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Abstract. The inversion symmetry and the automorphy group generated by the latter, when 
combined with the spatial symmetries, are studied for the anisotropic Potts models on the 
triangular and checkerboard lattices. The exact expression of the partition function, which 
is known on some particular disorder subvarieties of the triangular model, is checked and 
a generalisation is proposed for the checkerboard lattice. The automorphy group is then 
used to extend the disorder solutions to the infinity of transformed subvarieties. 

1. Introduction 

Besides its applications to two-dimensional solid state physics, the Potts model also 
shows interesting features in the realm of exactly solvable models (see Wu (1982) for 
a review). Not only does its partition function reduce, for particular values of its 
parameters, to that of solved models (Ising for q = 2, six-vertex for the critical curve, 
(Baxter et a1 1978)), but it also shows remarkable analytic and combinatorial properties: 
it satisfies the Lee-Yang theorem (Hintermann et a1 1981); at the critical temperature, 
the discontinuity of its derivative (and its magnetisation) can be computed as infinite 
products (Baxter 1973, 1982a) and its critical exponents are known (conjecture of den 
Nijs 1979); it can also be seen as a limit of the Whitney-Tutte polynomial (Baxter er 
a1 1976). 

An exact property of the partition function of the anisotropic Potts model is also 
known to exist for any values of the parameters, the inversion functional relation 
(Jaekel and Maillard 1982). The latter is derived from a simple geometrical relation 
on the local Boltzmann weights, and happens to hold for various lattices (square, 
triangular, checkerboard, . . .). Moreover, when combined with the spatial symmetries 
of the lattice, this inversion symmetry generates an infinite discrete group, which can 
be seen to play the role of an automorphy group for the partition function: to this 
group is associated an infinite set of analytic functional relations. However, the 
additional analytic information, which is required in order to completely determine 
the partition function from these equations, cannot be obtained, in general, from a 
mere qualitative study of the diagrammatic expansions (Jaekel and Maillard 1983). 
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Recently, Rujan (1984) has obtained an exact expression for the partition function 
of the anisotropic triangular Potts model, for a subvariety of values of the parameters, 
called a disorder variety. This result generalises the disorder solution given by 
Stephenson (1970) and Gibberd (1969) for the anisotropic triangular Ising model. 
Disorder solutions have also been exhibited on various models of the Ising kind, using 
different techniques: crystal growth (Welberry and Galbraith 1973), Markov processes 
(Verhagen 1976), conditional probabilities (Enting’l977a). The common feature of these 
particular solutions is that they exhibit a remarkable relation between the parameters 
of the model, for which some decoupling of neighbouring degrees of freedom occurs, 
resulting in a reduction of the effective dimensionality of the model. In the previous 
cases, this leads to simple expressions, and even algebraic ones, for the partition 
function and some n-point correlation functions. Moreover, as was pointed out by 
Enting (1977b, 1978), these exact solutions impose severe constraints on series 
expansions. 

It is natural to try to use these particular algebraic solutions as additional constraints 
to the functional equations on the partition function, generated by the automorphy 
group. It is the purpose of this paper, first to show that such a simultaneous use is 
possible, that is, that these relations share a common domain of validity. This will be 
done by checking the inversion relation and the disorder solution on a partially 
resummed diagrammatic expansion, which appears to be compatible with both. Then, 
we shall derive some analytic consequences, and in particular give a compact expression 
for an automorphic function, which extends the disorder solutions to the infinity of 
their transformed varieties, by the automorphy group. 

2. Resummed expansions 

The simplest anisotropic two-dimensional Potts model is the one on a square lattice, 
since its partition function depends on two parameters only. However, the disorder 
solution has been given by Rujan (1984) for the anisotropic two-dimensional Potts 
model on a triangular lattice, and one can easily see that the disorder variety disappears 
(more precisely, is sent to infinity), when the limit of the square lattice is taken. Thus, 
in order to make use of the disorder solution in the framework of the inversion relation, 
we shall need to work on a triangular lattice, and hence, first to establish the correspond- 
ing inversion functional relation. This is expressed by an equation on the partition 
function and an analytic continuation of the latter. In the absence of an exact solution, 
both expressions in this equation are best characterised by partially resummed 
expansions, since at least one partial resummation is needed in order to apply the 
inversion symmetry. Our first task will be to obtain the high-temperature partially 
resummed expansion on a triangular lattice and then to verify the inversion relation. 
On the other hand, the disorder solution can easily be seen, on a high-temperature 
expansion for instance, to be the correct expression for the partition function in the 
domain of high temperature. In fact, we shall check that the analytic expression given 
by Rujan coincides with the analytic continuation entering the inversion relation, on 
the whole domain defined by the partially resummed expansion (a neighbourhood of 
a one-dimensional model). 

2.1. Diagrams and inversion relations 

As it will appear, for technical reasons, it is easier to obtain the resummed diagrammatic 
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expansion for an even more general model, that is the checkerboard anisotropic lattice, 
which depends on four parameters, and then to recover the expression for the triangular 
case, by an appropriate limit ( K ,  + 00). Denoting 

The partition function per site Z will be defined as 

where each of the N spins cr can take q values; (as in the triangular limit c + 00 the 
number of sites is divided by two, note that Z must also be replaced by Z 2  in this 
limit). Let us define the normalised partition function per site A: 

Z( a, b, c, d )  = q- ' [ (  a + q - 1 )( b + q - 1 )( c + q - 1 )( d + q - l)]"2A( A, B, C, 0) 

where the following high-temperature variables have been introduced 

A =  
a-1  

a + q - l '  
b - 1  B=- 

b + q - l '  
c - 1  C=- 

c+q-1' 
d - 1  

d + q - l '  
D =  

The diagrams and their contributions, which correspond to the differcnt terms of the 
expansion of A (up to fourth order in B, D),  can be found in appendix 1. They give 
the following result 

AC AC Y =  1 - A  C , (B+ACD))  

A = -  ( q  - l)[B(x +(q  -2)X2)  +D(  Y + ( q  -2 )Y2) ]  
2 

(4  - 1 )  A'+ C 2  +2A2C2 A C ( A  + C +2A2C2) +-( 2 1-A2C2 + ( q - 2 )  1 - , 4 3 c 3  

( 4  - l ) (q  - 212 AC x [BD + BY + DX]' + 
2 1 - A 2 C 2  

( q - 1 ) 2  A2C2 x[2BDXY +AC(B2X2+D2Y ' ) ]  +- 
2 (1 -AZC2) ,  

x [A2C2( - $  +fA2C2)(B4 + D4) -4AC(2 +A2C2)(B3D + BD3) 

- ( 5  +A'C')(l +2A2C2)B2D2]. (1) 
As this expansion has already been computed in the particular case of the anisotropic 

square lattice (Jaekel and Maillard 1982), two immediate checks can be made: it is 
easily seen that both limits A = C, B = 0, and C = 1, D = 0, allow one to recover the 
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previous result. Let us just remark that a closer examination of the second limit shows 
(at fourth order in B, D),  an interesting cooperation of connected and disconnected 
diagrams on the checkerboard lattice, which leads to the same connected diagrams on 
the square lattice. This property might be used, for instance, to put constraints on the 
coefficients of different topological kinds of diagrams on the checkerboard lattice. 
Another kind of important constraint has also to be satisfied by these expansions: 
each one must be invariant under the spatial symmetries of the corresponding lattice. 
Indeed, it is easily checked that the expression for the checkerboard lattice is invariant 
under the symmetry group of the square (C4": generated by (A-C ,  B - D )  and (A-B,  
C-0) and A + B + C + D -+ A ) ,  and that the expression for the triangular lattice (any 
of the limits A = I ,  C = 1 of the previous one), is invariant under the symmetry group 
of the triangle ( S ,  generated by (A-B) ,  ( A - D ) ) .  

Although only geometrically derived in the cases of the triangular and checkerboard 
lattices, the inversion relations for the partition function of these models can be 
explicitly checked, now that the corresponding partially resummed expansions are 
available. Indeed it is easy, although rather tedious, to verify (up to fourth order) the 
inversion functional relation on the expansion for the checkerboard lattice: 

Z ( a ,  b, C, d ) Z ( 2  - - U ,  I/b, 2 - q - C, I / ~ ) = [ ( u  + q  - I ) ( u  - I ) ( C  + q  - I)(c - 

or else: 

- B  1 In A(A, B, C, D )  +In A -? (i 1 - t ( q - - 2 ) B ' Z  1 

(1 - B)( 1 + ( q  - 1) B )  ( 1  - D)( 1 + (4 - 1)D) 
= f In[A(B)A(D)] = f  In [ 1 + ( q - 2 ) B  1 + ( q  - 2)D 

As usual, one can note the successive, order by order, cancellations of all the poles 
(in A and C) in the rational coefficients of the B"D" terms, leading to a final expression 
which depends only on B and D. For instance, at second order 

2AC B D ]  
-1  

2AC B D +  , ( ( -B) '+ ( -D) ' ) -  ( q  - [ A2C2 (B2 + 0 2 )  + 

2 1 - A 2 C 2  1 - A 2 C 2  1-A C I - A 2 C 2  

As the limit to the triangular lattice is preserved by the inversion relation (C = 1 is 
invariant under C e l l  C), the inversion relation for the triangular lattice follows directly 
from the previous one. Those results contribute to establish the actions of different 
automorphy groups on the partition functions of lattices with different geometries. 

2.2. Disorder solutions 

Rujan's exact solution for the anisotropic triangular Potts model can be stated as 
follows: once the relation 

U - 1  b-1 D 
1 + ( q  -2)D = O 

or AB + +--- -0  d - 1  
( q - l ) d + 1  u + q - 1  b + q - 1  
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is satisfied, the partition function takes the simple form: 

One will note the remarkable form of the normalised partition function A, (compare 
with (2)),  which depends only on the distinguished parameter D. Fortunately, the 
disorder variety does intersect the domain defined by the partially resummed expansion: 
B + 0, D -+ 0, A finite. This intersection is defined by 

B =  - A - 1 ( D - ( q - 2 ) D 2 + ( q - 2 ) 2 D 3 + .  . .). 
The check thus reduces to introducing this expression for B into the partially resummed 
expansion (for the triangular lattice) and verifying that the result takes the form (up 
to fourth order) 

In A(A, B, 0) = -(q - 1)D2 +(q - l ) (q  - 2)D3 - [ (q  - l ) (q  -2)2 +&q - l)']D4 + . . . . (4) 

In fact, as can be easily seen at second and third order in B, D (by just replacing A 
by AC, but is more involved at fourth order), an even better verification can be done 
directly on the checkerboard lattice; once the expansion of B 

B =  - ( A C ) - ' ( D - ( q - 2 ) D 2 + ( q - 2 ) 2 D 3 +  . .  .) 
is inserted into expression (l) ,  the normalised partition function A2 takes the simple 
form (4). For instance, up to second order: 

Two conclusions can be drawn from this result: firstly, it establishes on the triangular 
lattice the agreement between the analytic expression (3) on the disorder variety and 
the analytic continuation which is needed to apply the inversion relation; secondly, it 
indicates the possible extension, to the checkerboard Potts model, of a simple expression 

(U + q -  l)(b + q -  l)(c + q  - 1) ( ( I / d + q - l )  
Z(u, b, C, d )  = 

for the partition function on a disorder variety: 

U - 1  b - 1  C - 1  ____-- d - 1  
ABC(2 - - 1 / D ) =  1 or + - 0. ( q - l ) d + l  a + q - l  b + q - l  C + q - l  

(6 )  
Concerning this second point, a further confirmation is obtained when considering the 
Ising model (q  = 2). The partition function of the checkerboard king model has been 
obtained by Utiyama (1951) for any value of the four parameters K1, K 2 ,  K3, K4. The 
results can be rewritten by means of complete elliptic integrals of the third and first 
kinds. The latter reduce to a simple rational expression when the modulus k of the 
elliptic functions tends to 0 or CO. It is shown in appendix 2 that this symmetric 
condition (k = 00) splits into the following relations 

tanh Ki +tanh K j  tanh Kk tanh K, = 0 ( t i  s 0 = (1 ,2,3,4)  
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which are nothing other than equation (6), and its images under spatial symmetries. 
The computation of the double integral which expresses the partition function has 
also been performed in appendix 2, leading to the respective symmetry breaking results 

which are just particular cases of ( 5 )  for q = 2. 
The combined results of this section, that is, that expression ( 5 )  coincides with the 

partition function on the disorder variety up to fourth order in the resummed expansion, 
for any value of q of the checkerboard Potts model, and that it also coincides exactly 
with the partition function of the checkerboard Ising model ( q  = 2), suggest that this 
expression ( 5 )  should be the partition function of the general checkerboard Potts model 
on a disorder variety (6). 

2.3. Order by order determination 

The compatibility, with the partially resummed expansion, of the exact expression for 
the partition function on the disorder variety, leads naturally to the question whether 
one could use this information, together with the automorphy group, in order to 
determine the partition function, order by order in the resummed expansion. Let us 
consider the triangular Potts model. The second and third orders are quite simple and 
will be assumed to be known. Let us try to determine the fourth order, with the help 
of the previous constraints. A qualitative examination of the diagrams allows one to 
suppose that only (1 -A’)n and (1 - A 3 )  ( n  = 1 ,2 ,3 )  singularities enter the exact 
expression at these orders. Its general form can then be written as 

1 
(1 - A24( 1 - A3) 

[P(A)(B4 + 0‘) + Q(A)(B30 + BD3) + R(A)B’D’] 

9 9 9 

R(A)=  c riAi. 
i = O  

P(A) = c piAi Q(A)  = qiAi 
i = O  i = O  

The spatial symmetries imply for these expressions that pi, i = 0, 1, 2, 3, q,, j = 0, 1, 2, 
rk, k = 0, 1 are known. The inversion symmetry leads to pi  +p9+ =known, qi +q9- i  = 0, 
ri + r9-i = 0. Finally, the disorder solution results in a constraint of the following form: 
(1 +A4)P(A)+A(1 +A2)Q(A)+A2R(A)= known expression, o r p 4 - q 3 + r 2 , p 4 + q 4 - r 3 ,  
p 3  + q3 - q4- r, are known. Clearly, some coefficients remain undetermined, so that 
the disorder solutions, while putting new constraints on the expansion, are nonetheless 
insufficient to allow a complete determination of the partition function. One could 
then envisage using the exact solution on the critical variety, but it appears that the 
inconvenience in dealing simultaneously with all the available information, (like large 
q and partially resummed expansions for instance), calls for a more direct and global 
analytical approach. 

3. Global analytical approach 

The local approach, by means of partially resummed expansions, only enabled one to 
make separate use of the spatial and of the inversion symmetries. On the other hand, 
in a global approach, one can envisage iterated combinations of these symmetries, 
thus generating new constraints, which will relate values of the partition function at 
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points lying outside the domain of the partially resummed expansion. Indeed, the 
inversion and spatial symmetries can easily be seen to generate an infinite discrete 
group, which we shall first rapidly describe. 

3.1. Automorphy groups 

The action of the inversion symmetry can be written in a general form 

I : ( a ,  b, c, d)++(f(a), g ( b ) , f ( c ) ,  g ( 4 )  
f o  f = g o g =  1 g o f = h  f 0 g = h-' 

f ( x )  = 2 - q - x, 

where in the case of the Potts model, the functions f; g, h take the form 

g(x) = 1/x, h(x)  = 1/(2 - q - x). 

In the triangular case, the spatial symmetries are generated by 

S': (a,  6, d)++(d ,  b, a )  S : ( a ,  b, d ) - ( b ,  a, 4, 
and the generated group is easily seen to contain finite subgroups isomorphic to S,  and 2, 
acting semidirectly on an infinite subgroup isomorphic to ZOZ and generated by the two 
commuting elements: 

(SI) ' :  (a, b, d ) - ( h ( a ) ,  h - ' ( b ) ,  d )  

( S I ) ' :  (a ,  b, d ) - ( h ( a ) ,  6, h - l ( d ) )  

(this is the same group as that of the three-dimensional cubic model, (Jaekel and 
Maillard 1983); it can also be recovered as a subgroup of the group generated by S ,  
and I, which is studied in appendix 3). In the checkerboard case, the spatial symmetries 
are generated by 

S":(a, b, c, d ) H ( c ,  b, a, d ) ,  u: (a ,  b, c, d ) - ( b ,  c, d, a )  
and the group contains finite subgroups isomorphic to C4" and Z,, acting semi-directly 
on an infinite subgroup isomorphic to Z and generated by? 

u'(u1)': (a ,  b, c, d) - (h (a ) ,  h-l(b),  h(c) ,  h - ' ( d ) ) .  

Indeed, one remarks that S" and U* generate an Abelian subgroup K of C4v, which 
commutes with I and which is stable under conjugation by U ;  thus, every element of 
G: 

g = k,,u"nI. . . I k ,  ual Ikouao 

where 

a,, a,,. * . )  a,=o, 1, ko, k l ,  . . . , k, E K 

can also be written as 

g =  k ' a " n I . .  . Iu"lIu"0, 

g = k"ua"(uI)n, n E E ,  a"=O, 1, k"E K 

k'E K 

or 

t This gives the complete group generated by C,, and I ,  in contrast to the study in Maillard and Rammal 
(1983, p 358), where only K - Z,OZ, (Klein subgroup of C,") was taken into account. 
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or else 

g = b"zq( r2 (az )2 ]" ,  
with 

n E Z ,  f f , P = O ,  1, k e  K .  

As was seen on diagrammatic expansions, the inversion and spatial symmetries are 
also represented by a simple multiplicative action on the partition function (up to an 
inversion). By combined iterations, these symmetries extend to a whole group which 
acts on the partition function as an automorphy group. The description just given, by 
means of a representation on the parameters of the model, has put into evidence 
relations which mix the inversion and the other symmetries. In order to identify the 
group thus defined with the automorphy group acting on the partition function, one 
still needs to verify that these relations translate into similar relations on the auto- 
morphic factors. Indeed, the relations corresponding to the commutation of the 
inversion ( I )  with other symmetries (like SS'S for the triangular lattice, or S" and U' 
for the checkerboard lattice), are easily checked, as they correspond to the invariance 
of the inversion factor under such symmetries. Finally, in the triangular case, the 
Abelian character of the infinite subgroup EOZ results from the form of the automor- 
phic factors associated with ( S I ) 2  and (S'I)' 

I: Z(f(a>, g(b ) ,  g ( d ) ) Z ( a ,  b, 4 = d a )  = ( a  +4 - 1 x 1  - a )  = cp(f(a>> 

(SZ)': Z ( h ( a ) ,  h-", 4 = [cp(g(b)) /cp(a) lZ(a,  b, 4 
(W2: Z ( h ( a ) ,  b, h - w )  = [cp(g(d) ) /cp(a) lZ(a ,  b, 4 

which lead to the following commutative diagram 

One should note that the preceding structure for the automorphy group results only 
from the separative action of the inversion symmetry I ,  and of the corresponding 
automorphic factor ( p ) .  Such properties still hold for other models, like for instance, 
spin models with soluble groups (Zamolodchikov and Monastyrskii 1979). 

Let us remark that, as the triangular model is a particular case of the checkerboard 
model, one might ask about the relationship between their respective automorphy 
groups. A priori, two possibilities can arise. Either the triangular model is a specialisa- 
tion which has more symmetries than the generic checkerboard model, or its symmetries 
are the trace of larger and hidden symmetries of the generic checkerboard model. In 
any case, the group for the checkerboard model at least contains the previously studied 
one, generated by the inversion Z and C4". The first possibility is the weakest one. 
However, two remarkable facts can be put into evidence. First, a large q expansion 
of the partition function of the checkerboard model (up to the sixth order, (Rammal 
and Maillard 1983)), shows a complete symmetry under the whole group S4 of permuta- 
tions of the four parameters. Secondly, the partition function can be computed exactly 
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in the Ising case, and shows the same complete symmetry S, (see appendix 2). These 
two surprising results suggest that the general Potts model on the checkerboard lattice 
has a partition function which is in fact invariant under the whole symmetry group 
S,. Anyway, it is easy to extend the previous study and show that the corresponding 
automorphy group can be described as semi-direct products of S, and Z2 on an infinite 
subgroup now isomorphic to ZOZOZ (see appendix 3). Such a group enlarges the 
automorphy group of the triangular model, thus realising the second possibility. 

3.2. Disorder varieties 

For simplicity, the results will from now be made explicit for the triangular case only. 
In order to give a compact form to the action of the automorphy group on the disorder 
varieties, it will appear convenient to re-express them in terms of canonical variables 

a=-- 1 U - t 3  b=--  1 U - l 3  d = - -  1 2 - t 3  (.=:E) 
t 1 - t u  t 1 - t u  t 1-tz 

on which the group acts multiplicatively 

I :  (U, U, Z)H(l/t2U, P / U ,  r Z / z )  

(SI )?:  (U, U, z ) - ( ~ ~ u ,  u/t4, Z) 

(s’I)*: (U, U, z)-(~*u, U, 2/t4). 

The disorder varieties can then be written as 

( 1  - t’)’(l - uuz) - ( t u  - l ) ( t u  - l)(z - 1 , )  = 0 (7) 
or any of the other two analogous expressions one obtains by permuting the three 
parameters U, U, z. Having the automorphy group act on one of these varieties, one 
first sees that the infinite subgroup Z O Z  provides varieties ofthe following form: (Dapv) 

( 1 - t 2 ) ’ ; l - t 3 a p y u u z ) - t 2 ( t a u - l ) ( t p u - l ) ( t y z - 1 ) = 0  (8) 

a p y  = t-,, a = t4*,  P = t4”’, y = t4p, 

with 

n, m, p E z (8‘) 

and then that the remaining elements leave this set invariant (S, permutes (a ,  P, y )  and 
I gives 

( a ,  P, y)+( l / a ,  w ” ,  l / t 4 Y ) .  

The latter is immediately seen to be an infinite set of different varieties, on which the 
automorphy group acts globally. 

One remarks that there is a small degeneracy in the action of the group: for instance, 
S and SS‘SI generate a subgroup of order 12, which leaves the disorder variety (7) 
invariant. In particular, these are elements which transform a point of a disorder 
variety into another point which is also on a disorder variety. Hence they enable one 
to compare the analytical extension given by the automorphy group (with the auto- 
morphic factors), with the exact expression provided by the disorder solution. In fact, 
they reduce to the following equality 

Z ( 2  - 9 - U, l /d,  1 /  b)Z(a ,  b, d )  = ( a  + q  - 1)(1 - a )  

which is indeed verified by the disorder solution (3). 
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3.3. Exact expressions 

The agreement between the disorder solution and the automorphy group, on their 
intersection domain, and the complementarity they show in extending the disorder 
varieties to an infinite set of transformed varieties, lead us, as a further step, to introduce 
an automorphic function one can build by extending the disorder solutions to the 
transformed varieties, and to compare it with exact expressions for the partition 
function. First we shall give a compact expression for the values of the function on 
all these varieties. Introducing the functions F, G :  

so that A(D)=( l  +t2)' G ( z ) / G ( ~ - ~ z )  (see ( 2 )  and (3)) allows one suitably to take 
account of all the automorphic factors, and to write the required function as: 

(a similar expression can be written for the checkerboard model; in fact, such an 
expression strictly only applies for q > 4, and an appropriate analytic continuation in 
t must be understood for q < 4). On the other hand, the exact expression for the 
partition function is known on the critical variety (uuz = t ,  Baxter et al 1978). As such 
a variety is invariant under the action of the group, it thus intersects the infinite set of 
transformed disorder varieties, and hence provides an infinite set of subvarieties where 
the previous automorphic function can be compared with the known partition function. 
First, one notices that the intersection of the critical variety with any transformed 
variety splits into curves: 

a = t 4n , p = f 4 m ,  y = t4P 
aPuu= l / t 2  and y z =  l / t  

n, m, p E H, n + m + p  = - 1 

and the similar curves obtained by permutation of au, pu, yz. Then, introducing any ofthe 
split equations (10) into expression (9) and using the remarkable functional equality for G 
for G 

G ( x ) G ( l / t Z x ) =  1 ( G ( l / t )  = 1) 
one verifies that expression (9) actually reduces to 

A(u, v, z ) = ( 1  + t * ) ' G ( u ) G ( v ) G ( z ) .  

This is nothing other than the exact expression for the normalised partition function 
on the critical variety (Baxter er a1 1978). (This verification is easily extended to the 
checkerboard case (critical variety: uuwz = l),  which, in the limit U = w and U = z, can 
also provide another comparison: on the critical antiferromagnetic curve of the square 
lattice (uu  = - 1 ) ;  on this curve too, expression (9) coincides, on some appropriate 
domain, with the known partition function (Baxter 1982b).) Let us notice that expression 
(9), though taking different values for a point which simultaneously belongs to different 
Dopy,  remarkably becomes univalued on the critical variety. 

It seems tempting to extend the compact expression (9) to non-integer values of n, m,p.  
However, other conditions, including outside the critical variety, restrictions on the 
validity domain of (9) for given a, p, y ,  should be imposed on the variables, in order to 
determine the function. There, large q expansions could provide hints. 
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4. Conclusion 

The partial resummations of the diagrammatic expansions for Potts models (in fact, 
the expansions around one-dimensional models), display an interesting feature of their 
partition functions for various lattices: the rational character of the coefficients in the 
expansion. The disorder solutions, which appear to be valid along the same neighbour- 
hoods of the one-dimensional models, are also expressed as rational functions which 
adapt to the expansion. Moreover, the form of the disorder solutions (on the disorder 
algebraic varieties) also matches with the automorphic factors. Rational expansions, 
rational particular expressions, together with the automorphy group functional 
equations build a coherent framework which could lead to an interesting characterisa- 
tion and perhaps a determination of these partition functions. 

Further information, though more difficult to work out, is also provided by another 
simplification which occurs in these models: on the disorder varieties, many correlation 
functions, which have their n points aligned in the same direction, take a rational 
dependence in the parameters. As these functions are related to the derivatives of the 
partition function, one could use them in a systematic expansion around a disorder 
variety. 

Of course, disorder solutions have also been established for three-dimensional 
models (Welberry and Miller 1978), for Ising models with a field (Verhagen 1976), and 
for general interaction round a face model (Enting 1977a), thus praviding an exact 
expression for the partition function on rather large subvarieties (with codimension 
one or two). In general, they give fruitful information which can be used in conjunction 
with the automorphic functional equations, as the latter can also be derived for the 
same models. 
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Appendix 1 

A unique diagram will represent all the diagrams of arbitrary length, and also those 
which can be deduced by symmetry. Moreover it will be convenient to introduce the 
following expressions 

Y =  , (B+ACD).  
1-A C 

X =  ( A C B + D )  
1 - A2C2 

The resummed high-temperature expansion for the checkerboard Potts model is given 
by the following diagrams at second order 

D $(q - l)(BX + D Y )  

at third order 

$(q - l)(q - 2)(BX2 + DY2) 
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at fourth order 

and 

E 

and 

( 4 - l ) l  -A2C2 [ (A2+C2)BDXY + A 2 C 2 ( B 2 Y 2 + D 2 X 2 ) ]  

i(4 - 1) - A 2 C 2  [4A2C2BDXY +(A2 + C2)(B2 Y 2  + D2X2) ]  

( 4 -  1) (4-2)  1 - A 3 C 3  [ ( A  + C ) B D X Y + A 2 C 2 ( B 2 Y 2 + D 2 X 2 ) ]  

f ( 4 - l ) ( 4 - 2 ) 1 - A 3 C 3  [4A2C2BDXY + ( A  + C)(B2  Y 2  + D 2 X 2 ) ]  

i ( 4 - l ) ( q - 2 ) 2 1 - A 2 C 2  [2BDXY +AC(B2X2 + D2 Y 2 ) ]  

and, at last, for the disconnected terms 

A2C2 
2 

3 

+ 2 (  5- 1 1 - A2C2 ) ( l  +2A2C2)( - ~ c 2 ) 2 B 2 D 2 ] .  
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A shorthand notation will be used in the following 

Ci = cosh 2 Ki, 

l nZ=~(K,+K2+K,+K, )+ lnZo(Kl ,  K, ,  K , ,  K 4 )  

Si = sinh 2Ki,  T, = tanh Ki, 

and the duality relation will also be useful 

C* =cosh 2KT, S:  = sinh 2KT, ( e -2q  = tanh K i )  

The partition function of the checkerboard Ising model (generalised square lattice) 
has been obtained by Utiyama (1951) under the following form 

In Z,  = 7 
1 

dw, [ ?r dw2 In 8[l + C, C2C3C4 +SIS2S3S, - S,S, cos(w, + w 2 )  
1 6 ~  -7r - 7 r  

- SI S3 cOs(w1 - w2) -(SI s 2  + S3S4) cos 01 -(Sl S4 + s 2 s 3 )  cos wz]. (1 1) 

The C4" invariance of the partition function is obvious on that expression. In fact, the 
partition function is invariant under all permutations of the four coupling constants 
K , ,  K 2 ,  K 3 ,  K4 ( S ,  group). To satisfy this complete invariance it is in fact sufficient 
that the partition function be invariant under a transposition which does not belong 
to C4", say the transposition K ,  c, K,. Let us rewrite the argument in the logarithm 
under the form: 

( ~ + p c o s w , + y s i n w ,  

(Y = 1 +c,c~c~c4+s,S2s3S4-(sIs4+s2s3)cosw2 

p = -(SI s2 + S3S,) - (SI S3 + S$4) cos w2 

y = -(SI S3 - S2S4) sin w2. 

Integration over the angle w ,  is easily performed to give 

ln(a + p  cos w I  + y  sin wl)dwl =2. i r lnf[a  + ( a 2 - p 2 - y 2 ) 1 ' 2 ]  (12) I_: 
a is obviously invariant under the transposition K ,  - K4, and p 2 +  y2  also 

pZ+y2=(S :+S~) (S :+S : )+2 [ (S :+S~)S ,S3  +S,S,(s:+S:)] cos w2+4S1SzS3S4 cos2 w2 

so that the partition function is invariant under that transposition and therefore under 
the S, group. Let us note that another hint for the K ,  - K4 symmetry is also provided 
by the exact expression of the diagonal two-point correlation function (Gabay 1980). 

It is known (Green and Hurst 1964) that the double integral (1 1 )  can be evaluated 
in terms of elliptic integrals of the first and third kinds. In the case of the triangular 
lattice, which corresponds to the limit C3 - S3 + a, the partition function on the 
Stephenson's disorder varieties (tanh K ,  +tanh K, tanh K k  = 0, i, j ,  k = 1,2,4) reduces 
to a very simple expression (Gibberd 1969) 

2, = 2(cosh K ,  cosh K 2  cosh K,)(cosh K , ) - 2 .  
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How can elliptic functions reduce to such a simple expression? The reason is that the 
disorder varieties correspond to a trivial value of the modulus k that occurs in the 
elliptic functions: k = 00. It is natural to use this remark and try to find some candidates 
for disorder varieties in the case of the checkerboard Ising lattice. The exact expression 
of the modulus k for that model has been obtained by Syozi and Naya (1960). The 
condition ( k  = 00) can be written as 

0 = 1 + CTC;C:C: + s7s;s:s: +;(ST’+ s;’+S:’+s,*2) 

= $( TI + T2 T3 T4)( T2 + Ti T3 T4)( Ts + TI T2 T4)( T4 + Ti 7‘2 T3)( TI T2 T3 T4)-2 
(13) 

which obviously generalises Stephenson’s disorder varieties. 
Let us now calculate the partition function restricted to (13). Clearly, it is more 

convenient to compute its dual image. One remarks that the term a*2-/3*2- y*2 
becomes a perfect square: 

a * 2 - p * 2 -  y*2=[f(sT2+sg*2-s*2-s*2 2 3 ) +(STS,* - sfs:) cos CO2]’. 

Hence, the integral (12) reduces to 

dw, dw, ln(a* + P *  cos w ,  + y* sin w , )  

1 sy + s:’ 
=27r[IWdw21n[ - + s:s: cos wz 

or 

3 27r dw2 In[ - sf ;s’2 + S : $  cos w 2  

which can then take the different forms 

One should notice that the equation of the disorder variety has been introduced under 
a S4-invariant form and that the S4-symmetry breaking in the final result (14) comes 
from two bifurcations in the determination of the square roots. Taking into account 
all the multiplicative factors, one gets the result that the partition function per site is 
given by 

2, = 2(cosh K 1  cosh K 2  cosh K, cosh K4)1/2(cosh KJ-’ 

when restricted to the varieties: 

i = 1 , 2 , 3 , 4  

tanh Ki + tanh Kj tanh Kk tanh K, = 0 ( i , j ,kO=(1 ,2 ,3 ,4) .  

Appendix 3 

The structure of the group G, generated by S4 and I, can be obtained in two steps. 
Firstly, any element of G 

g = s n I .  . . I S l I S , ,  SO, S I ,  * . ., Sn E S4 
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can be rewritten 

g = I*S[(S~Sp)-lzSpzsp]. . . [(s’lsl)-’zs~zs~][(sAs~)-lzs~zso] 

where 

a =o, 1, s, so, SA, SI, si,. . . , sp si€ s4. 
This form puts into evidence the infinite subgroup H, which consists of all the elements 
of G, possessing an even number of I and resulting in a global permutation which is 
the identity. The generators of H can also be written: 

s ’ I (  ss 1) - I Is, s, S I €  s4 
Let us denote by P12, P13, P14, P23,  P24, P34 the elementary transpositions which generate 
S4, and by U a cycle of order four. PI3 and P24 generate an Abelian subgroup K 
(isomorphic to Z 2 0 Z 2 ) ,  which commutes with the inversion I. Furthermore, a com- 
plementary set E can be exhibited, which has the following properties: any element 
s of S4 can be written in a unique way 

s = ke = e’k’,  k, k’E K e, e ’ €  E. 

One obtains E as the subset: (1, PI2, P14, P23,  P34, U ) .  The generators of H then reduce 
to 

e’Ie’-’ e - l l e .  

If e, e’ are both transpositions, such an element is easily rewritten ( I  is an involution) 

(e ‘I )2(Ie)z  = ( e ’ I )2 (eI ) -2  

If one of them is U. it can be rewritten 

a2(uI)2(eI) - ’  or (~’z)’[u’(uz)~]-’ 

Therefore H is generated by the elements of the form 

( p12 o2, (p14z)21 (p23z>2, (p341)2, u2( UI)? 

Secondly, using the separative form of the action of the inversion, one can show 
that the generators 

satisfy further relations 

(p341)’ = (P23z)2~P12r)-’(P14z)2 

U2(UZ)’ = (P23z)2(P,4z)2 
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and that only three of them are independent 

(P1202, (P1402, ( P 2 3 0 2  

for instance. Moreover, (15) show that they commute, and thus lead to an infinite 
subgroup which is isomorphic to ZOZOZ. 
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