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Abstract 

We study the phase diagram of an isotropic six-state chiral Potts model on a square 
lattice by means of both exact and numerical methods. The phase diagram of this 
model presents many similarities with the phase diagrams of the Ashkin-Teller model 
or the models studied by Zamolodchikov and Monarstirskii. A remarkable line globally 
invariant under a transformation generalizing the Kramers-Wannier duality seems to 
correspond to a first order transition line up to a bifurcation point where this line 
splits into two second order lines. All the numerical calculations are compared with 
exact results which can be performed using a canonical elliptic parametrization of this 
model. The bifurcation point is found to correspond to the intersection of a generalized 
self-dual line with an algebraic curve. This curve corresponds to the set of points of the 
phase diagram for which a non-trivial infinite symmetry group of the model degenerates 
into a finite group of order six. The agreement between numerical and analytical results 
is very good. 

1. Introduction 

For a long time the chiral Potts model was seen as a good toy model to 
understand important physical issues such as commensurate-incommensurate 
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transitions, floating phases or the occurence of very rich phase diagrams even 
for two dimensional systems. The physics emerging from chirality is far to be 
understood. This interest materialized with the discovery of new solutions of 
the Yang-Baxter equations for the chiral Potts models [ 1,2]. These integrability 
cases happened to be the first genus greater than one solutions of the Yang- 
Baxter equations [3,4]. In the last years particular efforts have been devoted 
specifically to the three-state chiral Potts model [ 51. Despite its smaller number 
of parameters, this model already exhibits a rich phase diagram and many 
subtleties [ 6 1. 

All the known chiral solutions of the Yang-Baxter equations concern models 
with cyclic Boltzmann weight matrices. One may ask if any exact result can 
be obtained for more general nearest neighbor spin models when one does 
not impose this cyclicity condition anymore. From the analysis of the infinite 
discrete symmetry group generated by inversion relations such a non cyclic, 
non symmetric six-state model has been proposed 5 [ 7-91. This model, when 
isotropic, depends only on two independent parameters. An explicit elliptic 
parametrization compatible with the symmetries of the model was given [ 7,8]. 
The exact calculation of the partition function using this elliptic foliation 
remains an open question: this model is not Yang-Baxter integrable, but one 
may hope getting the partition function using the so-called “inversion trick” 
together with this parametrization [ lo- 13 1. 

2. The model 

We study the two dimensional six-state model, denoted Ps in [ 7 1, defined 
by the following Boltzmann weight matrix: 

w= 

xyzyzz 
zxyzyz 

yzxzzy 

L 
yzzxzy 
zyzyxz 
Z z Y z Y x 

(2.1) 

Parameters x, y and z are homogeneous Boltzmann weights. From now on 
we will use two independent parameters u = y/x and u = z/x. This form 
(2.1) of the matrix W has a number of remarkable properties. It is invariant 
under two involutions. The first one is the usual matrix inversion I, while the 
second one is the element by element inversion J. These two transformations 
I and J generate an infinite discrete group of symmetries of the model. The 

5 Inversion relations have been shown to be powerful tools to analyze the phase diagram of lattice 
models and, in particular, to get the critical manifolds of these models when they are algebraic 
varieties [10,11,14-191. 
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Boltzmann matrices can be expressed as W(x,y,z) = xl + yA + zB. They 
belong to a six-dimensional representation of an abelian subalgebra of the 
algebra of the non-abelian group Ss of permutations of three elements. We 
have the following product laws in this subalgebra: 

A2 = 1 + B, B2 = 2 + 2A + B, AB = BA = 1 + A + B. 

The group 5’3 is known to be the semi-direct product of the groups 22 and 
Zs. This suggests that the model could be seen as a non-trivial coupling of an 
Ising model and of a three-state Potts model. This can directly be seen on the 
block structure of the 6 x 6 matrix W. This phenomenological approach needs 
to be investigated. In particular, the regions of the parameter space where 
Ising behaviour and three-state Potts model behaviour dominate have to be 
specified. 

Model (2.1) does not show any geometrical “Kramers-Wannier-like duality” 
[20]. However this duality is replaced by a set of 24 infinite order collineations 
intertwining the two inversions I and J, as the Kramers-Wannier duality does 
for a usual nearest neighbor interaction spin model [7,8]. The phase diagram 
of a large number of spin models for which the spins belong to solvable groups 
(i.e. ZN 0; ZM) [22] have been analyzed in the literature using extensively the 
Kramers-Wannier duality [ 201. Most of this analysis relies on the prejudice 
that the lines invariant under this duality are critical, at least on an interval, up 
to a bifurcation point where it splits into two critical curves. The Ashkin-Teller 
model can be seen as a paradigm of this situation [ 12,23,24]. It is tempting, 
for the six-state chiral Potts model of this paper, to ask if one could have such 
an “Ashkin-Teller scenario”, the Kramers-Wannier duality being replaced by 
collineations. The explicit elliptic parametrization can also help to answer this 
question. 

3. Exact results 

Introducing for this model the variables u = y/x, ‘u = z/x, the explicit 
formulae for the inversion I are 

z : (u,v) - ( -u2 - u + 2v2 

1 + u + 2v - u2 - 2uv - 29 ’ 

u2+ vu-29-v 
1 + u + 2v - u2 - 2uv - 212 > ’ 

(3.1) 

and the involution J reads 

J : (u,v) - (3.2) 
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The two involutions I and J generate an infinite discrete group of birational 
transformations [ 7-9 1. Noticeably the algebraic expression 

d(U,V) = 
(2V2 + 2vu - u2 - 2u3 - 2vu2 + v2u) (u - v2)2 

(v + u)4(1 -u)(l -?J)2 
(3.3) 

is invariant under this infinite set of birational transformations. The curves 
d (u, v ) = 6, where 6 is some constant, are all elliptic curves. Two remarkable 
situations occur: for a finite number of values of the constant 6 the elliptic curve 
degenerates into rational curves [7,9] and for an infinite number of values of 
6 the curve A (u, v ) = 6 corresponds to points for which the previous group 
generated by I and J degenerates into a finite order group (details are given 
in [ 7-91). Among these values of 6, two are of special interest for this paper. 
Firstly, 6 = 3/l 6 corresponds to the standard Potts line u = v for which one 
can introduce a rational parametrization together with a curve of higher degree 
that we will not write here. Secondly, 6 = 0 corresponds to two branches: 
u = v2, for which (ZJ)3 (u, v ) = (u, v) and which is obviously a rational 
curve, and the curve given by the equation 

2v2 + 2vu - u2 - 2u3 - 2vu2 + v2u = 0 (3.4) 

for which (I J)6 (u, v ) = (u, v ). Remarkably this last curve is also a rational 
curve [25]. Let us give here a rational parametrization of this curve: 

2+2t-t2 2+2t-t2 
u = 2t2+2t-1’ v = t.(2t2+2t-1)’ 

(3.5) 

Conversely, eliminating t in (3.5), one gets back only to (3.4). Using this 
rational parametrization the two involutions Z and J take the very simple 
form: 

(3.6) 

and an infinite generator JZ reads: 

JI: t--t 
t-l 
T-T-? 

It is then suitable to introduce the variable x : 

x = t+ l/r 
t+r ’ 

where r = i + i. 9 is a sixth root of unity. In terms of the well-suited variable 
x and the sixth root r, transformations I and J take a simple multiplicative 
form: 

1 
z:x+--, 

rx 
J: X-A. (3.7) 
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Let us also recall that the standard six-state Potts line u = v (6 = 3/16) 
has a ferromagnetic first order transition point localized at u = v = l/ ( 1 + 

A) [12]. 
On another hand, when a Kramers-Wannier duality exists on an edge spin 

model, it is possible to show that this duality, denoted D, actually intertwins Z 
and J (i.e. Z = D-’ e J .D), D being an involution OY a transformation of order 
four [4]. In the case of the chiral Potts model studied here, it is not possible 
to find such a geometrical “Kramers-Wannier-like duality”. However Z and J 
being two birational involutions of two variables, a theorem by Noether [27] 
states 6 that Z can be expressed as a product of collineations and J. Actually 
there exists a set of collineations Ci intertwining the two involutions Z and J 
(I = CL:’ . J. Ci). This situation generalizes the one encountered with standard 
dualities. It turns out that there are 24 such collineations, but the collineation 

Cl-J : (u,v) -+ ( I-u l-v 

1 + 2u + 3v ’ 1 + 2U + 3v > 

plays a special role. Indeed all the 24 collineations Ci can be deduced from Co 
using 24 different collineations Xi,0 as follows: 

The Xi,o’s commute with J (X~,O. J = J.Xi,o ) and form a group of 24 elements 
(the Ci do not form a group). This group is isomorphic to the semi-direct 
product of & with 22 x Z,. A complete list of these collineations Ci and Xi,o, 
as well as a detailed analysis of the structure of this 24 element group, will be 
given elsewhere. It is important to note that none of the 24 collineations Ci is 
of finite order. However, in the standard Potts limit (U = v ) the collineation 
CO reduces to the known involutive duality transformation [20,21,28]: 

1-U 

u+1+5u. 

Thus CO can be seen as a generalization of the standard duality transformation. 
The lines globally invariant under CO are the standard Potts line u = v together 
with the line 2 u + 3 v + A = 0 where A is one of the roots of the quadratic 
polynomial 5 + 2 A - A2 = 0. The line corresponding to the negative root 
(A = -1.449489743) is: 

2u+3v = A-1. (3.8) 

It has an interval belonging to the ferromagnetic physical region of the param- 
eter space and intersects the standard Potts model line u = v at the first order 

6 In CP2, the Noether theorem proves that every birational automorphism of the plane can be 
represented as a product of quadratic transformations and a projective transformation. This is 
very specific to CP2, the birational transformations in CP,,, n > 2, are much more complicated. 
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transition point. Thus this line, which is invariant under a generalized duality 
transformation, can be seen as a generalized self-dual line. Moreover it can be 
shown (detailed calculations will be given elsewhere) that an argument due to 
Kardar [26] can be generalized to the Potts model studied here. This argument 
shows that the ferromagnetic first order transition point of the standard Potts 
model is not an isolated transition point. It also shows that the critical curve 
passing by this point has the same slope as line (3.8), and that the transition 
in the neighborhood of the ferromagnetic point of the standard model is first 
order. 

Finally it is worth noting that line (3.8) intersects curve (3.4) at a point 
B where the symmetry group degenerates into a finite group of order 6. It is 
likely that point B is a point of enhanced symmetry and plays a special role 
in the phase diagram. The location of this point can easily be found using 
parametrization (3.5). The value of t corresponding to the point B is one of 
the roots of 

24t6+48t5-9t4-78t3-111t2-108t-36 = 0. 

Using the correct root tB = 1.580846966 one finds the location of point B: 

(ue,vB) = (0.3718817401,0.2352420875). (3.9) 

4. The phase diagram 

In order to determine the phase diagram in the ferromagnetic region of 
the model defined by the Boltzmann weight matrix (2.1) we have performed 
extensive Monte Carlo simulations. We always worked on a square lattice 
with periodic boundary conditions. We found it convenient for numerical 
calculations to use the following parametrization of the (u, w )-plane: 

u = exp -P 
( ) 

-1 

T ’ 
v = exp 

( 1 T . 

The square 0 5 u, ‘u < 1 (p > 0) is the ferromagnetic region where the 
ground-state is ordered with one single color. The value p = 1 corresponds 
to the standard six-state Potts model. In the phase diagram on Fig. 1 some 
iso-p curves are presented. On these curves the energy is well defined as a 
function of temperature (JX = 0, JY = -p, J, = - 1); this enables us to 
use different criteria to check equilibrium. Using the fluctuation-dissipation 
theorem it is straightforward to relate the fluctuation of the energy per spin 
and a numerical derivative of this energy with respect to the temperature: we 
systematically discarded all our results where this relation was not verified 
with a good accuracy and kept only those for which the complete energy 
distribution P(E) was reliable. From this distribution at a given temperature 
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disordered phase 

-I 

0 0.2 0.4 0.6 0.6 1 
U 

229 

Fig. 1. Ferromagnetic region of the phase diagram in variables u and w. Iso-p lines for p = 1, 
p = 0.8 and p = 0.5 are presented. 

and a given asymmetry p, we are able to extrapolate the energy distribution in 
the neighborhood of a point of simulation using the histogram method in two 
dimensions [29,30] adapted to our case. Comparison of extrapolations from 
different simulation points provides another independent test of equilibrium. 
When error bars are drawn on a figure they are calculated as the mean 
square deviation of the average of fifty independent measurements. The sizes 
analyzed in this work are L = 32, L = 64 and L = 128. All calculations 
were performed on a parallel computer of twelve i860 processors. Altogether 
it represents 3 x 1012 updates. 

We first checked the whole procedure on the standard Potts model (p = 1) 
for which many quantities are exactly known at the transition point in the 
thermodynamical limit [ 12,281. It provides a comparison for other values of 
p. For p = 0.8 we found a very similar behaviour, locating a first order 
transition very close to the line (3.8). Fig. 2 shows the energy distribution at 
the transition point and at a different temperature slightly below the transition. 
The bimodal form of this distribution leaves no doubt about the first order 
character of the transition. 

The situation is very different for a value of the asymmetry like p = 0.5. 
Fig. 3 presents the specific heat for different values of L deduced from the 
fluctuations. The points are the results of the simulation, and the lines are 
obtained by extrapolation using the histogram method [29]. The presence of 
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p = 0.6, L = 126 
1 I I I I I I 

Tl = 0.7360 + 

T2 = 0.7366 -+-- 

0.5 
E/spin 

0.55 0.6 0.65 0.7 

Fig. 2. Probability distribution P(E) of energy E for p = 0.8 on a square lattice of linear size 
L = 128. The curve for TI = 0.736 is the result of a simulation. The other curve for T2 = 0.7366 
was obtained transforming the first one. 

two maxima is clear. The size behaviour of the amplitude of these maxima 
indicates two transitions. It is then necessary to determine what are the order 
parameters for these two transitions. The form of the Boltzmann matrix (2.1) 
together with the fact that u > r~ suggest to define the two following order 
parameters ml and m2: 

mi = & C( (‘f7j,O + ‘of,1 + ‘fJl,2) - tdC7i,3 + aC7,,4 + 60,,5 )/ ) 
i 

m2 = & XI (hi,0 + &,,3) - Me,,2 + &,,5 )( . 
i 

(4.1) 

(4.2) 

Parameter ml amounts to identify colors 0, 1 and 2 and colors 3, 4 and 5. 
Parameter m2 amounts to identify colors with a difference of 3. The intuitive 
idea behind these two parameters is the following. At high temperature the 
system is invariant under permutation of arbitrary colors, this is a paramagnetic 
phase. For intermediate temperature the full symmetry is broken and only the 
exchange of two colors of difference three (O-3, l-4 or 2-5) leaves the 
system invariant, this is a two-color phase. Eventually for low temperature one 
recovers a ferromagnetic phase with one dominating color. Fig. 4 presents the 
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L= 128 6 

L= 64-s- 

L= 32+ 

01 I I I I I I I 

0.52 0.54 0.56 0.58 0.6 0.62 0.64 0.66 
T 

Fig. 3. Specific heat cv (T) as a function of the temperature T for different sizes L = 32, L = 64 
and L = 128 and for p = 0.5. The points are results of the simulation, and the lines are obtained 
by extrapolation using the histogram method. 

two parameters ml and m2 for p = 0.5 as functions of the temperature T for 
L = 64. The order parameter behaviour is clearly seen and the temperatures 
for which these parameters almost vanish coincide with the two maxima of 
the specific heat. We then performed finite size scaling analysis to determine 
the universality class of these two second order phase transitions. The results 
are summarized in Fig 5. Fig. 5(a) shows the raw data i.e. parameter ml as a 
function of the temperature T for different values of L. Fig. 5(b) presents the 
same data using the reduced variables y = m ( T) . LB/” and x = ( T - T, ). L’i”. 
The best lit is obtained for the values p = 0.12, v = 1 and Tc = 0.553. Our 
data for p = 0.5 are thus compatible with a second order phase transition 
of the Ising type (p = l/8 and v = 1). The question to know if the critical 
exponents are fixed along this lower branch Bi will be adressed in a forthcoming 
publication. Moreover we want to determine the universality class of the upper 
branch B2 that one could expect to be that of the three-state standard Potts 
universality class (/3 = l/9 and v = 5/6). 

We performed other simulations for intermediary values of p in order 
to understand the region between p = 0.8, for which one has a first order 
transition, and p = 0.5, for which two second order transitions occur. We used 
different methods to locate precisely the “bifurcation” point B where the first 



232 H. Meyer et al. I Physica A 209 (1994) 223-236 

F 
G 
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F 
v 
E 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

I I I , I I I 

0.52 0.54 0.56 0.58 0.6 0.62 0.64 0.66 
T 

Fig. 4. The two order parameters ml (T) and ml (2’) as a function of the temperature T for 
L = 64 and for p = 0.5. The lines are a guide to the eye. 

order transition line splits into two second order critical lines B1 and Bz. The 
most simple one was to consider the number of maxima of the specific heat for 
different values of p. The presence of two maxima indicates two transitions, 
while a single maximum indicates only one transition. To address the question 
of the order of the transition, we considered the probability distribution of 
the internal energy per spin for different values of p and at the temperature 
where the maxima occur. Fig. 6 shows these distributions for p = 0.66 and 
T = 0.6810, for p = 0.70 and T = 0.6967, for p = 0.74 and T = 0.7132 
and finally for p = 0.80 and T = 0.7372 on a lattice of linear size L = 64. 
These distributions are obtained by transforming the histogram with respect 
to temperature, keeping the asymmetry p constant. Eventually we used a more 
refined technique. We measured the fluctuations of the three quantities n,, 
nY and n, which are the numbers of bonds with Boltzmann weight x, y and 
z (see (2.1) ). For the standard Potts model the fluctuations of these three 
quantities n,, nY and y1 z are proportional and exhibit a sharp maximum at 
the same temperature. We recovered this behaviour when we have a single 
transition. On the other hand, for example for p = 0.5, the fluctuations of nY 
are maximum at the lowest critical point Tcl, while the fluctuations of n, are 
only maximum at the higher transition TC2. The coincidence of these maxima 
of the fluctuations of n,, nY or n, give a criterion to locate the bifurcation point 
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1.6 I 1 I I I I 1 

+ 0 L= 32 0 

1.4 - 0 - 
00, 

L=64+ 

+ L=128 0 
+0 

1.2 - 0 
0 j 

9 
1 - 0 

Oi 

+ 0.8 - .o 

: “0 

0.6 - : +o 

+0 
0.4 - 0 

+ 

0.2 - 

04 

*QOoo 
QIOOO + 

O!J+ + 

0 I I I I I I I 

-4 -3 -2 -1 0 1 2 3 4 
x = (T-Tc) L “” 

Fig. 5. (a) Parameter ml(T) for p = 0.5 as a function of T for L = 32, L = 64 and L = 128 
(raw data). (b) Same data using reduced variables x and y with B = 0.12, v = 1 (see text). 
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L = 64 

88 
7- 

6- 

p=O.l30, T=0.7372 o 

p=O.74, T=O.7132 + 

x “3 
p=O.70, T=0.6967 0 

x 
x x 

x 
p=O.66, T=0.6610 x 

x x 
x x 

0.3 0.4 0.5 0.6 0.7 0.8 
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Fig. 6. Probability distributions P(E) of energy E for L = 64 near transition temperature. The 
four distributions correspond to p = 0.66 and T = 0.6810, p = 0.70 and T = 0.6967, p = 0.74 
and T = 0.7132 and p = 0.80 and T = 0.7312. 

B. Using these methods we found p = 0.68 and T = 0.69 giving u = 0.373 
and 21 = 0.235. This is in good agreement with the exact prediction (3.9). 

To complete the phase diagram, we also performed Monte Carlo simulations 
for other values of p. We payed special attention to p = 0 (u = 1). In this 
case the ground-state is not of standard ferromagnetic type anymore. Instead 
it consists of two colors of difference three in complete disorder. Thus the 
ground-state has a non zero residual entropy per spin. These ground-states are 
of two-color type. Therefore we expect a single transition point located on the 
upper branch BZ. Indeed, we found for p = 0 a second order phase transition 
point, thus locating the point A where the upper branch B2 intersects the 
frontier of the ferromagnetic region with a “semi-ferromagnetic” region (u > 
1, 21 < 1). The coordinates of this point are UA = 1, VA = 0.133. All these 
results are summarized in Fig. 1 which shows the proposed phase diagram for 
this model. 
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5. Summary and speculations 

We proposed a phase diagram for a six-state chiral Potts model. This phase 
diagram is reminiscent of the Ashkin-Teller model scenario. A line globally 
invariant under a transformation generalizing the duality is a first order critical 
line up to a bifurcation point B where it splits in two second order branches. 
The lower branch, at least near p = 0.5 is compatible with the Ising univer- 
sality class. Some questions remain to be confirmed and will be addressed in 
forthcoming publications. We want to confirm that the two branches B1 and 
B2 have fixed critical exponents of the Ising and q = 3 universality class. 
Keeping in mind the Ashkin-Teller scenario [24] one may have the prejudice 
that another bifurcation point occurs in the zr 2 u part of the ferromagnetic 
region of the parameter space. A good candidate for such a bifurcation point 
is the intersection of line (3.8) together with the curve u = v2 for which the 
symmetry of the model is modified. Preliminary results seem in good agree- 
ment with this hypothesis. Finally one would like to sketch the analysis of the 
two “semi-antiferromagnetic” phases u 2 1, 2, 5 1 and u 5 1, u 2 1 as well as 
the antiferromagnetic region. 
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