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Abstract. We continue our study of the star-triangle relation for two-component spin 
models, with the help of the inversion relation. The conclusion is that the most general 
interaction-round-a-face models (16 non-zero parameters) that satisfy the star-triangle 
relations are mainly Baxter’s and Fan and Wu’s models. In this way we recover Krichever’s 
result for the classification of the star-triangle relations for vertex models. We sketch a 
generalisation of this approach to models with excluded configurations, to staggered models, 
and to three-dimensional models (tetrahedron relations). 

1. Introduction 

The motivations for the present study and the definitions of variables have been 
thoroughly exposed in the preceding paper (Maillard and Garel 1984, to be referred 
to as (I)). We will focus here on the p = Ap case, with all parameters different from 
zero, for which some results have been presented in (I). To go deeper into this relevant 
case, we will make use of the inversion relation (IR) (Stroganov 1979) whenever it 
exists; more precisely we will use the stability of the star-triangle relation (STR) under 
the IR. 

There remain the singular cases for which the inversion relation does not exist. In 
another context, there also remain the degenerate cases where some Boltzmann 
weights, associated with special spin configurations, vanish (model with exclusions). 

Section 2 will deal with the IR and we will show that the algebraic invariants, 
obtained from the commutation of transfer matrices of small size, are stable under 
the IR. 

In 0 3 we will study the case p = Ap (non-zero parameters) and show, with the 
help of the IR, that the non-singular cases (for which an IR does exist) are mainly 
Baxter’s and Fan and Wu’s models (Baxter 1972, Fan and Wu 1970). Possible exten- 
sions of the present method will be sketched in 8 4 for (i) singular models for which 
an IR does not exist and models with excluded configurations such as the hard 
hexagon model, (ii) some staggered models, (iii) three-dimensional models (tetra- 
hedron relation). 
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2. Inversion relation and stability of algebraic invariants 

The inversion relation (IR) (Stroganov 1979) has been used by many authors as a 
short cut to calculate the partition function (e.g. Baxter 1980a, Schultz 1981). Let us 
define the IR in the case of the interaction-round-a-face model (IRF): the IR means 
that the partition functions of the two graphs below are equal: 

a, 

Here Wl stands for the inverse Boltzmann weight of W; u1 and u3 are fixed and one 
sums over the spin a; A is some known factor. This relation analytically means that 
for any fixed configuration (ul, u3) one has 

In essentially all the known soluble two-dimensional models, one may check that the 
STR and the IR occur simultaneously. Moreover, the STR has a nice stability property 
with respect to the IR.  

Acting simultaneously on the (ul, u6, u5) and (U* ,  u3, u4) sides of the two hexagons 
of the STR (figure 1) by the inverse Boltzmann weight W,, and using the definition of ao& 4 Q l ~ $ ) Q '  

2 1  

02 Q 3  0 2  Q3 

Figure 1. The star-triangle relation 

the IR, one gets a new STR (figure 2). Of course there exist similar STR involving W, 
and W;. This new STR (figure 2) implies as well a new transfer matrix commutation 

[TN( W ) ,  TN( w; )I = 0. (2) 

From [TN(  W), TN( Wi)]=O (see equation (2) of paper (I)) we have obtained a set 
of algebraic equations for small size N ( N  = 1,2,  . . .): vu( W )  = pm( W'). Similarly 
we get from (2) 

CPU ( W )  = vu( wi ) 

CPU( W ' )  = CPU( w; 1. 
and therefore 

(3)  
The algebraic invariants have to be stable under the IR. 

More precisely, the algebraic invariants qa coming from the horizontal transfer 
matrix commutation have to be stable under the IR denoted by I (see appendix); 



Classification of the star-triangle relation: Zl  1259 

Figure 2. The I-transform of the star-triangle relation. 

clearly the qD,’s are also stable under the inverse (in the group sense) of transformation 
I that we denote by J=Z-’. In a similar way the algebraic invariants associated 
to the vertical transfer matrix commutation (see paper (I)) have to be stable under 
their corresponding IR denoted by K and its inverse L = K - ’ ;  both are also made 
explicit in the appendix. Obviously the above considerations are appropriate for the 
non-singular cases where an IR does exist. 

3. The non-singular p = Ap case 

3.1. Preliminaries 

As shown in paper (I), we can extract from the case N = 1 and 2 at least four algebraic 
invariants (horizontal transfer matrix) 

( a  - p ) l d ,  be/ ei, no/ hl, ( d / m ) * .  

Let us use the stability property under the inverse I 

d /  m = d I /  ml = ( k /  f ) (  bh - f d ) / (  io - k m )  

where dI, m I , .  . . denote the Z-transforms of d ,  m , .  . . . We also get 

bc /e i=  bIcI/eIiI = ( o c / e h ) ( b h - f d ) / ( i o -  km)  

and 

h l / n o =  hllI/nlol = ( l i / b n ) ( b h - f d ) / ( i o -  km) .  

From (4), ( 5 ) ,  (6) we have 

df / km = bh/ io, kd/  f m  = cl/ en, 
which in turn imply 

( d /  m)*  = (bc /  ei)(  hl/ no) 

i.e. p = Ap and 

( f / k ) ’ =  ( e b / i c ) ( n h / o l ) .  

(4) 

We therefore conclude that the mere existence of an IR is sufficient to impose the 
condition p = Ap (equation (1)). 

No new invariants are generated by the inverse J =I-’.  We would get the same 
equations (7) and (8) by considering the stability of the Ga’s under the inverse K 
(and L).  
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Equations (4)-(10) thus behave as a closed set under the IR; to find new invariants 
Q~ requires a different approach. 

Let us now consider the remaining invariants, for N = 1 for the horizontal ( ( a  - 
p)/ d) and vertical ((a -p)/ f) transfer matrices; these invariants are stable respectively 
under I and K. If a - p  # 0 this yields 

where the Ai’s are defined in the appendix; from (11) and (12) we get kf = dm. 
Successive I transforms of (11) will lead to an infinite number of constraints (as 
oppmed to the closed set (4)-(10)). For this reason, it seems unlikely to find any 
non-trivial solution satisfying these constraints. From now on, we will therefore assume 
that 

a = p. 

Transforming (13) by Z and J, we have 

Writing (15) explicitly, we obtain 

gp/AlA4- ho/A 2 A 3-- gp- ho - 
aj/AlA4- bi/A2A3 ai- bi 

and this gives two classes of solutions 

(a)ajho = bigp or ( p ) A l A 4  = A2A3. 

A similar result can be obtained from (16), namely 

( a ’ ) agln = jpec and (p’)8184=8283. 

(15‘) 

(Note that (a’) and ( p ’ )  are transforms of (a) and ( p )  under the IR.) 

Before studying these two cases, let us remark that (15) and (16) imply that the 
ratio Al /A4  (or 8,/8,) is ‘special’. This ‘special’ role can also be appreciated in the 
following way: if one considers particular spin configurations of u2, u3, us, U6 (figure 1) 
and makes use of the stability under the IR,  it is possible to get, among many, the 
equations 
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3.2. Baxter-like solution 

We wish to study here the case (a) (or (a‘)) ajho = bigp and 

agln = jpec (with a = p ) .  

Let us now use the gauge transformations D1 and D2 introduced in paper (I). Owing 
to their overlap D1 n Dz, which depends on one parameter, we can impose g = j which, 
due to (14), implies Al = A4, 

In = ec and bi = ho. (19), (20) 
Similarly making use of the non-overlapping parts ( D1 - Dz and Dz - D l ) ,  we can fix 

d = m  and f = k .  (21), (22) 

bh = io and cl = en (231, (24) 

b = EO, i = eh, (251, (26) 
c = e’n ,  e = e’l .  (27), (28) 

Recalling (7) and (8) we therefore have 

which in turn lead to 

The stability of (25) under the IR implies e = e ’ .  These simplifications (reduction from 
16 to 8 parameters) allow us to thoroughly investigate the algebraic invariants rp,( W) 
for N = 3; in this case the invariants quoted in paper (I) become trivial, but the small 
number of parameters enables us to get new algebraic invariants such as 

a 3 * d 3 - ( a f 2 + g e c + e g b h ) ~ ( g 2 d +  fbh+Efec) 
bc (a  * d )  

If E = 1,  that is, restricting ourselves to positive Boltzmann weight (a = p, b = 0, 
c = n, e = I ,  i = h ) ,  we could continue the analysis for larger N and get in this way the 
symmetric &vertex (Baxter 1972), namely c = e, d = f, a = g, b = h, and Fan and Wu’s 
model (see below). 

At this point it is simpler to observe that the spin reverse property holds 

W(01, c 2 ,  U3, U41 = W-al, -U23 - U 3 7  -4). 

Through the Kadanoff-Wegner mapping (Kadanoff and Wegner 1971), this spin model 
can be viewed as an asymmetric %vertex model (8  homogeneous parameters). 

We can therefore rely on Krichever’s analysis (1981) (see also Sogo et a1 1982) 
to conclude that the most general models of this case ( E  = l ) ,  that satisfies the STR, 
are the symmetric 8-vertex model (Baxter 1972) and Fan and Wu’s model that we now 
consider. 

4. Fan-Wu-like solution 

Let us now study solution ( p ) :  

A l A 4  = A 2 A 3  and Si 84 = 8 2 6 3 .  

Using the same line of argument as for solution (a), we can restrict ourselves to an 
%parameter model ( d  = m, f = k, b = EO, c = en, e = el, i = eh, Az = As, S2 = S3, g = j ,  
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A ,  = A4) obeying 

(ag -  ec)’ = (bh  - fd)’, 

(ag - Ebh)’ = (eec - fd)’. 

(29) 

(30) 

The study of non-singular solutions of (29) and (30) splits into three cases 

(p.l) ag = cbh and ec = efd, 

(p.2) ag = Efd and ec = ebh, 

(p.3) ag - ec = E ( bh  - f d ) .  

If we restrict ourselves to positive Boltzmann weights ( E  = l ) ,  solution (p.3) is the 
Fan-Wu free fermion condition (Fan and Wu 1970). The model is not in general 
included in the Baxter model (existence of non-zero fields). The cases (p.1)’ (p.2) need 
further study. 

The section can be summarised as follows: the classification of the spin STR at least 
for non-degenerate cases yields solutions very similar to the vertex STR classification; 
Baxter’s and Fan and Wu’s models are recovered. The similarity breaks down for 
degenerate models (hard hexagon). 

4. Extension of the method 

4.1. Singular and degenerate cases 

(a) Singular cases 
The study of models which do not possess an IR is not much advanced: some of these 
models are zero- or one-dimensional in disguise, but others are quite non-trivial 
(isotropic two-dimensional Ising model with a magnetic field). 
(b) Degenerate cases 
When one or more of the parameters are zero, the methods of paper (I) and of this 
paper still apply, but the results differ. (The commutation of transfer matrices may 
or may not give the same algebraic invariants). An exhaustive classification of these 
cases appears to be an extremely tedious task (numerous possible ramifications). 

A noteworthy example is the hard hexagon model, which corresponds to a = b = c = 
d = e = f =  i = k = m = 0 (Baxter 1980b). 

The method gives for N = 2 , 3 , 4  respectively three invariants (pl,  ( p 2 ,  (03 which are 
not independent since one can show that ( ~ p ~ ) ~  = ( ( p J 1  = (p3-  (p,, which in turn implies 
(§ 2) cp2 = ( P ~ - ( P I .  This relation is actually satisfied for the hard hexagon model: see 
for instance equation (23) of Baxter (1980b). The hard hexagon model is definitively 
different from Baxter’s or Fan and Wu’s (e.g. different critical exponent 8). 

4.2. Staggered models 

Let us consider a staggered model possessing a spin reverse property with Boltzmann 
weights W,, W2 (see figure 3). 

This model is equivalent to a staggered asymmetric 8-vertex model and contains 
important subcases such as the Ashkin-Teller model and the non-critical Potts model 
(staggered 6-vertex model). The calculation for N = 1 (noting the doubling of the cell 
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Figure 3. Elementary cell for a staggered model. 

in both directions) gives the following invariants: 

a1 Q 2  + dl d2 - f l f 2  - g,g2 el h2 + hl e2 
c1 b2 + bl c2 bl c2 + c1 b2’ 

e1h2 - h e 2  a1a2+f1f2- d*d2-g1g2 
b l ~ 2  - c1 b2’ 

1 

e1 h2 - hl e2 

5. Three-dimensional generalisations 

The three-dimensional generalisation of the STR is called the tetrahedron relation 
(TeR), and it also implies the commutation of transfer matrices of finite size ( N ,  M ) ,  
provided one takes periodic boundary conditions in two directions: 

These commutation relations yield algebraic invariants pa( W) = c p m (  W’); for 
instance, in the case of Zamolodchikov’s solution of the tetrahedron relation 
(Zamolodchikov 1981) we find for N = M = 2 the invariant? 

[ T N . . M (  W ) ,  7-”( W’)l= 0. 

[(Po - Qd4 - (Po + Q0I4 + (Pi - Q1 l4  - (Pi + 01 l4  + (p2 + Q 2 I 4  

(where we have used Baxter’s notation (1983)). The method presented in 0 2 can be 
used to generate new invariants with the help of the three-dimensional IR. Such a 
task appears to be a tedious but systematic one, and may lead to a classification of the 
TeR. 

6. Conclusion 

In this paper and in paper (I), we have tried to classify the STR for two-component 
spin models. In the non-degenerate cases, our results are as follows: if there is an 
inversion relation (non-singular case), necessarily p = Ap and the most general models 
that satisfy the STR are mainly Baxter’s and Fan and Wu’s. 

If there is no IR, we can only conclude if p # Ap and if the algebraic invariants 
pa( W) are independent: in this case the only solution is the trivial solution W = 
constant X W‘. The degenerate cases can be, in principle, studied in the same way. 

From a general point of view, this problem of exhaustive classification is similar to 
the problem of classification one encounters in group theory. 

t With Baxter’s angles (Baxter 1983) cp( W )  is equal to cos I& 
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It is not easy to use perturbation theory for this purpose as is clear from the very 
hairy structure of models having a STR: Fan and Wu's solution is not completely 
included in Baxter's, neither is the asymmetric 6-vertex solution. The hard hexagon 
model does not seem to belong at all to this set (different critical exponents). It seems 
to us that the method and results presented in these two papers are well adapted to 
describe such a structure. 

Appendix 

We define here the four (inverse) transformations I ,  J, K,  L by the following matrix 
identities: 

Moreover, we set (see (11) and (12)) 

A 1 = a g - e c ,  6, = a i -  bi, 

A2 = io - km, 62 = cl-  kd, 

A3 = bh - fd, S3 = en - fm, 

A d =  jp-In ,  64 = g p -  ho. 
In degenerate cases such as the hard hexagon model one has to adopt the following 
convention: the inverse of (8 :) is (8 y I x )  and similarly ( 6  ,") has the inverse ( h ' x  8). 
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