)
L =

1

64
·
( 4 k

(1 + k)2

)2
· 2F1

(
[
3

2
,

5

2
], [3],

4 k

(1 + k)2

)
.

Remarkably one finds that the two corresponding linear differential

operators (Ω(χ(2)) = 0, ΩL(χ
(2)
L ) = 0) are (non-trivially)

homomorphic !!! :(k + 1

k

)2
· (k

d

dk
− 1) · Ω = ΩL ·

x+ 1

x
· d
dk
.
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One needs to rephrase the question: how the well-suited
χ̃(6) − 2

3 χ̃
(4) + 2

45 χ̃
(2), etc ... transform ?

It is solution of an order-46 linear diff. operator

L46 = L6 · L23 ·
(
L̃5 ⊕ L3 ⊕ (L4 · L̃3 · L2)

)
,

Most of the operators have polynomial solutions in E and K: one
can expect some nice representation of the modular group as
well as the isogenies on these operators. However, we also
have operators with selected differential Galois groups, that
cannot be reduced to operators associated with elliptic
curves: for instance L4 corresponds to a Calabi-Yau manifold.
How do the isogenies of the elliptic curve of the Ising model
act on this Calabi-Yau manifold ?
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A few scenarii

• Nice representation of the modular group (but not of the
isogenies) on χ̃(6) − 2

3 χ̃
(4) + 2

45 χ̃
(2), etc ...

• Nice representation of the modular group and the isogenies on
χ, but the decomposition of χ in the holonomic χ(n)’s is not the
good way to see it.

• The χ(n)’s being too involved composite objects, one only has
nice representation of the modular group (and possibly the

isogenies) on the form factors f
(j)
N,M .
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Crash course on modular forms, modular curves, modular
group, ...

The maths textbook are hopeless and useless for our needs
... One never finds the remarkable/magic/amazing equations
one badly needs ...

38 / 61



Algebraic Statistical Mechanics

Modular Forms

Let us consider the second order linear differential operator

d2

dz2
+

(
z2 + 56 z + 1024

)
z · (z + 16) (z + 64)

· d
dz
− 240

z · (z + 16)2 (z + 64)
.

which has the (modular form) solution:

2F1

(
[

1

12
,

5

12
], [1]; 1728

z

(z + 16)3

)
= 2 ·

(z + 256

z + 16

)−1/4
· 2F1

(
[

1

12
,

5

12
], [1]; 1728

z2

(z + 256)3

)
.
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Fundamental modular curve

The two pull-backs in the previous modular form

u = u(z) =
1728 z

(z + 16)3
, v =

1728 z2

(z + 256)3
= u

(212

z

)
.

are related by a Atkin-Lehner involution z ↔ 212/z, and
correspond to a rational parametrization of the fundamental
modular curve X0(2):

59 v3 u3 − 12 · 56 u2 v2 · (u+ v)

+375 u v · (16u2 + 16 v2 − 4027 v u)

−64 (v + u) · (v2 + 1487 v u + u2) + 212 · 33 · u v = 0.

relating two Hauptmoduls u and v.
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Dedekind η function

Getting rid of this (2π)12 factor, ( q is the nome of the elliptic
curve) ∆(q) = q ·

∏∞
n=1 (1 − qn)24, one can now introduce a

“second layer” of parametrization identifying the previous z with
the (well-known) j-function and writing it as a ratio of Dedekind
eta function

z = j(q) = ∆(q)/∆(q2),

The Atkin-Lehner involutive transformation j → 212/j and
transformation q → q2 are actually compatible thanks to the
remarkable “Ramanujan-like” functional identity on Dedekind η
functions

4096 ·∆(q) ·∆(q4)2 −∆(q2)3 + (∆(q)

+ 48 ·∆(q2)) ·∆(q) ·∆(q4) = 0.
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Isogenies, Landen transformation, Renormalization Group

The exact generators of the renormalization group must necessarily
identify with various isogenies which amounts to multiplying, or
dividing, τ the ratio of the two periods of the elliptic curves, by an
integer. The simplest example is the Landen transformation:

k ←→ kL =
2
√
k

1 + k
, τ ←→ 2 τ.

which corresponds to the previous genus zero fundamental modular
curve two Hauptmoduls u = 123/j and v = 123/j′, and
relating the two j-functions

j(k) = 256 · (1− k2 + k4)3

(1− k2)2 · k4
, j(kL) = 16 · (1 + 14 k2 + k4)3

(1− k2)4 · k2
.
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Isogenies, Landen transformations, Modular curve

The Landen transformation corresponds to the genus zero
fundamental modular curve

j2 · j′2 − (j + j′) · (j2 + 1487 · j j′ + j′2)

+3 · 153 · (16 j2 − 4027 j j′ + 16 j′2)

−12 · 306 · (j + j′) + 8 · 309 = 0,

which relates the two j-functions

j(k) = 256 · (1− k2 + k4)3

(1− k2)2 · k4
, j(kL) = 16 · (1 + 14 k2 + k4)3

(1− k2)4 · k2
.
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Isogenies are exact generators of the RG

An exact generator of the renormalization group must
preserve the three “points” (actually algebraic varieties):
k = 0, 1, ∞, namely the zero and infinite temperature fixed
points and the critical temperature fixed point. The Landen
transformation has these three points as fixed points.

Such an exact generator must also be compatible with all the exact
symmetries of the model: gauge-like (linear) symmetries, the set
of birational (non-linear) symmetries, the lattice of periods of
the elliptic parametrization.

The Landen transformation and the other isogenies actually
satisfy all these constraints. They are the only transformations
satisfying these drastic constraints.

44 / 61



Algebraic Statistical Mechanics

Isogenies, Landen transformations on EllipticK

Landen transformation [1775]:

K
( 2
√
k

1 + k

)
= (1 + k) · K(k). (1)

EllipticModulus versus EllipticNome:

m =
λ

16
=

k2

16
= q ·

( ∞∏
n=0

1 + q2n

1 + q2n−1

)8
.

q = k2/16 + k4/32 + 21/1024 · k6 + 31/2048 · k8 + · · ·
= m + 8m2 + 84m3 + 992x4 + 12514m5 + · · ·

Let us introduce the eulerian product:

F (q) =
( ∞∏
n=0

1 − q2n

1 + q2n

)2
=

2

π
· (1 − k2)1/4 · K(k). (2)
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Isogenies, Landen transformations on EllipticK

F (q) = 1 − k4/64 − k6/64 − 231/16384 · k8 + · · ·
= 1 − 4m2 − 64m3 − 924m4 − 13184m5 + · · ·

F (q1/2) = 1 − k2/4 − 7/64 · k4 − 17/256 · k6 + · · ·
= 1 − 4m − 28m2 − 272m3 − 3036m4 − 36624m5 + · · ·

The Landen transformation corresponds to q → q1/2, Eq. (2)
becoming:

F (q1/2) =
2

π
·
(

1 −
( 2
√
k

1 + k

)2)1/4
· K

( 2
√
k

1 + k

)
. (3)

Equations (2), (3) together with the Landen relation (1) gives:

F (q1/2)

F (q)
= (1 − k2)1/4. (4)
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Landen transformation, inverseLanden transformation,
isogenies on EllipticK

The same calculations for the inverse Landen transformation

K
(1 − (1− k2)1/2

1 + (1− k2)1/2
)

=
1 + (1− k2)1/2

2
· K(k). (5)

yield

F (q2)

F (q)
=

(1 − k)1/2 + (1 + k)1/2

2 · (1 − k2)1/8
. (6)

solution of the linear differential operator

16 · (1 − k2) · D2
k + 24 · (k2 − 1) · k · Dk − 3 k2. (7)

Similarly, all the ratio F (qN )/F (q) corresponding to all the
isogenies q → qN , are, not only solutions of linear differential
operators, but, in fact (quite involved) algebraic expressions.
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Modular invariance, isogeny covariance, Schwarzian
non-linear ODEs

The Schwarzian equation reads:

{τ, λ} =
1

2
· (k4 − k2 + 1)

k4 · (k2 − 1)2
.

The j-function, seen as a function of the nome, expands as:

j(q) =
1

q
+ 744 + 196884 q + 21493760 q2 + · · ·

and satisfies the replicable non-linear Schwarzian ODE
corresponding to the equality of two weight four modular forms:

{j, τ} = −1

2
· j

2 − 1968 j + 2654208

(j − 1728)2
·
(1

j
· dj
dτ

)2
. (8)

j = j(qN ) does verify (8) for any values of the integer N
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Eisenstein series: from modular forms to Chazy III ...
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Modular forms and non-linear ODEs; Eisenstein series.

Let us introduce the Eisenstein series

E4(q) = 1 + 240 ·
∞∑
n=1

n3 · qn

1 − qn
,

satisfies the following non-linear functional equation:

33E4(q
2)2 + E4(q)

2 − 18 · (16E4(q
4) + E4(q)) · E4(q

2)

+16 · (16E4(q
4) + E4(q)) · E4(q

4) = 0.

For E4(q
n) the non-linear ODE reads (Nn = dNN/dτn):

20N2N2
3 − 180N N1N2N3 + 144N N3

2 + 150N3
1 N3

−135N2
1 N

2
2 =

5n2

4
· N · (4N N2 − 5N2

1 )2.
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Quasi-modular forms and non-linear ODE of the Painlevé
type: Chazy III

N = E2(q), N1 = q · dN
dq

, N2 = q · dN1

dq
, N3 = q · dN2

dq
,

Quasi-modular form:

N(x) −→ a d − b c

(c x + d)2
· N
(a x + b

c x + d

)
−A · c

c x + d
,

N1(x) −→ (a d − b c)2

(c x + d)4
· N1

(a x + b

c x + d

)
−2 c · a d − b c

(c x + d)3
· N
(a x + b

c x + d

)
+ A · c2

(c x + d)2
,
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N2(x) −→ (a d − b c)3

(c x + d)6
· N2

(a x + b

c x + d

)
−6 c · (a d − b c)2

(c x + d)5
· N1

(a x + b

c x + d

)
+ 6 c2 · a d − b c

(c x + d)4
· N
(a x + b

c x + d

)
− 2A · c3

(c x + d)3
,

N3(x) −→ (a d − b c)4

(c x + d)8
· N3

(a x + b

c x + d

)
−12 c · (a d − b c)3

(c x + d)7
· N2

(a x + b

c x + d

)
+ 36 c2 · (a d − b c)2

(c x + d)6
· N1

(a x + b

c x + d

)
− 24 c3 · a d − b c

(c x + d)5
· N
(a x + b

c x + d

)
+ 6A · c4

(c x + d)4
,
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Quasi-modular forms and non-linear ODE of the Painlevé
type: Chazy III

Let us introduce the Eisenstein series

E2(q) = 1 − 24 ·
∞∑
n=1

n · qn

1 − qn
.

It is a quasi-modular form (previous formula with A = 12), and
verifies

2N N2 − 3N2
1 − 2N3 = 0, where:

N = E2(q), N1 = q · dN
dq

, N2 = q · dN1

dq
, N3 = q · dN2

dq
,

This is nothing but the Chazy III equation:

d3y

dx3
= 2 y

d2y

dx2
− 3

(dy
dx

)2
.
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Schwarzian derivative and natural boundary

It can be rewritten in terms of a Schwarzian derivative:

f (4) = 2 f ′2 · {f, x} = 2 f ′ f ′′′ − 3 f”2 with: y =
df

dx
.

It was introduced by Jean Chazy (1909, 1911) as an example of a
third-order differential equation with a movable singularity that is a
natural boundary for its solutions. It is also worth recalling the
Halphen-Ramanujan differential system:

P ′ =
P 2 −Q

12
, Q′ =

P Q −R
3

, R′ =
P R −Q2

2
,

where P = E2, Q = E4, R = E6 and X ′ denotes here the
homogeneous derivative q · dX

dq .
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Non-holonomic functions ratio of holonomic functions

In fact (see arXiv0902.3861v1[nlin.SI]) y in Chazy III is nothing
but a log-derivative of a modular form ∆:

y =
1

2
· ∆′

∆
=

1

2
· P

Log-derivative of modular forms are quasi-modular forms.
The modular discriminant ∆ satisfies the non-linear ODE:

2 (∆3 − 5 ∆2 ∆′) ∆′′′ − 3 ∆”3 ∆2 + 24 ∆” ∆′2 ∆ − 13 ∆′4 = 0

Along this line it is fundamental to recall that the ratio (not the
product !) of two holonomic functions is non-holonomic

d2y

dx
+R(x) · y = 0, τ(x) =

y1
y2
,

{x, τ} + 2R(x) ·
(dx
dτ

)2
= 0.
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Integrability versus non-integrability ...

Not black or white, but rather fifty shades of grey ...

56 / 61



Algebraic Statistical Mechanics

A grey conclusion

Integrability: Holonomic functions.

Non-integrability: Non-holonomic functions.

Non-holonomic functions like Chazy III, and also the
susceptibility of the square Ising model are non-holonomic but they
do belong to the “Integrability world”. The χ(n)

decomposition of the χ susceptibility yields Calabi-Yau ODE (and
manifolds) and highly selected linear differential operators (special
differential Galois groups, etc ...). The χ(n)’s are diagonal of
rational functions: they are the class of transcendental functions
which is the “closest” to algebraic functions (modulo a prime
they do reduce to algebraic functions). As far as the algorithmic
complexity of the calculations of the χ series, these calculations
are polynomial (in N4, consequence of J.H.H. Perk’s finite
difference equations (which can be viewed as a finite difference
generalization of Painlevé equations). Natural boundary is not
even characteristic of non-integrability: think of Chazy III.
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Separating the wheat from the chaff

The Riemann zeta function is a transcendental non-holonomic
function. The p.f. of the hard-square model is, quite certainly, not
even solution of a non-linear ODE. In contrast, we encountered:

• Diagonal of rational functions are transcendental holonomic
functions that are the closest transcendental functions to
algebraic functions.

• Non-holonomic functions that are ratio of holonomic
functions, solutions on non-linear ODEs of Painlevé type.

In Dante’s inferno these various ””functions”” are not at the same
“level” (circle ...).
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Another grey conclusion (different shade)

Interplay between different domains of physics (field theory,
enumerative combinatorics, lattice statistical mechanics, condensed
matter, particle physics, ...) and different domains of mathematics:
Algebraic Geometry, Differential Algebra, Differential
Geometry, (differential Galois groups), Arithmetics, Number
Theory.
Not surpringly for Yang-Baxter integrability experts, the deepest
ideas do not come from continuous symmetries but do emerge with
infinite discrete symmetries (birational symmetries, isogenies, ...).
Doing physics is not doing less mathematics. Paradoxically, doing
(good) physics is (without knowing it ...) doing quite fundamental
mathematics, working, in a quite deep way, precisely at the
crossroad of different domains of mathematics,

as Monsieur Jourdain talked prose, without knowing it.
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THE END. Chaos versus Integrability, Inferno or Paradise, a
transcendence problem: Dante’s Inferno ...
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THE END
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