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Abstract.
This paper provides several illustrations of the numerous remarkable

properties of the lambda-extensions of the two-point correlation functions of the
Ising model, sheding some light on the non-linear ODEs of the Painlevé type. We
first show that this concept also exists for the factors of the two-point correlation
functions focusing, for pedagogical reasons, on two examples namely C(0, 5) and
C(2, 5) at ν = −k. We then display, in a learn-by-example approach, some of
the puzzling properties and structures of these lambda-extensions: for an infinite
set of (algebraic) values of λ these power series become algebraic functions, and
for a finite set of (rational) values of lambda they become D-finite functions,
more precisely polynomials (of different degrees) in the complete elliptic integrals
of the first and second kind K and E. For generic values of λ these power
series are not D-finite, they are differentially algebraic. For an infinite number
of other (rational) values of λ these power series are globally bounded series,
thus providing an example of an infinite number of globally bounded differentially
algebraic series. Finally, taking the example of a product of two diagonal two-point
correlation functions, we suggest that many more families of non-linear ODEs of
the Painlevé type remain to be discovered on the two-dimensional Ising model,
as well as their structures, and in particular their associated lambda extensions.
The question of their possible reduction, after complicated transformations, to
Okamoto sigma forms of Painlevé VI remains an extremely difficult challenge.

PACS: 05.50.+q, 05.10.-a, 02.30.Hq, 02.30.Gp, 02.40.Xx
AMS Classification scheme numbers: 34M55, 47E05, 81Qxx, 32G34, 34Lxx,
34Mxx, 14Kxx

Key-words: Ising two-point correlation functions, lambda extension of
correlation functions, sigma form of Painlevé VI, D-finite functions, differentially
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1. Introduction: linear versus non-linear symmetry representations

It is not necessary to underline the fundamental role played by the concept of
symmetry in physics [1], or in applied mathematics, and in the foundations for the
fundamental theories of modern physics. Symmetries can correspond to continuous or

http://arxiv.org/abs/2212.07984v2


Symmetries of non-linear ODEs: lambda extensions of the Ising correlations 2

discrete transformations, and are frequently amenable to mathematical formulations
such as group representations, with invariant or covariant properties, non-trivial
identities, conservation laws, ...

Integrable models (in dynamical systems, lattice statistical mechanics, quantum
field theory, solid state physics, enumerative combinatorics, ...) play a selected role,
since they correspond to situations where one has “enough” (possibly an infinite
number of) conserved quantities to solve the problem. We are not going to recall
the techniques and tools introduced to achieve that goal (Yang-Baxter equations,
Bethe Ansatz, Lax pairs, Schlesinger systems [2], ...) but we will rather focus on the
linear and non-linear differential equations emerging naturally in these problems¶, and
on the corresponding symmetries of these ordinary differential equations. To address
that problem we will, for pedagogical reasons, focus on the analysis of the two-point
correlation functions of a fundamental integrable model, the two-dimensional Ising
model [6].

Some two-point correlation functions C(M,N) of the two-dimensional Ising
model can be seen as solutions of linear differential equations and, in the same time,
also as solutions of non-linear differential equations, namely Okamoto sigma-forms of
Painlevé VI equations. The solutions of these last non-linear ODEs naturally introduce
one-parameter families of power series solutions, that are called lambda-extensions of
the two-point correlation functions.

The two-point correlation functions C(M,N) we will consider [7, 8] for the
special case ν = −k (or in the isotropic case ν = 1), are polynomial expressions

of the complete elliptic integrals of the first and second kind K and E: they are
solutions of linear differential operators with polynomial coefficients, in other words
they are D-finite, however, when introducing some well-suited log-derivative of these
two-point correlation functions (see (4) below), they are also solutions of highly
selected non-linear differential equations having the Painlevé property [9], namely
Okamoto sigma-forms [10] of Painlevé VI (see (5) below), in other words they are
differentially algebraic‡. The two-point correlation functions C(M,N) have in the

same time, a linear (D-finite) description and a non-linear (differentially algebraic)
description ! The question of the analysis of the symmetries of these two linear and

non-linear ordinary differential equations, and of the symmetries of their solutions††
naturally pops out. It is crucial to note that the non-linear ordinary differential
equations for the two-point correlation functions C(M,N) correspond to one closed

equation (see (5) below) where the two integers M and N are parameters in the
equation. In contrast the linear differential equations for the C(M,N) correspond
to an infinite number of linear differential equations of order (and degree and size)
growing with the two integers M and N . Each description (linear versus non-linear)
has its own advantages and disadvantages: an infinite number of differential operators
to be discovered but they are simply linear, versus one (M , N -dependent) equation

¶ The non-linear ODEs emerging in such an “integrable” framework are highly selected: they have
the (fixed critical) Painlevé property, they have algebraic function solutions, etc ... This is in (strong)
contrast with the generic non-linear ODEs for which more numerical analysis (investigation of the
qualitative behavior of non linear ODEs, stability and boundness, ...) must be performed (see for
instance [3, 4, 5]).
‡ A differentially algebraic function [11, 12] is a function f(t) solution of a polynomial relation
P (t, f(t), f ′(t), · · · f(n)(t)) = 0, where f(n)(t) denotes the n-th derivative of f(t) with respect to
t.
††The symmetries of a differential equation and the symmetries of the solutions of the differential
equation are two different concepts.
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encapsulating everything, but it is non-linear. The analysis of the symmetries of
the linear differential operators associated with the two-point correlation functions
C(M,N) can, for instance, be performed considering the corresponding differential
Galois group. Actually we have seen in previous papers [13] that the linear differential
operators emerging in the integrable models are systematically associated with
selected differential Galois groups, the operators being homomorphic [13] to their
adjoint associated operators†. In this Ising case, the linear differential operators are
homoomorphic [14] to the symmetric N -th power of the order-two linear differential
operator annihilating the complete elliptic integrals of the first or second kind K and
E. Along this line, some mathematicians could argue that, if a differential Galois group
approach of integrability is probably natural, an extension of the concept of differential
Galois group for non-linear ODEs is certainly hopeless in general [15]. They may even
argue (see [15] in section 6.2) that, even if most of the people that work in integrability
consider the families of Painlevé transcendents [16, 17] as integrable, their opinion is
that, in general, they are non integrable§. Let us recall that the sigma-form of Painlevé
VI equations (like (5) below), are highly selected non-linear ODEs: they have the
fixed critical point property [20, 21, 22] (Painlevé property) and can be obtained from
isomonodromic deformations of linear differential equations [23, 24], which allows to
see these non-linear ODEs as compatibility conditions of a linear Schlesinger system
of PDEs. In that case one could imagine to consider a differential Galois Theory
for the underlying Schlesinger system. The purpose of this paper is not to build a
differential Galois Theory of Painlevé equations in order to discuss, from a very general
mathematical viewpoint the “symmetries” of the non-linear ODEs (like (5) below)
emerging for the C(M, N) Ising two-point correlation functions. On the contrary,
in a very pedagogical, learn-by-examples approach, we will display a large set of the
properties (symmetries ...) of the C(M, N) two-point correlation functions, with a
focus on the remarkable properties†† of the lambda-extensions solutions of the sigma-
form of Painlevé VI non-linear ODEs (like (5) below). For pedagogical reasons we will
restrict to C(0, 5) and C(2, 5). Then, taking an example of product of two diagonal
two-point correlation functions, we will suggest that many more families of non-linear
ODEs of the Painlevé type remain to be discovered on the two-dimensional Ising
model, as well as their structures, and in particular their associated lambda extensions.
Finally, we will give additional comments and results providing an illustration of a set
of remarkable, and sometimes puzzling, properties of the lambda-extensions of the
Ising two-point correlation functions.

2. Recalls

We revisit, with a pedagogical heuristic motivation, the lambda extensions [14] of
some two-point correlation functions C(M,N) of the two-dimensional Ising model.
For simplicity we will examine in detail the lambda extensions of a particular low-
temperature diagonal correlation function, namely C(0, 5) and C(2, 5), in order to
make crystal clear some structures and subtleties. Note however that similar structures

† We even have this remarkable property with most of the linear differential operators annihilating
diagonals of rational functions [13].
§ At least in the (narrow) Liouville sense [18, 19].
††We must also mention the fact that the lambda-extensions of the two-point correlation functions
C(M, N) also verify quadratic discrete recursions [25, 26, 27] (lattice recursions in the two integers
M and N), that can be seen as integrable lattice recursions.
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and results can also be obtained on other two-point correlation functions C(M,N)
for the special case ν = −k studied in [7] where Okamoto sigma-forms of Painlevé VI
equations also emerge.

In a previous paper [7] we considered the two-point correlation C(M,N) of spins
at sites (0, 0) and (M,N), of the anisotropic Ising model defined by the interaction
energy

E = −
∑

j,k

{Evσj,kσj+1,k + Ehσj,kσj,k+1}, (1)

where σj,k = ± 1 is the spin at row j and column k, and where the sum is over all
lattice sites. Defining

k = (sinh 2Ev/kBT sinh 2Eh/kBT )
−1 and ν =

sinh 2Eh/kBT

sinh 2Ev/kBT
, (2)

we found [7] that in the special case¶

ν = −k, (3)

the correlation† C(M,N) satisfies an Okamoto sigma-form of the Painlevé VI
equation.

For T < Tc, M ≤ N and ν = −k, with t = k2, introducing

σ = t · (t− 1) ·
d lnC(M,N)

dt
−

t

4
, (4)

we have, when M +N is odd, the following Okamoto sigma-form of the Painlevé VI
equation [7]:

t2 · (t− 1)2 · σ′′2 + 4 · σ′ · (t σ′ − σ) ·
(

(t− 1) · σ′ − σ
)

−M2 · (t σ′ − σ)2 −N2 · σ′2 + (M2 +N2) · σ′ · (t σ′ − σ) = 0. (5)

2.1. Two factors

In this M +N odd, M ≤ N , M 6= 0, ν = −k case, the correlation functions factor
into two factors††. We will write the factorizations of these C(M,N)’s as

(1 − t)−1/4 · C(M,N ; t) = g+(M,N ; t) · g−(M,N ; t), (6)

where the two factors g± are homogeneous polynomials of the complete elliptic
integrals of the first and second kind:

K̃(k) =
2

π
· K(k) = 2F1

(

[
1

2
,
1

2
], [1], k2

)

,

Ẽ(k) =
2

π
· E(k) = 2F1

(1

2
,−

1

2
], [1], k2

)

. (7)

We consider the following logarithmic derivatives of the previous two factors:

σ±(M,N ; t) = t · (t− 1) ·
d ln g±(M,N ; t)

dt
. (8)

¶ The condition ν = −k (as well as the isotropic case ν = 1) is special because it is such that the
complete elliptic integrals of the third kind (EllipticPi in Maple), appearing in the anisotropic case,
reduce to complete elliptic integrals of the second kind (see equation (30) in [7]).
† Which is the same as the Toeplitz determinants [28] of Forrester-Witte [29] as given in [30].
††What is written here in subsection 2.1 is also true when M = 0, with the caveat that g+ and g−
in (6) factor into two factors (see subsection 2.2 below).
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The sigma functions have additive decompositions which follow from the mulplicative
decompositions (6):

σ(M,N ; t) = σ+(M,N ; t) + σ−(M,N ; t). (9)

Here we begin with the factorizations (6) of the C(M,N)’s with M+N odd, M ≤ N ,
for miscellaneous values of M and N , and, by use of the methods described in [7]
and of the program guessfunc of Jay Pantone [31], we find that both σ+(M,N ; t) and
σ−(M,N ; t) in (9) satisfy the same second-order non-linear differential equation¶

32 t3 · (t − 1)2 · σ′′2 + 4 t2 · (t− 1) ·
(

8 · σ − 8 · (t+ 1) · σ′ +M2 −N2
)

· σ′′

−
(

8 σ − 16 · t σ′ +M2 t −N2 + 1 − t
)

·
(

8 · t · (t− 1) · σ′2 − 16 t · σ · σ′

+ 8 · σ2 + (M2 −N2) · σ
)

= 0, (10)

where the prime indicates a derivative with respect to t, and where σ is one of the
two log-derivatives (8).

The two solutions (8) of (10), σ+(M,N ; t) and σ−(M,N ; t), have different
boundary conditions. Note that σ± = 0 is a selected solution of (10).

2.2. Four factors

In [7], we discovered that C(0, N) with N odd and k = −ν, in the low-temperature
regime, factors into four terms instead of two. The four factors for C(0, N) were
presented as

C(0, N) = constant · (1− t)1/2 · t(1−N2)/4 · f1f2f3f4, (11)

where the factors fj all vanish at t = 0 in such a way to cancel the factor t(1−N2)/4.
We normalize the factors fi in (11) in such a way to extract a factor of (1−t)1/4 which
is the limiting behavior of C(0, N) as N → ∞, and we impose the condition that
the four new factors satisfy the same non-linear differential equation. The previous
factorization (11) in four factors† now reads [8]:

(1 − t)−1/4 · C(0, N) = g1(0, N) · g2(0, N) · g3(0, N) · g4(0, N). (12)

If one defines

σj = t · (t− 1) ·
d ln gj(t)

dt
, (13)

the previous factorization (12) in four factors becomes an additivity property of the
corresponding σi’s:

σ(0, N) = σ1(0, N) + σ2(0, N) + σ3(0, N) + σ4(0, N). (14)

These σi’s are solutions of the same non-linear differential equation of the Painlevé
type which reads:

t2 · (t − 1)2 · σ′′2 + 4 σ′ · (t · σ′ − σ) ·
(

(t− 1) · σ′ − σ
)

+
1

4
·
(

(N2 + 1) · (t− 1) − t2
)

· σ′2 −
1

26
·
(

16 · (N2 + 1 − 2 t) · σ +N2 · t
)

· σ′

−
1

4
· σ2 +

N2

26
· σ −

N2 · (N2 − 3)

210
= 0. (15)

¶ Note that this second order non-linear ODE, which is actually of the Painlevé type, is not of the
Okamoto sigma-form of Painlevé VI form, but it can be reduced to such a form using non trivial
transformations (equations (26), (28) in section (2) of [8]).
† Examples of gi(0, N)’s for C(0, 5) and C(0, 7) are given in [8].
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3. α-extension of the four factors f1, f2, f3, f4 for C(0, 5)

We underlined that the (low-temperature) row correlation functions C(0, N) factor,
when is N odd, into four factors (11). These four factors fi’s are each a homogeneous

polynomial of the complete elliptic functions E and K. Furthermore one can see that
each of these four factors is a Toeplitz determinant (see for instance section G.4 of
appendix G in [8]).

More specifically let us revisit the N = 5 case detailed in [7] and also [8], where
the two-point correlation C(0, 5) factors as follows

C(0, 5) =
256

81
·
(1 − t)1/2

t6
· f1 · f2 · f3 · f4, (16)

where:

f1 = (2t − 1) · Ẽ + (1 − t) · K̃, f2 = (1 + t) · Ẽ − (1 − t) · K̃, (17)

f3 = (t − 2) · Ẽ + 2 · (1 − t) · K̃, (18)

f4 = 3 Ẽ2 + 2 · (t − 2) · Ẽ K̃ + (1− t) · K̃2. (19)

These exact polynomial expressions in terms of complete elliptic integrals of the
first and second kind K̃ and Ẽ, actually have some lambda-extensions. Considering
the non-linear ODE’s verified by these fn’s one can, by a down-to-earth, order by
order expansion of the analytic at t = 0 solution, find the series expansion of a
one parameter family of solution of the non-linear ODE’s (we will denote α this
parameter), such that α = 0 corresponds to the previous exact expressions (17),
(18), (19). The first terms of these α-dependent solutions read:

f1(α) =
3

2
t −

9 t2

16
−

15 t3

128
−

(

105

2048
+

15

1024
α

)

· t4 −

(

945

32768
+

135

8192
α

)

· t5

−

(

4851

262144
+

513

32768
α

)

· t6 −

(

27027

2097152
+

7497

524288
α

)

· t7 (20)

−

(

637065

67108864
+

434295

33554432
α

)

· t8

−

(

15643485

2147483648
+

6292455

536870912
α −

105

536870912
α2

)

· t9 + · · ·

f2(α) =
3

2
t −

3 t2

16
−

3 t3

128
−

(

15

2048
−

15

1024
α

)

· t4 −

(

105

32768
−

165

8192
α

)

· t5

−

(

441

262144
−

723

32768
α

)

· t6 −

(

2079

2097152
−

11799

524288
α

)

· t7 (21)

−

(

42471

67108864
−

747927

33554432
α

)

· t8

−

(

920205

2147483648
−

11692785

536870912
α −

105

536870912
α2

)

· t9 + · · ·

f3(α) = −
3

8
t2 −

3 t3

32
−

45 t4

1024
−

105 t5

4096
−

(

2205

131072
−

15

131072
α

)

· t6

−

(

6237

524288
−

135

524288
α

)

· t7 −

(

297297

33554432
−

3285

8388608
α

)

· t8

−

(

920205

134217728
−

16965

33554432
α

)

· t9 + · · · (22)
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f4(α) = −
3

8
t2 −

3

16
t3 −

129 t4

1024
−

195 t5

2048
−

(

5025

65536
+

15

131072
α

)

· t6

−

(

8421

131072
+

75

262144
α

)

· t7 −

(

1856253

33554432
+

3975

8388608
α

)

· t8

−

(

3260907

67108864
+

11025

16777216

)

· t9 + · · · (23)

Furthermore one sees, on the series expansions of the α-extensions (20), (21),
(22), (23), the following remarkable identities

(1 − t)1/4 · f2(α) = f1(1 − α), (1 − t)1/4 · f2(1 − α) = f1(α),

(1 − t)1/4 · f4(α) = f3(1 − α), (1 − t)1/4 · f4(1 − α) = f3(α), (24)

and thus:

(1 − t)1/2 · f2(α) · f4(α) = f1(1 − α) · f3(1 − α),

(1 − t)1/2 · f2(1 − α) · f4(1 − α) = f1(α) · f3α), (25)

f4(α) · f1(1 − α) = f2(α) · f3(1 − α),

f4(1 − α) · f1(α) = f2(1 − α) · f3(α). (26)

In particular one has:

f1(0) = (2t − 1) · Ẽ + (1 − t) · K̃, (27)

f1(1) = (1 − t)1/4 ·
(

(1 + t) · Ẽ − (1 − t) · K̃
)

, (28)

f2(0) = (1 + t) · Ẽ − (1 − t) · K̃, (29)

f2(1) = (1 − t)−1/4 ·
(

(2t − 1) · Ẽ + (1 − t) · K̃
)

, (30)

f3(0) = (t − 2) · Ẽ + 2 · (1 − t) · K̃, (31)

f3(1) = (1 − t)−1/4 ·
(

3 Ẽ2 + 2 · (t − 2) · Ẽ K̃ + (1 − t) · K̃2
)

, (32)

f4(0) = 3 Ẽ2 + 2 · (t − 2) · Ẽ K̃ + (1 − t) · K̃2, (33)

f4(1) = (1 − t)1/4 ·
(

(t − 2) · Ẽ + 2 · (1 − t) · K̃
)

. (34)

It is worth noticing that (in contrast with the λ-extension C(0, 5; λ) see (35) below),
the fn(α)’s have two different values of the parameter α for which these α-extensions
are D-finite, being (homogeneous) polynomials in Ẽ and K̃. One remarks with (31)
and (32) (or (33) and (34)), that the corresponding polynomials in Ẽ and K̃ are not

necessarily of the same degree in Ẽ and K̃.
The λ-extension C(0, 5; λ) solution of the same non-linear ODE verified by

C(0, 5) (namely (5) for N = 5) corresponds to the form-factor expansion [14, 32]
which amounts to seeing this one-parameter family of solutions as a deformation of
the (1−t)1/4 algebraic solution of the previous non-linear ODE (5) verified by C(0, 5):

C(0, 5; λ) = (1 − t)1/4 ·
(

1 + λ2n ·

∞
∑

n=1

f2n
0,5

)

(35)

= 1 −
t

4
−

3 t2

32
−

7 t3

128
−

77 t4

2048
−

231 t5

8192
−

(

1463

65536
+

25

1048576
· λ2

)

· t6

−

(

4807

262144
+

275

4194304
· λ2

)

· t7 −

(

129789

8388608
+

123475

1073741824
· λ2

)

· t8 + · · ·
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3.1. Deformation around a D-finite solution.

The λ-extension of the correlation function C(0, 5; λ) can also be seen as a µ-
deformation of the series of the correlation C(0, 5) which exact expression is given by
(16) (with (17), (18), (19)) in terms of polynomials in Ẽ and K̃. This one-parameter
µ-family of series expansion which verifies the same non-linear ODE (5) as C(0, 5),
reads:

C(0, 5; λ) = C(0, 5) + µ · G1(t) + µ2 · G2(t) + µ3 · G3(t) + · · ·

= 1 −
t

4
−

3 t2

32
−

7 t3

128
−

77 t4

2048
−

231 t5

8192
−

(

23433

1048576
−

25

1048576
µ

)

· t6

−

(

77187

4194304
−

275

4194304
µ

)

· t7 −

(

16736467

1073741824
−

123475

1073741824
µ

)

· t8

−

(

57930653

4294967296
−

708125

4294967296
µ

)

· t9 + · · · (36)

The identification of these two power series (35) and (36) corresponds to the simple
relation between λ and µ:

λ2 = 1 − µ or: µ = 1 − λ2. (37)

This one-parameter series (35), or (36), is in agreement with a α-extension of the four
products formula (16)

C(0, 5; λ) =
256

81
·
(1 − t)1/2

t6
· f1(α) · f2(α) · f3(α) · f4(α), (38)

if

µ = 4 · α · (1 − α) or: λ2 =
(

2α − 1
)2

, (39)

or:

α =
1 ± λ

2
. (40)

Thus one sees that the α ↔ 1− α involutive symmetry in the identities (24) amounts
to changing the sign of λ: λ ↔ −λ. The value λ = 1 (associated with the “physical”
correlation functions) corresponds to the two values α = 0 and α = 1 for which the
four factors fn become polynomials of Ẽ and K̃ (not necessarily of the same degree
see for instance (33), (34)). The value λ = 0 (associated with the algebraic function
C(0, 5; 0) = (1 − t)1/4) corresponds to the value α = 1/2.

Recalling the usual parametrization [8, 14] of the parameter λ, namely λ =
cos(u), and the trigonometric identity

cos(u) = 2 cos(u/2)2 − 1, (41)

we see that the parameter α is naturally parameterized as

α = cos(u/2)2, (42)

the α ↔ 1 − α involutive symmetry in the identities (24) corresponding to the
parametrization

1 − α = 1 − cos(u/2)2 = sin(u/2)2, (43)

which amounts to changing u into u → u + π in (42), a transformation that does
not change λ2 = cos(u)2.
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3.2. The algebraic α = 1/2 case

One thus sees that the (involutive) symmetry α ↔ 1 − α singles out α = 1/2.
Along this line, note that, for α = 1/2, these α-extensions (20), (21) become algebraic
functions. One actually has:

f1

(1

2

)

=
3

2
· t · (1− t)1/16 ·

(1 + (1− t)1/2

2

)5/4

(44)

=
3

2
t −

9

16
t2 −

15

128
t3 −

15

256
t4 −

1215

32768
t5 −

6903

262144
t6 + · · ·

f2

(1

2

)

=
3

2
· t · (1− t)1/16 · (1 − t)−1/4 ·

(1 + (1 − t)1/2

2

)5/4

(45)

=
3

2
t −

3

16
t2 −

3

128
t3 +

225

32768
t5 +

2451

262144
t6 + · · ·

The α-extensions (22), (23) for f3(α) and f4(α) also become algebraic functions:

f3

(1

2

)

= −
3

8
t2 −

3

32
t3 −

45

1024
t4 −

105

4096
t5 −

4395

262144
t6 + · · ·

= −
3

8
· t2 · (1 − t)1/16 ·

(1 + (1− t)1/2

2

)−3/4

·
((1 + t1/2)1/2 − (1 − t1/2)1/2

t1/2

)

= −
3

8
· t2 · (1 − t)1/16 ·

(1 + (1− t)1/2

2

)−3/4

·
(

2 ·
(1 − (1 − t)1/2)

t

)1/2

, (46)

f4

(1

2

)

= −
3

8
t2 −

3

16
t3 −

129

1024
t4 −

195

2048
t5 −

20115

262144
t6 + · · ·

= −
3

8
· t2 · (1 − t)1/16 · (1 − t)−1/4 ·

(1 + (1− t)1/2

2

)−3/4

×
((1 + t1/2)1/2 − (1 − t1/2)1/2

t1/2

)

= −
3

8
· t2 · (1 − t)1/16 · (1 − t)−1/4 ·

(1 + (1− t)1/2

2

)−3/4

×
(

2 ·
(1 − (1 − t)1/2)

t

)1/2

. (47)

One verifies easily that

f1

(1

2

)

· f3

(1

2

)

= (1 − t)1/2 · f2

(1

2

)

· f4

(1

2

)

= −
9

16
· t3 · (1 − t)1/8, (48)

f1

(1

2

)

· f4

(1

2

)

= f2

(1

2

)

· f3

(1

2

)

= −
9

16
· t3 · (1 − t)−1/8, (49)

in agreement with the identities (25) and (26).

Do note that f1(α) and (1 −t)1/4 ·f2(α), but also t1/4 · f3(α) and also t1/4 · (1 −
t)1/4 ·f4(α), verify the same Okamoto sigma-form of Painlevé VI (independently of α).
Note that the previous algebraic function solutions (44) and (45) are actually such that
f1(

1
2 ) and (1 −t)1/4 ·f2(

1
2 ) are not only solutions of the same non-linear ODE but are

actually the same algebraic function f1(
1
2 ) = (1−t)1/4 ·f2(

1
2 ) . Similarly (46) and (47)

are actually such that f3(
1
2 ) and (1 − t)1/4 · f4(

1
2 ) are not only solutions of the same

non-linear ODE but are actually the same algebraic function f3(
1
2 ) = (1−t)1/4·f4(

1
2 ) .

For α = 1/2 the corresponding λ deduced from (39) is λ = 0 and the four product
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formula (38) becomes, with the previous exact algebraic expressions (44), (45), (46)
and (47) (and after simplifications):

C(0, 5; 0) =
256

81
·
(1 − t)1/2

t6
· f1

(1

2

)

· f2

(1

2

)

· f3

(1

2

)

· f4

(1

2

)

= (1 − t)1/4

= 1 −
1

4
t −

3

32
t2 −

7

128
t3 −

77

2048
t4 −

231

8192
t5 −

1463

65536
t6 + · · · (50)

in agreement with the λ = 0 evaluation of the form factor expansion (35). Note that,
conversely, the identity (50) can be used to find the exact expressions of the products
f1 f4 and f1 f3 evaluated at α = 1/2 (see (48) and (49)), when the exact expressions
on the fn’s, n = 1, 2, 3, 4, are much more involved (see (44), (45), (46), (47)).

Remark: All these calculations are not specific of N = 5. Similar calculations
can be performed for other values of N . Since these calculations become more and
more involved, they will not be detailed here. Let us just give the expressions† of f1
for different (odd) values of N , in terms of the complete elliptic integrals of the first
and second kind K̃ and Ẽ .

For N = 5, 7, 9, the f1(N) solutions read respectively:

f1(N = 5) = (2 t − 1) · Ẽ + (1 − t) · K̃, (51)

f1(N = 7) = −(3 t+ 4) · (t− 1)2 · K̃2 + 2 (t − 1) · (3 t2 − 7 t− 4) · Ẽ K̃

+ (11 t2 − 11 t− 4) · Ẽ2, (52)

f1(N = 9) = (8 t2 − 47 t+ 12) · (t− 1)2 · K̃2

− 2 · (t− 1) · (16 t3 − 63 t2 + 83 t− 12) · Ẽ K̃

+ (32 t4 − 64 t3 + 151 t2 − 119 t+ 12) · Ẽ2, (53)

We can verify for N = 5, 9, 13, · · · that the factor f1(N) expands as

f1(N) = λN · t(N−1)2/16 + · · · , (54)

when, for N = 7, 11, 15, · · · the factor f1(N) has the expansion:

f1(N) = µN · t(N+1)2/16 + · · · (55)

3.3. Form-factor deformation around the algebraic function f1(1/2)

Introducing a form-factor β-deformation around the algebraic function (44) (β is the
deformation parameter around α = 1/2)

f1

(1

2
+ β

)

=

3

2
· t · (1 − t)1/16 ·

(1 + (1 − t)1/2

2

)5/4

+ β · G(t) + · · · (56)

and inserting (56) in the non-linear ODE verified by (56), one gets an order-three

linear differential operator for the first coefficient G(t).

† These expressions can be compared with expressions (E.2) and (E.13) in appendix E of [8] but
with a different normalization (E.1).
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This order-three linear differential operator has the following solution:

G(t) =
t2

64
· (1 − t)1/16 ·

(1 + (1 − t)1/2

2

)1/4

· PE,K (57)

= −
15

1024
· t4 −

135

8192
· t5 −

513

32768
· t6 −

7497

524288
· t7 −

434295

33554432
· t8 + · · ·

where PE,K is a polynomial in Ẽ and K̃:

PE,K = (58)
(

t− 4 + 12 · (1− t)1/2
)

· 2F1

(

[
3

2
,
3

2
], [3], t

)

− 8 · 2F1

(

[
1

2
,
1

2
], [2], t

)

=

− 8 ·
12 · (t − 2) · (1 − t)1/2 + 3 t2 − 8 t + 8

t2
· K̃ − 32 ·

t− 2 + 6 · (1 − t)1/2

t2
· Ẽ.

As far as the log-derivative with respect to t is concerned, one gets:

t · (t − 1) ·
d

dt
ln
(

f1

(1

2
+ β

))

=
10 · (1 − t)1/2 + 27 t − 26

16
(59)

−
β

96
·
(

t · (1 − t)1/2 · PE,K + 2 · t · (1 − t) · (1 − (1 − t)1/2) ·
dPE,K

dt

)

+ · · ·

where the first deformation term is also a polynomial in Ẽ and K̃.

4. α-extensions of the two factors F1, F2 for C(2, 5)

The low-temperature correlation functions C(M, N), at ν = −k, with M < N ,
M +N odd, M even but different from 0, factor into the product of, not four terms,
but only two terms:

C(M, N) = ρ · (1 − t)1/2 · t−(N2−1)/4 · F1(M,N) · F2(M,N). (60)

For instance for M = 2 and N = 5 one has

C(2, 5) =
256

2025
·
(1 − t)1/2

t6
· F1(2, 5) · F2(2, 5), (61)

where

F1(2, 5) = 2 · (1 − t) · (2 t + 1) · K̃2 + (7 t2 − 15 t − 4) · Ẽ K̃

+ (2 t2 + 13 t + 2) · Ẽ2, (62)

and:

F2(2, 5) = 5 · (t− 1)3 · K̃3 − (11 t − 17) · (t − 1)2 · Ẽ K̃2

+ (t − 1) · (2 t2 − 33 t + 19) · Ẽ2 K̃ + (7 t2 − 22 t + 7) · Ẽ3. (63)

The λ-extension C(2, 5; λ) corresponds to a form-factor expansion around the
algebraic solution (1 − t)1/4:

C(2, 5; λ) = (1 − t)1/4 ·
(

1 + λ2n ·
∞
∑

n=1

f2n
0,5

)

(64)

= 1 −
t

4
−

3 t2

32
−

7 t3

128
−

77 t4

2048
−

231 t5

8192
−

(

1463

65536
+

49

1048576
· λ2

)

· t6

−

(

4807

262144
+

491

4194304
· λ2

)

· t7 −

(

129789

8388608
+

205491

1073741824
· λ2

)

· t8 + · · ·
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The λ-extension of (61) can also be seen as a µ-deformation of the correlation function
C(2, 5), given by the exact expression (61) with (62) and (63), as a polynomial
expression in Ẽ and K̃:

C(2, 5; λ) = 1 −
t

4
−

3

32
t2 −

7

128
t3 −

77

2048
t4 −

231

8192
t5

−
( 23457

1048576
−

49

1048576
µ
)

· t6 −
( 7403

4194304
−

491

4194304
µ
)

· t7

−
( 16818483

1073741824
−

205491

1073741824
µ
)

· t8 (65)

−
( 58337917

4294967296
−

1115389

4294967296
µ
)

· t9 + · · ·

These two series can be seen to identify if one has the following relation between λ
and µ:

λ2 = 1 − µ or: µ = 1 − λ2. (66)

The α-extension of (62) reads

F1(2, 5; α) = −
45

16
t3 −

135

128
t4 −

1485

2048
t5 −

(4545

8192
+

315

8192
α
)

· t6

−
( 58995

131072
+

17955

262144
α
)

· t7 −
( 794745

2097152
+

188055

2097152
α
)

· t8

−
(21971565

67108864
+

876645

8388608
α
)

· t9 + · · · (67)

and the α-extension of (63) reads:

F2(2, 5; α) = −
45

16
t3 +

45

128
t4 +

315

2048
t5 +

( 315

4096
+

315

8192
α
)

· t6

+
( 11655

262144
+

12915

262144
α
)

· t7 +
( 14805

524288
+

106155

2097152
α
)

· t8

+
( 1285515

67108864
+

408555

8388608
α
)

· t9 + · · · (68)

One thus verifies that relation (61) can be “lambda-extended”

C(2, 5; λ) =
256

2025
·
(1 − t)1/2

t6
· F1(2, 5; α) · F2(2, 5; α), (69)

provided:

µ = 4 · α · (1 − α) or: λ2 =
(

2α − 1
)2

. (70)

Again one verifies the remarkable identities:

F2(2, 5; α) = (1 − t)1/2 · F1(2, 5; 1 − α),

F2(2, 5; 1 − α) = (1 − t)1/2 · F1(2, 5; α). (71)

In particular one has:

F1(2, 5; 0) = 2 · (1 − t) · (2 t + 1) · K̃2 + (7 t2 − 15 t − 4) · Ẽ K̃

+ (2 t2 + 13 t + 2) · Ẽ2, (72)

F1(2, 5; 1) = (1 − t)−1/2 ·
(

5 · (t− 1)3 · K̃3 − (11 t − 17) · (t − 1)2 · Ẽ K̃2

+ (t − 1) · (2 t2 − 33 t + 19) · Ẽ2 K̃ + (7 t2 − 22 t + 7) · Ẽ3
)

, (73)
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F2(2, 5; 0) = 5 · (t− 1)3 · K̃3 − (11 t − 17) · (t − 1)2 · Ẽ K̃2

+ (t − 1) · (2 t2 − 33 t + 19) · Ẽ2 K̃ + (7 t2 − 22 t + 7) · Ẽ3. (74)

F2(2, 5; 1) = (1 − t)1/2 ·
(

2 · (1 − t) · (2 t + 1) · K̃2 + (7 t2 − 15 t − 4) · Ẽ K̃

+ (2 t2 + 13 t + 2) · Ẽ2
)

. (75)

The series expansions of the previous exact expressions read:

F1

(

2, 5; 0
)

= −
45

16
t3 −

135

128
t4 −

1485

2048
t5 −

4545

8192
t6 −

58995

131072
t7 + · · ·

F1

(

2, 5; 1
)

= −
45

16
t3 −

135

128
t4 −

1485

2048
t5 −

1215

2048
t6 −

135945

262144
t7 + · · · (76)

F2

(

2, 5; 0
)

= −
45

16
t3 +

45

128
t4 +

315

2048
t5 +

315

4096
t6 +

11655

262144
t7 + · · ·

F2

(

2, 5; 1
)

= −
45

16
t3 +

45

128
t4 +

315

2048
t5 +

945

8192
t6 +

12285

131072
t7 + · · · (77)

It is worth noticing that (in contrast with the λ-extension C(2, 5; λ)), the Fn(2, 5; α)’s
have two different values of the parameter α for which these α-extensions are D-
finite, being (homogeneous) polynomials in Ẽ and K̃. One remarks with that the
corresponding polynomials in Ẽ and K̃ are not necessarily of the same degree in Ẽ
and K̃.

Remark: the α = 1/2 algebraic subcase. For α = 1/2 the corresponding
λ deduced from (70) is λ = 0 and the two product formula (69) becomes

C(2, 5; 0) =
256

2025
·
(1 − t)1/2

t6
· F1

(

2, 5;
1

2

)

· F2

(

2, 5;
1

2

)

= (1 − t)1/4, (78)

in agreement with the expansion (65) evaluated at λ = 0. Using the identity (71)
one gets

F2

(

2, 5;
1

2

)

= (1 − t)1/2 · F1

(

2, 5;
1

2

)

, (79)

which enables to write (78) as:

C(2, 5; 0) =
256

2025
·
1

t6
·
(

F2

(

2, 5;
1

2

))2

= (1 − t)1/4, (80)

from which one deduces

F2

(

2, 5;
1

2

)

= −
45

16
· t3 · (1 − t)1/8

= −
45

16
t3 +

45

128
t4 +

315

2048
t5 +

1575

16384
t6 +

36225

524288
t7 + · · · (81)

or:

F1

(

2, 5;
1

2

)

= −
45

16
· t3 · (1 − t)−3/8

= −
45

16
t3 −

135

128
t4 −

1485

2048
t5 −

9405

16384
t6 −

253935

524288
t7 + · · · (82)
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4.1. Form factor deformation around the algebraic function F1

(

2, 5; 1
2 )

Introducing a form-factor β-deformation around the algebraic function (82) (β is the
deformation parameter around α = 1/2)

F1

(

2, 5;
1

2
+ β

)

= −
45

16
· t3 · (1 − t)−3/8 + β · G(t) + · · · (83)

and inserting (83) in the non-linear ODE verified by (83), one gets an order-three

linear differential operator which is the direct sum of an order-one linear differential
operator and an order-two linear differential operator, yielding the following exact
expression for G(t) in (83):

G(t) = −
45

16
· t3 · (1 − t)−3/8 −

9

16
· (1 − t)−3/8 · PE,K (84)

= −
315

8192
· t6 −

17955

262144
· t7 −

188055

2097152
· t8 −

876645

8388608
· t9 −

1929015

16777216
· t10 + · · ·

where PE,K is a polynomial in Ẽ and K̃:

PE,K = 4 · t2 · (t− 1) · (t2 − 6 t+ 16) ·
dK̃

dt
+ t2 · (2 t2 − 13 t + 16) · K

= t · (t2 − 28 t + 32) · K̃ − 2 · (t2 − 6 t + 16) · Ẽ. (85)

As far as the log-derivative with respect to t is concerned, one gets:

t · (t − 1) ·
d

dt
ln
(

F1

(

2, 5;
1

2
+ β

))

= −3 +
21

8
· t

+ β ·
t − 1

5 t3
·
(

t ·
dPE,K

dt
− 3 · PE,K

)

+ · · · (86)

where the first deformation term is also polynomial in Ẽ and K̃.

5. Comments and speculations on the lambda-extensions of the two-point

correlation functions.

The previous sections provide an illustration of nice involutive symmetries of α-
extension solutions of Painlevé-like non-linear ODEs (see (24)). Furthermore, recalling
(31), (32), (46) and (33), (34), (47), namely

f3(0) = (t − 2) · Ẽ + 2 · (1 − t) · K̃,

f3(1) = (1 − t)−1/4 ·
(

3 Ẽ2 + 2 · (t − 2) · Ẽ K̃ + (1 − t) · K̃2
)

, (87)

f3

(1

2

)

= −
3

8
· t2 · (1 − t)1/16 ·

(1 + (1− t)1/2

2

)−3/4

·
(

2 ·
(1 − (1 − t)1/2)

t

)1/2

,

and

f4(0) = 3 Ẽ2 + 2 · (t − 2) · Ẽ K̃ + (1− t) · K̃2,

f4(1) = (1 − t)1/4 ·
(

(t − 2) · Ẽ + 2 · (1 − t) · K̃
)

, (88)

f4

(1

2

)

= −
3

8
· t2 · (1 − t)1/16 · (1 − t)−1/4 ·

(1 + (1− t)1/2

2

)−3/4

×
(

2 ·
(1 − (1 − t)1/2)

t

)1/2

,
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we see that the α-extension f3(α) (resp. f4(α)) has three different values of
the parameter α for which the corresponding α-extensions are D-finite being
(homogeneous) polynomials in Ẽ and K̃ of different degree in Ẽ and K̃. It is
straightforward to see that f3(α) (resp. f4(α)) is not a linear interpolation of these
three D-finite expressions. For generic values of α, f3(α) (resp. f4(α)) is not D-finite†,
it is differentially algebraic [11, 12, 33], being solution of a Painlevé-like non-linear
ODE. Let us now display several remarkable properties of such lambda-extensions.

5.1. Other remarkable features of the lambda-extensions of the two-point correlation

functions.

In fact α = 1/2 is not the only value of α for which f3(α) (resp. f4(α)) becomes
an algebraic function. One has an infinite number of (algebraic) values of α for
which f3(α) (resp. f4(α)) becomes an algebraic function. This phenomenon is
illustrated in detail in [32] in the case of the lambda-extension of the diagonal¶
correlation function C(1, 1), but one has similar results for other non-diagonal two-
point correlation functions (at ν = −k), or for factors of the correlation functions
like the fi(α)’s.

For pedagogical reasons we restrict our analysis to the low-temperature two-point
correlation function C(1, 1) and its lambda extension. For instance, the form factor
expansion of the lambda extension of this low-temperature correlation function reads

C−(1, 1; λ) = (1 − t)1/4 ·
(

1 +

∞
∑

n=1

λ2n · f
(2n)
1, 1

)

, (89)

where the first form factors read:

f
(2)
1, 1 =

1

2
·
(

1 − 3EK − (t − 2) · K2
)

, (90)

f
(4)
1, 1 =

1

24
·
(

9 − 30 Ẽ K̃ − 10 · (t − 2) · K̃2

+ (t2 − 6t + 6) · K̃4 + 15 Ẽ2 K̃2 + 10 · (t − 2) · Ẽ K̃3
)

. (91)

For λ = 1 we must recover, from (89), the well-known expression of the low-

temperature two-point correlation function C(1, 1) = Ẽ:

C−(1, 1; 1) = E = 1 −
1

4
· t −

3

64
· t2 −

5

256
· t3 −

175

16384
· t4 + · · ·

= (1 − t)1/4 ·
(

1 +

∞
∑

n=1

f
(2n)
1, 1

)

, (92)

which corresponds to write the ratio Ẽ/(1 − t)1/4 as an infinite sum of polynomial
expressions of Ẽ and K̃, thus yielding a non-trivial infinite sum identity on the
complete elliptic integrals Ẽ and K̃.

Since all these lambda extensions are power series in t, we can also try to get,
order by order, the series expansion of C−(1, 1; λ) from the corresponding non-
linear ODE (see (104) below). Recalling [14] the form factor expansion (89), we can
either see the series expansion in t as a deformation of the simple algebraic function

† In section 4.1 of [32] we provide, not a proof, but arguments strongly suggesting that such lambda-
extensions are not generically D-finite.

¶ Recall that diagonal correlation functions depend only on k =
√
t. They are independent of the

anisotropic parameter ν.
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(1 − t)1/4, or more naturally, see the series expansion of the lambda-extension of the
low-temperature two-point correlation function C−(1, 1; λ) as a deformation of the
exact expression C−(1, 1) = Ẽ (here M denotes here a difference to λ2 = 1, namely
M = 4 · (1 − λ2)):

C−(1, 1; λ) = CM (1, 1; M)

= Ẽ +M · g1(t) +M2 · g2(t) +M3 · g3(t) + · · · (93)

All the gn(t)’s in (93) are also [32] polynomials†† in Ẽ and K̃. For instance g1(t)
in (95) reads:

g1(t) =
1

24
· Ẽ −

1

8
· K̃ Ẽ2 −

t − 1

12
· K̃3. (94)

Using the sigma-form of Painlevé VI equation (104) one can find that this
expansion (93) reads as a series expansion in the variable t:

CM (1, 1; M) = 1 −
1

4
· t −

( 3

64
+

3

256
· M

)

· t2 −
( 5

256
+

9

1024
· M

)

· t3

−
( 175

16384
+

441

65536
· M

)

· t4 −
( 441

65536
+

1407

262144
· M

)

· t5

−
( 4851

1048576
+

9281

2097152
· M −

5

16777216
· M2

)

· t6 + · · · (95)

5.1.1. Deformation around an algebraic subcase.

Recalling that one finds [32] that (95) is actually, for M = 2, the series expansion
of an algebraic function (see (97) below), one can try to write the series (95) as a
deformation of this M = 2 algebraic function (97)

Cρ(1, 1; ρ) = G0(t) + ρ · G1(t) + ρ2 · G2(t) + · · · (96)

where

G0(t) = (1− t)1/16 ·
(1 + (1− t)1/2

2

)3/4

, (97)

and where ρ = M − 2. Again one can ask whether the Gn(t)’s in (96) are D-finite,
and, again, polynomials in the complete elliptic integrals Ẽ and K̃. This is actually
the case. One finds that (96) can be written as

Cρ(1, 1; ρ)

G0(t)
= 1 + ρ ·

(1

4
· S2 −

1

4

)

+ ρ2 ·
( 1

32
· S3 −

1

16
· S2 +

3

32

)

+ ρ3 ·
( 1

384
· S4 −

1

128
· S3 +

13

384
· S2 −

5

128

)

+ · · · (98)

where:

S2 =
2

t
·
(

1 − (1 − t)1/2
)

· Ẽ −
1

2 t
·
(

(t − 4) · (1 − t)1/2 − (3 t − 4)
)

· K̃,

S3 =
1

4
·
(

6 · (1 − t)1/2 − (t − 2)
)

· K̃2 − 3 Ẽ K̃,

S4 =
3

t
·
(

(t − 4) · (1 − t)1/2 − (3 t − 4)
)

· Ẽ K̃2 −
6

t
· (1 − (1 − t)1/2) · Ẽ2 K̃

+
1

8 t
·
(

(t2 − 28 t + 48) · (1 − t)1/2 − (21 t2 − 68 t + 48)
)

· K̃3,

††This cannot be deduced straightforwardly from an identification of two representations (95) and
(96) of the lambda extension C−(1, 1; λ). This identification yields an infinite number of (infinite
sum) non-trivial identities on Ẽ and K̃.
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We thus see the same phenomenon as the one sketched in section (3.3) for the α-
extension f1(α) and section (4.1) for the α-extension F1(2, 5; α), seen as deformations
of algebraic function subcases.

Remark: All these gn(t)’s or Gn(t)’s are globally bounded series† [34]. This
is a consequence of the fact that they are polynomial expressions in Ẽ and K̃:
they are not only D-finite, they can actually be seen to be diagonals of rational

functions [34]. We have actually seen, so many times in physics, and in particular
in the two-dimensional Ising model, the emergence of globally bounded series as a
consequence of the frequent occurrence of diagonals of rational functions [34, 35] (or
n-fold integrals [36]). In contrast the lambda extension C−(1, 1; λ) which is an infinite
sum of globally bounded series is, at first sight, a differentially algebraic function which
has no reason to correspond to a globally bounded series.

5.2. Arithmetic properties of the lambda-extensions and globally bounded series.

Let us consider the series expansion (95) for values of the parameter M 6= 0 not
yielding the previous algebraic function series (i.e. M 6= 4 · sin2(πm/n) where m
and n are integers).

Let us change t into 16 t in the series expansion (95). One gets the following
expansion:

1 − 4 t − (12 + 3M) · t2 − (80 + 36M) · t3 − (700 + 441M) · t4

− (7056 + 5628M) · t5 − (77616 + 74248M − 5M2) · t6

− (906048 + 1004960M − 220M2) · t7 − (11042460+ 13877397M − 6255M2) · t8

− (139053200+ 194712812M − 146500M2) · t9

− (1796567344+ 2767635832M − 3079025M2) · t10 + · · · (99)

For integer values of M one sees, very clearly, that the series (99) becomes a
differentially algebraic‡ series with integer coefficients. One thus has a first example
of an infinite number of differentially algebraic series with integer coefficients. As far
as integer values of M are concerned we have seen [32] that the lambda extension
C−(1, 1; λ) is a simple algebraic function for M = 2, 4 and slightly more involved
algebraic functions for M = 1, 3, and corresponds to Ẽ for M = 0. These series
(99) are, at first sight, differentially algebraic [11]: is it possible that such series could
become D-finite for selected values integer of M different from M = 0, 1, 2, 3, 4 ?

In section (4.1) of [32] we give some strong argument to discard, at least for
M = 5, the possibility that the series expansion (95) (or the series expansion (99))
could be D-finite. It is differentially algebraic.

More generally, one can see that the series expansion (95) (or the series expansion
(99)) is a globally bounded series when M is any rational number. One thus generalizes
the quite puzzling result that an infinite number of (at first sight ...) differentially

algebraic series can be globally bounded series.

Remark: Quite often we see the emergence of globally bounded series [34] as
solutions of D-finite linear differential operators, and more specifically as diagonals of

rational functions [34, 35] (this is related to the so-called Christol’s conjecture [37]).

† A series with rational coefficients and non-zero radius of convergence is a globally bounded series [34]
if it can be recast into a series with integer coefficients with one rescaling t → N t where N is an
integer.
‡ They are solutions of a non-linear ODE, the sigma-form of Painlevé VI.
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The emergence of globally bounded series that are not D-finite (not diagonals of rational
functions) is more puzzling. It can be tempting to imagine that such differentially

algebraic globally bounded situations could correspond to particular ratios of D-finite
functions¶, namely ratios of diagonals of rational functions (or even rational functions
of diagonals), or even composition of diagonal of rational functions. Our prejudice is
that this is not the case, but discarding these simple scenarii is extremely difficult.

6. More non-linear ODEs of the Painlevé type and more λ-extensions.

In [38] V.V. Mangazeev and A. J. Guttmann derived the following Toda-type
recurrence relation for the λ-extension C(N, N ; λ) of the diagonal correlation
functions of the square Ising model (see equation (6) in [38]):

t ·
d2

dt2
ln(CN ) +

d

dt
ln(CN ) +

N2

1 − t2
=

N2 − 1/4

1 − t2
·
CN−1 · CN+1

C2
N

, (100)

where CN denotes the λ-extensions of the low (resp. high) diagonal correlation
functions CN = C(N, N). Introducing the ratio

RN =
CN−1 · CN+1

C2
N

or: PN =
N2 − 1/4

1 − t2
·
CN−1 · CN+1

C2
N

, (101)

one can easily deduce from (100) (together with the same relation (100) where N is
changed into N − 1 and N + 1) other relations like:

t ·
d

dt

(

t ·
d ln(RN )

dt

)

+
2

(1 − t)2
(102)

=
(N − 1)2 − 1/4

1 − t2
· RN−1 +

(N + 1)2 − 1/4

1 − t2
· RN+1 − 2 ·

N2 − 1/4

1 − t2
· RN ,

or:
(

t ·
d

dt

)2

ln(PN ) +
2

1 − t
= PN−1 + PN+1 − 2PN , (103)

Let us now consider, for instance, the low-temperature T < Tc diagonal correlation
functions. One knows that they verify the sigma-form of Painlevé VI equation

(

t · (t− 1) ·
d2σ

dt2

)2

(104)

= N2 ·

(

(t− 1) ·
dσ

dt
− σ

)2

− 4 ·
dσ

dt
·

(

(t− 1) ·
dσ

dt
− σ −

1

4

)

·

(

t
dσ

dt
− σ

)

.

with

σ = t · (t− 1) ·
d

dt
lnC(N,N) −

t

4
. (105)

We can rewrite (100) in terms of σ given by (105):

d

dt
lnCN =

σ + t
4

t · (t− 1)
. (106)

¶ Let us recall that ratios of D-finite expressions are not (generically) D-finite: they are differentially

algebraic [11].
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Relation (100) becomes L = R where:

L = t ·
d

dt

( σ + t
4

t · (t− 1)

)

+
σ + t

4

t · (t− 1)
+

N2

1 − t2
,

R =
N2 − 1/4

1 − t2
·
CN−1 · CN+1

C2
N

. (107)

Let us introduce a new sigma corresponding to the product CN−1 · CN+1:

Σ = t · (t− 1) ·
d

dt
ln
(

CN−1 · CN+1

)

. (108)

Taking a well-suited log-derivatives the previous relation L = R yields:

t · (t− 1) ·
d

dt
lnL = t · (t− 1) ·

d

dt
lnR, (109)

where the RHS of (109) can be written using (105) and (108)

Σ − 2 σ −
5 t

2
. (110)

Relation (109) becomes:

8 · t · (t− 1)2 · σ′′ + 4 · (t− 1) · (t + 4 σ) · σ′ − 16 · σ2 + 4 · (4N2 − 1 − t) · σ

+ (4N2 − 1) · t − 2 ·
(

4N2 − 1 + 4 · (t− 1) · σ′ − 4 σ
)

· Σ = 0. (111)

We can now use the non-linear ODE (104) to perform some differential algebra
eliminations to eliminate σ and its derivatives in order to get a non-linear ODE on
Σ. One first eliminates σ′′ between (104) and (111), getting a (non-linear) relation
between σ, σ′ and Σ. Performing a derivation of this relation one gets a relation
between σ, σ′, σ′′, Σ and Σ′. Again one eliminates σ′′ between this last relation
and (111), getting a relation between σ, σ′, Σ and Σ′. The elimination of σ′ using
a previous relation gives a relation between σ, Σ and Σ′. A new derivation gives a
relation between σ, Σ, Σ′ and Σ′′. Finally eliminating σ, one gets a non-linear ODE
between Σ, Σ′ and Σ′′. In other words one can obtain a second order non-linear
ODE on Σ, from the Toda-like relation (100) and the sigma-form of Painlevé VI non-
linear ODE (104). This non-linear ODE is too large to be given here†. However,
it is worth noticing that, again, this non-linear ODE has one-parameter lambda-
extension solution. One may conjecture that this new non-linear ODE has again
the (fixed critical point) Painlevé property. This (very large) second order non-linear
ODE is not quadratic in the second derivative Σ′′, in contrast with Okamoto sigma
form of Painlevé VI equation. It is of a much higher degree‡. The question of the
reduction of this quite large non-linear ODE to some Okamoto sigma-form of Painlevé
VI, or more generally to second order non-linear ODE of the Painlevé type [40], is a
(challenging) open question. The transformations required to achieve such reduction
to the sigma-form of Painlevé VI will correspond to drastic generalizations§ of the
concept of “folding transformations” [41, 42, 43].

† The non-linear ODE emerges from a resultant that factors in different spurious terms, a polynomial
in Σ, Σ′ and Σ′′ of degree six in Σ′′ and another polynomial in Σ, Σ′ and Σ′′ of degree twelve in
Σ′′.
‡ Along this second order but higher degree line let us recall [39].
§ In the simple case of the reduction of a second-order non-Okamoto non linear ODE to an Okamoto
sigma form of Painlevé VI equation, equations (26), (28) in section 2 of [8], give some hint of the
complexity of such transformations.



Symmetries of non-linear ODEs: lambda extensions of the Ising correlations 20

6.1. Another non-linear ODE.

If one tries to obtain, more directly, a non-linear ODE on the product of the two
diagonal correlation functions C(N,N) · C(N + 2, N + 2), one can also consider the
sigma-form of Painlevé VI equation (104) together with the definition of sigma (105)
and the same equation and definition (104) and (105), but for N + 2, and obtain by
differential algebra eliminations a non-linear ODE on the sum

Σ = t · (t− 1) ·
d

dt
ln
(

CN · CN+2

)

= t · (t− 1) ·
d

dt
lnC(N,N) + t · (t− 1) ·

d

dt
lnC(N + 2, N + 2). (112)

which is essentially the sum of the two previous sigmas (equation (105) for N and
for N + 2). Let us recall (see page 344 in [33] and [12]) the results on sums (but
also products, compositions, derivatives, integrals, inverses, etc ...) of differentially
algebraic functions, showing that these sums are also differentially algebraic functions,
and that one also has (see Theorem 2.2 page 345 in [33]) that the order of the non-
linear ODE for such sums is less or equal to the sum of the order of the two non-linear
ODEs. In our case (112) one expects the order of the non-linear ODE on Σ to be less
or equal to 4 = 2 + 2 with a prejudice for the generic upper bound being four.

Comment: We thus have, at first sight, two non-linear ODEs on (112): a very
large but second order non-linear ODE obtained by differential algebra eliminations
between (104) and (111), and another one, probably also very large but fourth
order non-linear ODE. Both equations probably have the fixed critical point Painlevé
property. As far as lambda-extensions are concerned, we expect the first one to
have one-parameter family of power-series analytic at t = 0, when we expect two-
parameters families of power-series analytic at t = 0 (the two lambda parameters for
σ(N) and σ(N +2) are, now, independent). Understanding these different non-linear
ODEs occurring on products of two-point correlation functions and their corresponding
lambda extensions remains a challenging work-in-progress task.

Remark: Quantum XY chain correlations. Along this line, it is worth
recalling that the emergence of the product CN−1·CN+1, or C(N,N)·C(N+2, N+2),
is reminiscent of the product C(N,N) · C(N + 1, N + 1) which is actually the xx

correlation functions of the quantum XY chain in the absence of a magnetic field.
Actually, for the xx correlations of the quantum XY chain, one has (see (2.45a) and
(2.45b) in Lieb, Schultz and Mattis paper [44]) the following relations only valid in
the absence of a magnetic field H = 0 i.e. precisely ν = −k:

< σx
0 σ

x
2N > = C(N, N)2, (113)

< σx
0 σ

x
2N −1 > = C(N, N) · C(N − 1, N − 1). (114)

Again, from the previous results, we have a strong incentive to find the non-linear
ODEs for the quantum XY chain correlations¶ (114).

More generally we have a strong incentive to find non-linear ODEs of the
Painlevé type for various families of two-point correlation functions like the off-
diagonal correlations C(N, N + 1) for which N.Witte showed [45] the existence of
a Garnier system for such correlations, and, beyond, C(N, N + 2), C(N, N + 3), ...
correlations†.

¶ Note that the non-linear ODE for (113) is obviously an Okamoto sigma-form of Painlevé VI equation
similar to (105).
† The row correlation function C(0, N) is a tau-function of a Garnier system with five finite
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7. Conclusion.

As underlined in the introduction the two-point correlation functions C(M, N) of
the 2D Ising model, at ν = −k, can be seen as D-finite functions solutions of
linear differential equations, but also, in the same time, as solutions of non-linear
differential equations of the Painlevé type. Around t = 0 the other solutions of
the linear differential equations are formal series with logarithms (see [14, 23]). In
contrast other solutions of the non-linear differential equations of the Painlevé type
are one-parameter families of power series analytic at t = 0. Such solutions are called
lambda-extensions [32]. This paper has tried to provide an illustration of a set of the
remarkable properties and structures of such lambda-extensions (resp. α-extensions).
The study of non-linear ODEs in the most general framework may look hopeless
for mathematicians. However, the square Ising model provides a perfect example of
the importance of a selected set of non-linear ODEs, namely non-linear ODEs of the
Painlevé type [47], and we tried to show that the analysis of some of their solutions,
the lambda-extensions, is clearly a powerful way to describe these selected non-linear
ODEs in a work-in-progress definition of what could be called the “symmetries” of
these non-linear ODEs of the Painlevé type.

Although Painlevé equations were introduced from purely mathematical
considerations their occurrence in so many domains of physics and theoretical physics
is compelling. Let us quote pele mele: particle physics, solid state physics, field
theory, lattice statistical mechanics, statistical physics [17], integrable PDE’s and their
similarity solutions, enumerative combinatorics, Random Matrix Theory [29, 48], even
Quantum Gravity [49], the Ising model being, of course, the perfect play ground for
these remarkable non-linear ODEs. Unfortunately the compelling evidence of the
relevance of these selected non-linear ODEs in physics, is not able to balance the
mainstream opinion among pure mathematicians that nothing interesting can be done
on non-linear problems and that even the word “non-linear” is meaningless†. We tried
in this paper to show that interesting non-trivial results can be obtained on selected
non-linear ODEs.

The exact results sketched in this paper are a strong incentive to get more non-
linear ODEs, for instance on the correlation functions of XY quantum chain in the
absence of magnetic field (which corresponds to the product of two Ising two-point
Ising correlation functions C(N,N)· C(N+1, N+1), but also on many more two point
off-diagonal correlation functions of the 2D Ising like C(N,N + 1), or C(N,N + 2),
or C(N,N + 3).

Acknowledgments: One of us (JMM) would like to thank R. Conte and I.
Dornic for many discussions on Painlevé equations. We do thank B.M. McCoy for
decades of stimulating exchanges on these problems of Painlevé equations on the
Ising model, that are such a strong incentive to find new results on these fascinating
questions. One of us (JMM) thanks N. Witte for many Painlevé and Garnier systems
discussions.

singularities, one fixed at the origin: see Corr.1, pg.7 and Eq.(36), pg. 6 of [46], when C(N,N +1) is
more a component of a related isomonodromic system (at least in the description in [45]). Preliminary
studies for the row correlation functions C(0, N) seem to indicate that the corresponding non-linear
ODEs are drastically more complicated even if N.Witte showed the existence of Garnier systems for
these row correlation functions [46].
† “Using a term like nonlinear science is like referring to the bulk of zoology as the study of non-
elephant animals.” Stanislaw Ulam (but the citation could be first a citation of Emile Borel ...).
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Nonlinearity 22 2201.

[19] O. Christov and G. Georgiev, Non-Integrability of Some Higher-Order Painlevé Equations in
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random matrices: PVI, the JUE, CyUE, cJUE and scaled limits, Nagoya Math. J. 174 (2004)
pp. 29-114 arxiv:math-ph/0204008.

[30] O. Gamayun, N. Igorov and O. Lisovyy, How Instanton combinatorics solves Painlevé VI, V and
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