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Abstract
We recall that the full susceptibility series of the Ising model, modulo powers
of the prime 2, reduce to algebraic functions. We also recall the nonlinear
polynomial differential equation obtained by Tutte for the generating function
of the q-coloured rooted triangulations by vertices, which is known to have
algebraic solutions for all the numbers of the form j n2 2 cos( )p+ , the
holonomic status of q 4= being unclear. We focus on the analysis of the
q 4= case, showing that the corresponding series is quite certainly non-
holonomic. Along the line of a previous work on the susceptibility of the Ising
model, we consider this q 4= series modulo the first eight primes 2, 3, ...
19, and show that this (probably non-holonomic) function reduces, modulo
these primes, to algebraic functions. We conjecture that this probably non-
holonomic function reduces to algebraic functions modulo (almost) every
prime, or power of prime numbers. This raises the question of whether such
remarkable non-holonomic functions can be seen as a ratio of diagonals of
rational functions, or even algebraic functions of diagonals of rational
functions.
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1. Introduction

Our aim in this paper is to study the reduction modulo primes, or power of primes, of certain
differentially algebraic power series F x c xn

n( ) = å , with integer coefficients of interest in
physics. Let us first recall that a power series F(x) is called an algebraic series if it satisfies a
polynomial relation

P x F x, 0, 1( ( )) ( )=

that a holonomic series satisfies a finite order linear differential equation (here Pi(x) denotes
polynomials with integer coefficients, F xi ( )( ) denotes the ith derivative of F(x))

P x F x 0. 2
i

k

i
i

0

( ) ( ) ( )( )å =
=

The series F(x) is called a differentially algebraic series if there exists a polynomial P such
that F(x) satisfies a polynomial differential equation

P x F x F x F x, , , , 0. 3k( ( ) ( ) ( )) ( )( )¢ ¼ =

A series is said to be non-holonomic if it is not a solution of a linear differential equation like
(2). We will say that a series is an algebraic function modulo a prime if there is a polynomial
P such that the series satisfies equation (1) modulo that prime.

In a previous paper [1] we have shown that the full susceptibility of the Ising model,
which is a non-holonomic function [2, 3], actually reduces to algebraic functions modulo any
powers of the prime 2.

Modulo 2r , one cannot distinguish the full susceptibility from some simple diagonals of
rational functions [1] which reduce to algebraic functions modulo 2r. Modulo 2r these
results can, in fact, be seen as being a consequence of the fact that, in the decomposition of
the full susceptibility in an infinite sum of n-fold n˜ ( )c integrals [4], these n˜ ( )c are actually
series with integer coefficients, with an overall 2n factor. This may lead to a prejudice that
these remarkable reductions to algebraic functions could only take place modulo powers of
the prime 2.

It is not clear if such a reduction of the full susceptibility to algebraic functions also takes
place for other primes or powers of primes. At the present moment, the high or low temp-
erature series of the full susceptibility modulo, for instance, prime 3, are not long enough to
confirm, or deny the fact that the associated series could actually correspond to an algebraic
function modulo 3.

These exact results shed new light on this iconic function in physics. They provide a
strong incentive to systematically study other non-holonomic series modulo primes (or
powers of primes), in theoretical physics. It is very important to see whether this is an
exceptional result, or the first example of a large set of selected non-holonomic functions in
theoretical physics.

Remarkably long low-temperature and high-temperature series expansions [5], with
respectively 2042 and 2043, coefficients have been obtained for the susceptibility of the
square Ising model using an iterative algorithm [6], the polynomial growth of that algorithm
[6] being a consequence of a discrete Painlevé quadratic recursion [7–9]. Sometimes such
algorithms with polynomial growth are called ‘integrable’ algorithms. At the present moment
the full susceptibility of the Ising model has only this ‘algorithmic integrability’: no nonlinear
differential equation, or even functional equation [10], is known for that very important non-
holonomic function in physics.

J. Phys. A: Math. Theor. 49 (2016) 074001 S Boukraa and J-M Maillard

2



Our aim in the following is to study other non-holonomic physical series modulo primes,
or powers of primes. No nonlinear differential equations are known for non-holonomic
functions in lattice statistical mechanics, however, this is not the case in an almost indis-
tinguishable domain of mathematical physics, namely enumerative combinatorics. In
that respect, we must recall Tutte’s study of triangulations equipped with a proper colouring
[11–13], his work culminating in 1982, when he proved that the series H w( ) counting q-
coloured rooted triangulations by vertices satisfies a nonlinear polynomial differential
equation [14, 15]:

q q w q w H w w
H w

w

H w

w

q q H w w
H w

w
w

H w

w

2 1 10 6
d

d

d

d

4 20 18
d

d
9

d

d
0.

4

2
2

2

2
2

2

· ( ) · ( ) ( ) · ( )

· ( ) · ( ) ( ) ( )

( )

- + + -

+ - - + =

⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

This q-family of nonlinear polynomial differential equations has a large number of
remarkable properties. For instance, the series H w( ) reduces to algebraic functions for all the
well-known Tutte–Beraha numbers, and in fact, for all the numbers of the
form4 q j m2 2 cos( )p= + . This remarkable result first appeared in [20] and was really
proved by Bernardi and Bousquet-Mélou in [21]. The Tutte–Beraha numbers accumulate5 at
the integer value q 4= . Interestingly, the status of the series H w( ), at the integer value
q 4= , remains unclear : if it is not an algebraic function, is it a holonomic function or a non-
holonomic function?

Other one-parameter dependent nonlinear polynomial differential equations have been
found in an enumerative combinatorics framework (see for instance [21–24]). Curiously, few
analysis have been performed on the remarkable nonlinear differential equation (4). For
instance, one does not know if the nonlinear differential equation (4) fits with some Painlevé
property.

We will focus, in this paper, on the study of equation (4), because of its historical
importance as the first example of exact nonlinear differential equation in enumerative
combinatorics, and as a toy model for the study of the susceptibility of the Ising model, and,
more generally, for the emergence of similar nonlinear differential equations in lattice sta-
tistical mechanics. More specifically, we will focus on the analysis of the series H w( ) at the
integer value q 4= . We will show that even if this series is quite certainly non-holonomic, it,
however, has a quite remarkable property, totally reminiscent of what we found on the
susceptibility of the Ising model [1]: this (probably non-holonomic) function is such that it
actually reduces to algebraic functions modulo the first eight primes: 2, 3, 5, ... 19, as well
as powers of these primes. It is tempting to conjecture that this (probably non-holonomic)
function reduces to algebraic function modulo (almost) every prime (or every power of
prime). This would be compatible with the scenario [1] that this series could be a simple ratio
of diagonals of rational functions, or, more generally, an algebraic6 function of diagonals of
rational functions [1]. Such kind of result is clearly a strong incentive to perform similar
studies on other nonlinear differential equations emerging in enumerative combinatorics

4 These selected algebraic values of q have been underlined many times on the standard scalar Potts model on
Euclidean lattices (the critical exponents are rational numbers, ...). They are such that a group of birational symmetries of
the model, which is generically an infinite discrete group, degenerates into a finite group [16–19].
5 To some extent the study of these remarkable numbers was a strategy in order to make some progress on the four-
colour problem.
6 Note that rational functions of diagonals of rational functions can be reduced to a simple ratio of diagonals of
rational functions.
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[21–24], or to obtain longer series (modulo some small primes p 3= , ...) for the suscept-
ibility of the Ising model, or to study systematically (in a first step) the ratio of diagonals of
rational functions.

2. A few remarks on the solutions of Tutte’s nonlinear differential equation (4)

Let us consider the series H w h wn
n( ) = å , solution of equation (4) which counts the q-

coloured rooted triangulations by vertices. Its coefficients are the number hn of rooted
triangulations with n vertices. They satisfy a remarkably simple quadratic recurrence rela-
tion7:

q n n h q q n n h

i i n i h h

1 2 4 3 1 3 2

2 1 3 3 1 ,

5

n n

i

n

i n i

2 1

1
1 2

· ( )( ) · · ( ) · ( ) ( ) ·

· ( ) · ( ) ·
( )

å

+ + = - - -

+ + - +

+ +

=
+ - +

with the initial conditions h 00 = , h 01 = , h q q 12 ( )= - . The number of proper q-
colourings of a triangle is h q q q1 23 · ( )( )= - - .

This series H w( ) reads

H w q q w q q q P q w1 1 2 , 6
n

n
n2

3

( ) · ( ) · · ( ) ( ) · ( ) · ( )å= - + - -
=

¥

where the first terms of the sum reads:

P q w w q w q q w

q q q w

q q q q w

4 9 3 8 37 43

176 1245 2951 2344

1456 13 935 50 273 81 036 49 248 .

7

n
n

n

3

3 4 2 5

3 2 6

4 3 2 7

( ) · ( ) · · ( ) ·

( ) ·

( ) ·
( )

å = + - + - +

+ - + -

+ - + - + +

=

¥



Of course there are many other solutions. For instance, with other initial conditions, namely
h 00 = , but h 01 ¹ , one deduces a one-parameter family of solutions:

H w h w q
U

q h
w

q U V

q h
w h z

4 4
, 81

1

2
2

1
3

3( ) · ·
·

· ·
( · )

· · ( ) ( )= +
+

+
+

where:

U q q q h V q q q h1 4 , 2 2 4 . 91 1· ( ) ( ) · · ( ) · ( ) · ( )= - + - = - + -

and:

h z q q q h z q h
q q q h

q q q z

z
q w

q h

1 4 9 9 4 129 4
3 37 86 4

3 8 37 43

with:
4

. 10

1
2

1
2

1
2 2 2

1
2

( ) ( · ( ) · ( ) · ) · ( · ( ) ·
· · ( ) · ( ) ·
· · ( )) ·

( )
( )

= + - + - + -
+ - -
+ - + +

=
+



When U or V in (8) are equal to zero, this yields two polynomial solutions of equation (4),
valid for any value of q:

7 As Bernardi and Bousquet-Mélou wrote it in [22], ‘to date this recursion remains entirely mysterious and Tutte’s
tour de force has remained isolated’.
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Let us remark that, in the h 01 = limit, the series (8) reduces, for any value of q, to the
series (6).

2.1. The q ¼ 4 subcase

In the q 4= subcase the previous series (6) becomes:

H w w w w w w w

w w w

12 24 168 1656 19 296 24 8832

3437 424 49 923 288 753 269 856 . 12

2 3 4 5 6 7

8 9 10

( )
( )

= + + + + +
+ + + + 

If one considers the solutions of equation (4) with the initial conditions h 00 = and h 01 = ,
but one does not impose h q q 1 122 · ( )= - = , one finds a one-parameter family of
solutions of equation (4), namely (here A denotes the parameter of this one-parameter family):

H w w A
w

A
H

w

A
, 13A

3
2 2

( ) · ( )= - + + ⎜ ⎟
⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟

where the function H , in (13), is the previous series (12). This corresponds to a one-
parameter group of symmetry of the nonlinear differential equation (4). Let us introduce the
function F w H w w( ) ( )= + . It is solution of the (quite simple) nonlinear differential
equation:

w
F w

w
F w

F w

w
w3

d

d
5

d

d
48 0, 14

2

2
· · ( ) · ( ) · ( ) · ( )- + =⎜ ⎟⎛

⎝
⎞
⎠

which has, clearly, the scaling symmetry F w A F w A3 2( ) · ( )) . This suggests to define a
function G w( ) such that F w w G w3 2( ) · ( )= . Introducing the homogeneous derivative

G w w
G w

w
G w w

G w

w

d

d
,

d

d
, 151 2

1( ) · ( ) ( ) · ( ) ( )= =

one finds that the nonlinear differential equation (4), for q 4= , takes the very simple
autonomous8 form:

G w G w G w G w G w6 3 8 4 3 2 0. 161 1 2
7( ( ) ( )) · ( ( ) ( ) ( )) · ( )- + + - =

As far as the singular points are concerned, this change of function suggests that the exponent
3 2 should play a selected role.

In order to get very long series, we consider Tutte’s recurrence (5) for q 4= . Using this
recurrence we have been able to get 24 000 coefficients9 of the series (12). This series has a
finite radius of convergence r 0.049 65 ... , the coefficients growing like Nl
where 20.1378 ...l 

We first tried to see if such very long series could actually correspond to a holonomic
function using the same kind of tools we have already used in our (quite extreme) studies of
n-fold integrals of the Ising type [3, 25, 26]. We seek linear differential operators, annihilating
the series (12) given with N coefficients (N 10 000, ,24 000=  ), of order Q in the
homogeneous derivative w wd d·q = and of degree D for the polynomial coefficients in
front of the nq s, where the order, degree, and number of coefficients are related by a simple
relation10:

8 As can be seen in equation (16) this equation has constant coefficients.
9 This is a 376 Megaoctets file.
10 This kind of relation corresponds to the so-called ‘ODE formula’ see, for instance, equation (26) in [26].
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Q D N1 1 1500. 17( ) · ( ) ( )+ + = -

For the series with N 24000= coefficients we explored all the values of the order Q and
degree D related [26] by the ‘ODE formula’ (17), and failed to find a linear differential
operator annihilating (12). This seems to exclude the possibility that the series (12) could be a
holonomic function.

A diff-Padé analysis11 of this (probably non-holonomic) series gives a first set of singular
points with their corresponding exponents. One gets the first set of singularities, namely
one real singularity w 0.049 65 ...1 = , and several complex singularities i0.202 837 ... ·
0.096 4358 ..., i0.470 420 ... 0.377 27 ...· , i0.860 28 ... 0.925 57· ¼, i1.3784 ... ·
1.822 95 ..., i1.8007 ... 0.487 40 ...· , i2.029 904 ... 3.150 337 ...· , all of them with
the exponent 3 2, the exponents at infinity being 1 3, 2 3, 4 3, 5 3 ,...- - - - It is pos-
sible that performing such kind of linear differential analysis of a (probably non-holonomic)
series with longer series, one could, with higher order linear differential operators, see the
emergence of more and more singularities: this could be a way to convince oneself that this
series is non-holonomic. What is the validity of such a linear approach for a typical non-
linear function is an open question, which certainly requires quite extensive studies12 per se.
Let us rather perform, in the following, some simpler clear-cut arithmetic calculations on this
quite large series.

3. Reduction of the q ¼ 4 series modulo primes

Recalling the results of a previous paper [1] where we have shown that the full susceptibility
of the Ising model, which is a non-holonomic function [2, 3], actually reduces to algebraic
functions modulo any powers of the prime 2, it is tempting to see if the series (12), for q 4= ,
actually reduces to algebraic functions modulo the first eight primes 2, 3, ... 19.

Since we have developed some tools [25, 26] to find the (Fuchsian) linear differential
operator annihilating a given series, let us first try (before seeking directly for algebraic
relations on this series, see next section 4) to see if this series (12), modulo the first eight
primes, is solution of a linear differential operator.

Since the coefficients of the series are all divisible by 12, and the series starts with w2,
we consider, instead of the series (12), this series divided by w12 2, modulo the first primes
2, 3, ... 17, and search for linear differential operators annihilating these series modulo
primes. It is only because we have a prejudice that this q 4= series is ‘very special’ that we
perform such calculations.

Caveat: Since we are going to use our tools [25, 26, 28–30] to find (Fuchsian) linear
differential operators modulo rather small primes (the first eight primes), one may be facing a
problem we do not encounter with our previous studies [25, 26] performed with rather large
primes (2 19 32 74915 - = , ... ). Modulo a prime p, any power series with integer coefficients
is solution of the linear differential operators pq q- , where q denotes the homogeneous
derivative w wd d· , or much more simply of the operator wd dp p. Actually the linear
differential operator, pq q- acting on wn, gives (Fermat’s little theorem):

w n n p0 mod . 18p n p( )( ) ( )q q- = - =

11 We do thank Hassani for providing this diff-Padé analysis.
12 In the spirit of the calculations we performed in [27].
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This is typically the reason why, when one is not in characteristic zero, the wording ‘being
holonomic’ should be prohibited13. When one performs such linear differential operator
guessing, modulo rather small prime p, it is important when one gets a result, to check,
systematically, that the order of the linear differential operator one obtains is strictly smaller
than p, in order to avoid being ‘polluted’ by such ‘spurious’ linear differential operators.

3.1. Reduction of the q ¼ 4 series modulo the first eight primes: the results

To take into account the fact that all the integer coefficients of (12) are divisible by
q q 1 12· ( )- = we will consider, instead of (12), the series (12) divided by w12 2:

S w
H w

w
w w w w w

w w w w

12
1 2 14 138 1608 20 736

286 452 4160 274 62 772 488 976 099 152 .

19

2
2 3 4 5

6 7 8 9

( ) ( )

( )

= = + + + + +

+ + + + + 

From the previous recurrence relation (5) for q 4= we obtained 24 001 coefficients of this
series.

We actually found linear differential operators for the series (19), modulo the first
primes p 2= , 3, ... 17. We denote Lp the linear differential operators annihilating, modulo
the prime p, the series (12) divided by w12 2. In the spirit of previous linear differential
operator guessing [3, 25, 26], we introduce the homogeneous derivative w wd d·q = . The
linear differential operators Lp read respectively14:

L w w

L w w w

L w w w w

2 1 ,

2 2 3 2 ,

3 4 3 3 5 ,

3
2

5
2

7
3 3 3 3 3 4

( ) ·
( ) · ( ) ·
( ) · ( ) · ( ) ·

q q
q q
q q q

= + + +
= + + + +
= + + + + + +

L w w w w w w

w w w w w w

w w w w w w

w w w w w

w w

9 5 5 2 6 9 6

2 8 7 1 5 7

6 4 2 10 9 8 10

8 8 5 7 5 4 6

8 , 20

11
15 10 5 15 10 5

15 10 5 2 15 10 5 3

5 10 15 4 15 10 5 5

15 10 5 6 15 5 7

15 5 8

( ) ·
( ) · ( ) ·
( ) · ( ) ·
( ) · ( ) ·
( ) · ( )

q
q q

q q
q q

q

= + + + + + +
+ + + + + + +
+ + + + + + + +
+ + + + + + +
+ + +

and:

L p w L q w, , 21
n

n
n

n
n

n
13

0

8

17
0

13

( ) · ( ) · ( )å åq q= =
= =

where the polynomials pn and qn read respectively:

p w w w w w w w w w w

p w w w w w w w w w w

w

p w w w w w w w w w

9 8 10 11 11 5 10 8 2 ,

11 4 7 4 7 12 2 2

9 11,

3 7 12 2 9 7 5 9 2,

0
30 27 24 21 18 15 12 9 6

1
30 27 24 21 18 15 12 9 6

3

2
30 27 24 21 15 12 9 6

( )
( )

( )

= + + + + + + + +

= + + + + + + + +

+ +
= + + + + + + + +

13 Because of identity (18) every series is ‘holonomic modulo a prime p’: one must search for linear differential
operators, getting rid of these spurious linear differential operators (18).
14 Modulo 2 the series (12), divided by w12 2, is just the constant 1: the L2 operator is trivially q. Slight
transformations of the series have to be performed to get a non-trivial result (see equation (23) in section 4 below).

J. Phys. A: Math. Theor. 49 (2016) 074001 S Boukraa and J-M Maillard

7



p w w w w w w w w

w w

p w w w w w w w w w w

p w w w w w w w w w w

p w w w w w w w w w w

w

p w w w w w w w w w

p w w w w w w w w w w

6 10 7 12 9 10 4

2 2 6,

6 6 5 2 7 9 8 1,

12 9 4 5 10 3 3 9 6 ,

12 7 2 3 9 2 2 5

3 1,

10 6 5 3 9 9 3 9 9,

6 2 2 10 11 7 2 2 9,

3
30 27 24 21 18 15 12

9 3

4
30 27 24 21 18 15 9 6 3

5
30 27 24 21 15 12 9 6 3

6
30 27 24 21 18 15 12 9 6

3

7
30 24 18 15 12 9 6 3

8
30 27 24 18 15 12 9 6 3
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( )
( )
( )

( )
( )

= + + + + + +

+ + +
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+ +
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= + + + + + + + + +

and:

q w w w w w w w w w

q w w w w w w w w w

w w

q w w w w w w w w w

w w

q w w w w w w w w w

w w

15 13 2 15 16 7 7 ,

15 5 5 4 12 15 11 2

15 16 5,
13 9 6 5 4 10 5

4 14 15,
15 10 12 2 14 10 15 5

13 10 6,

0
40 36 32 28 24 20 16 12

1
40 36 32 28 24 20 16 12

8 4

2
40 36 32 28 24 20 16 12

8 4

3
40 36 32 28 24 20 16 12

8 4
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( )

( )

( )

= + + + + + + +

= + + + + + + +

+ + +
= + + + + + + +

+ + +
= + + + + + + +

+ + +

q w w w w w w w w w

q w w w w w w w w w

w w

q w w w w w w w w w w

w

15 4 8 13 6 2 8 5,

4 5 11 16 13 6 16

14 4 16,
6 9 6 11 8 6 7 4

14 11,

4
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5
40 36 32 28 24 20 16 12

8 4

6
40 36 32 28 24 20 16 12 8

4

( )
( )

( )

= + + + + + + + +

= + + + + + + +

+ + +
= + + + + + + + +

+ +

q w w w w w w w w w

w

q w w w w w w w w w

w w

14 5 11 7 8 11 8 2

11 10,
12 5 3 6 15 13 16 5

5 11 6,

7
40 36 32 24 20 16 12 8

4

8
40 36 32 28 24 20 16 12

8 4

( )

( )

= + + + + + + +

+ +
= + + + + + + +

+ + +

q w w w w w w w w w

w w

14 15 11 4 14 14 12

13 2,
9

40 36 32 28 24 20 16 12

8 4

( ) = + + + + + + +

+ + +

q w w w w w w w w w

w w

q w w w w w w w w w

w

q w w w w w w w w w

w

q w w w w w w w w w

w w

15 16 13 13 4 5 6 2

9 7 13,
5 2 9 13 2 16 11 9

2 4,
9 15 14 14 8 10 8 12

14 1,
9 9 12 6 12 7 14

9 9 8.

10
40 36 32 28 24 20 16 12

8 4

11
40 36 32 28 24 20 16 12

8

12
40 36 28 24 20 16 12 8

4

13
40 36 32 28 24 20 16 12

8 4

( )

( )

( )

( )

= + + + + + + +

+ + +
= + + + + + + +

+ +
= + + + + + + +

+ +
= + + + + + + +

+ + +
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We tried to get the linear differential operator L19 for p 19= , but the calculations were too
time consuming. We will come to this p 19= case with another more direct approach (see
section 4.1 below).

It is quite a surprise to find linear differential operators on such a typically nonlinear,
probably non-holonomic, function. However, keeping in mind the results on the susceptibility
of the Ising model [1], it is natural to ask if such results modulo various primes could
correspond to reductions of the (probably non-holonomic) series (12) to algebraic functions
modulo primes. This amounts to revisiting the previous series modulo primes, trying to see,
directly, if they are algebraic functions modulo primes, seeking for a polynomial equation
satisfied by these series modulo primes. Such calculations are performed in the next section.
An alternative way amounts to calculating the p-curvature [46] of these linear differential
operators known modulo the prime p: if these series are reductions of algebraic functions
modulo primes, the p-curvature [46] has to be equal to zero.

Taking into account the fact that the primes, considered here, are small enough, one can
actually calculate the p-curvature using some modular15 algorithm [32, 33]. One actually finds
that all these linear differential operators Lp, modulo the primes p, have zero p-curvature16.

4. Algebraic functions modulo primes

Let us show that these series, modulo various primes, are actually algebraic functions modulo
primes, by finding directly the polynomial equations they satisfy.

Let us introduce the following lacunary functions which will be used in the following:

w w w w w w, , . 22
i i i

2
0

2
3

0

3
6

0

2 3i i i( ) ( ) ( ) ( )·  å å å= = =
=

¥

=

¥

=

¥

Similarly to the calculations performed in [1] on the susceptibility of the Ising model, it is
straightforward to see that, modulo the prime 2, a slight modification of the series (19)
becomes the lacunary series w2( ) which is well-known to satisfy a functional equation and
an algebraic equation, namely w w w w mod 22

2
2 2

2( ) ( ) ( )  = - = .
Modulo 2, we obtain:

w
S w w w w

2
1 1 . 232

2· ( ( ) ) · ( ) ( ) ( )- + + =

Performing similar calculations, modulo powers of the prime 2, one gets similar results
showing that the series reduces to algebraic functions modulo powers of the prime 2.

For instance, modulo 22, the following expression of S w( ) reduces, again, to the pre-
vious lacunary series:

w
S w w w w w

2
1 2 1 . 246 2

2· ( ( ) ) · ( ) ( ) ( )- + + + =

Modulo 23, one has:

w S w w w w w1 4 2 2 2 . 256 2
2· ( ( ) ) · ( ) · ( ) ( )- + + + =

15 For larger prime numbers, one cannot, in practice, calculate the p-curvature that way, and one must use totally
different algorithms [31].
16 We thank Weil for providing this result using a modular algorithm.
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Modulo 24, one verifies on the series of 24 001 coefficients, the following relation

w S w w w

w w w w w w

1 2 8

8 4 8 6 8 14 . 26
2

14 6 3 2

· ( ( ) ) ( ) · ( )
· ( ) ( )

- = +
+ + + + + +

Modulo 25, one can verify the more involved relation17:

w S w w w w w

w w w w w w

w w w

1 24 16 24 26

8 4 2 8 8

4 3 12 3 . 27

2
2 3

2
30 14 6 5 4

3 2

· ( ( ) ) · ( ) ( ) · ( )
· (

) ( )

 - = + + +
+ + + + +
+ + + +

Let us, now, consider the same series modulo the prime 3. One immediately sees the
emergence of the lacunary series w3( ) :

w
S w w w w

2
1 2 1 mod 3. 283· ( ( ) ) · ( ) ( ) ( )- + + =

This new lacunary series w3( ) satisfies, modulo 3, a simple functional equation, as
well as a simple algebraic equation w w w w3

3
3 3

3( ) ( ) ( )  = - = . The series is thus an
algebraic function modulo 3.

Modulo other primes (or power of primes) this guessing by lacunary series (along the line
of [1]) is no longer well-suited.

4.1. Seeking algebraic relations modulo primes

A better approach to analyze these series is to seek, systematically, modulo a given prime p,
for a polynomial relation: P w S w p, 0 mod( ( )) = .

As a first example, using equation (28), one can see that the series S(w) satisfies, modulo
p 3= , the polynomial relation:

w S w S w w w w2 1 2 0 mod 3. 292 3 2 5· ( ) ( ) ( ) ( )+ + + + + =

Modulo powers of the prime p 3= , one also obtains reductions to algebraic functions,
but the calculations are slightly more involved18. For instance, modulo p 32= the series
reads:

S w w w w w w w w w

w w w w w w w w
w w

1 2 5 3 6 6 8 3 3

8 3 3 3 8 3 3 3
3 8 . 30

2 3 4 7 8 9 11

26 27 29 35 80 81 83 89

107 242

( )

( )

= + + + + + + + +
+ + + + + + + +
+ + + 

In fact the series (30) can actually be understood from the previously introduced lacunary
series. The series (30) can in fact be seen to be equal, modulo 32, to:

w
w w w w

1 3

2
8 3 2 3 3 3 1 . 313

2
3 6

7 4 2( ) ( )  + + + + + + +⎜ ⎟⎛
⎝

⎞
⎠

Note that these lacunary series satisfy (in characteristic zero) the functional equations

w w w w w w0, 0. 323
3

3 6
3

6
2( ) ( ) ( ) ( ) ( )   - + = - + =

17 One may be surprised to see the occurrence of 2
2 in equation (27) if one has in mind the identity w2 2

2 = + .
Note that this identity holds modulo 2 and not modulo 25.
18 As we are going to see below, see equation (37).
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Therefore these lacunary series satisfy, modulo 3, the polynomial relations:

w w0 mod 3, 0 mod 3. 333
3

3 6
3

6
2 ( )   - + = - + =

The lacunary function 3 satisfies, modulo 32, the slightly more involved polynomial
relation:

w w w7 2 0 mod 3 . 342
3 3

2
3
3

3
4

3
6 2· · · ( )    + + + + + =

Similarly, the lacunary function 6 satisfies, modulo 32, the polynomial relation:

w w w7 2 0 mod 3 . 354 2
6 6

2 2
6
3

6
4

6
6 2· · · ( )    + + + + + =

The elimination of 3 and 6 in (31) gives a polynomial19 relation of degree 36 in
S w( ) and of degree 72 in w:

P w S w P w S w, 0 mod 3 . 36
n

n
n

0

36
2( ( )) ( ) · ( ) ( )å= =

=

We will not give this polynomial here because it is a bit too large. What matters is that it
exists. Now that we have these two degrees ( 36 in S w( ) and 72 in w) for a first example of
polynomial relation, one can revisit this example trying to find, directly, simpler polynomial
relations of lower degree (especially in S w( )). One actually finds the following polynomial
relation of degree 6 in S w( ) and degree 17 in w:

w w w w w w w w w w

w w w w

w w w w w w w w w S w

w w w w S w

w w w w w w w w S w

w w w w S w

w S w w w w w S w

8 6 3 6 6 6 5 3

3 3 2 6 3

5 5 5 5 5 5 6

4 2 2 2

2 2 1

2 2 2

3 2 2 2 0 mod 3 .

37

3 17 14 13 12 11 10 8 6 5

4 3 2

15 12 11 10 9 8 6 5 3

5 5 2 2

7 10 7 6 5 4 3 3

7 5 2 4

7 5 9 5 2 6 2

· (
)

( ) · ( )
· ( ) · ( )

· ( ) · ( )
· ( ) · ( )

· ( ) · ( ) · ( )
( )

+ + + + + + + +
+ + + + +
+ + + + + + + + +
+ + + +
+ + + + + + + +
+ + + +

+ + + + + =

Because of the quite large size of these polynomial relations we will not, in the following,
give these relations corresponding to the series modulo power of primes for the next primes.

Modulo p 5= , we obtained the polynomial relation:

w S w S w w w2 2 4 0 mod 5. 382 2· ( ) ( ) ( )+ + + + =

Modulo p 7= , we obtained the polynomial relation

w S w w w S w w w w S w

w w S w w w

5 1 6 5 2

2 6 2 5 1 0 mod 7. 39

4 4 2 3 2 2

2 2

· ( ) · ( ) · ( ) · ( ) · ( )
( ) · ( ) ( )

+ + + + +
+ + + + + + =

19 This polynomial can easily be obtained performing resultants in Maple.
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Modulo p 11= , we obtained the polynomial relation

p w S w

p w w w w w w w w w w

p w w w w w w w w w

p w w w w w w w w w w

p w w w w w w w w w w

p w w w w w w w w w

p w w w w w w w

p w w w w w w

p w w w w

p w w w p w w p w w

0, where:

4 2 9 2 8 8 3 3,

8 8 6 7 2 10 4 9 8,

4 2 3 7 4 3 9 5 ,

8 10 2 10 4 3 5 ,

2 2 3 2 8 3 8 ,

3 9 8 5 10 6 ,

6 10 9 9 ,

2 3 5 3 ,

9 1 , 10 , . 40

n
n

n

0

10

0
9 8 7 6 5 4 3 2

1
9 8 7 6 4 3 2

2
9 8 7 5 4 3 2

3
2 8 7 6 5 4 3 2

4
3 8 7 6 5 4 3 2

5
4 7 6 5 4 2

6
7 5 4 3 2

7
10 2

8
12

9
13

10
14

( ) · ( )

( )
( )
( ) · ( )
( ) · ( )
( ) · ( )
( ) · ( )
( ) · ( )
( ) · ( )
( ) · ( ) ( ) ( ) ( )

å =

= + + + + + + + + +

= + + + + + + + +

= + + + + + + + +

= + + + + + + + +

= + + + + + + +

= + + + + +

= + + + +

= + +

= + = =

=

One verifies that this polynomial equation is actually satisfied with our series of 24 001
coefficients modulo p 11= .

Modulo p 13= , we obtained the polynomial relation

q w S w

q w w w w w w w w w

w w w w w

q w w w w w w w w w w

w w w w

q w w w w w w w w w

w w w

q w w w w w w w w w w

w w w w w

q w w w w w w w w w

w w w w w

0, where:

11 6 9 2 6 9 10 4

4 11 11 5 10 1,
3 7 11 3 4 8 7

5 6 5 9 12,
6 2 2 11 11 10

7 11 6 9 ,

3 6 11 6 11 5 5 5

5 4 8 9 9 1 ,

9 2 9 6 10 12 10

10 7 7 5 9 ,

n
n

n

0

14

0
14 13 12 11 10 8 7 6

5 4 3 2

1
14 13 12 11 10 9 8 7 6

5 4 3

2
14 13 12 8 7 6 4

3 2

3
2 13 12 11 10 9 8 7 6

5 4 3 2

4
3 13 12 11 10 8 7 6

5 4 3 2

( ) · ( )

( )

( )

( ) · (
)

( ) · (
)

( ) · (
)

å =

= + + + + + + +

+ + + + + +
= + + + + + + + +

+ + + + +
= + + + + + +

+ + + +
= + + + + + + +

+ + + + + +
= + + + + + +

+ + + + + +

=

q w w w w w w w w w w

w w w

q w w w w w w w w w w

w w w

7 11 9 4 5 12 7 5

7 5 9 12 ,

12 7 4 3 8 4

5 10 2 11 ,

5
4 12 11 10 9 8 7 6 5

4 3 2

6
5 12 11 10 9 8 7 6 5

4 3 2

( ) · (
)

( ) · (
)

= + + + + + + +

+ + + +
= + + + + + + +

+ + + +

q w w w w w w w w w w

q w w w w w w w w w w

q w w w w w w w w

q w w w w w w q w w w

q w w w q w w q w w

9 8 10 2 6 10 12 5 ,

7 10 2 9 6 2 2 1 ,

1 5 4 4 7 1 ,

6 8 6 9 , 6 ,

6 , 12 , .

7
8 9 8 7 6 5 4 3 2

8
9 9 8 7 6 5 4 3 2

9
12 5 4 3 2

10
13 6 5 3 2

11
16 3

12
17 3

13
20

14
21

( ) · ( )
( ) · ( )
( ) · ( ) · ( )
( ) · ( ) ( ) · ( )
( ) · ( ) ( ) ( )

= + + + + + + + +

= + + + + + + + +

= + - + + - +

= + + + + = +

= + = =
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One verifies that this polynomial equation is actually satisfied with our series of 24 001
coefficients modulo p 13= .

Modulo p 17= , we obtained the polynomial relation

r w S w 0, 41
n

n
n

0

24

( ) · ( ) ( )å =
=

where the polynomials r wn ( ) are given in appendix A.1. One verifies that this polynomial
equation is actually satisfied with our 24 001 coefficients series modulo p 17= .

Modulo p 19= , we obtained the polynomial relation

s w S w 0, 42
n

n
n

0

30

( ) · ( ) ( )å =
=

where the polynomials s wn ( ) are given in appendix A.2. One verifies that this polynomial
equation is actually satisfied with 23 756 coefficients of our series.

After this accumulation of algebraic results, it seems reasonable to conjecture that the
series (12), or equivalently (19), reduces to algebraic functions modulo every prime (and
probably modulo power of primes, but it is much more difficult to confirm this statement
modulo power of primes).

Remark: When one does not restrict to primes the results have to be taken ‘cum grano
salis’. For instance modulo 6, the series modulo 6 reads:

S w w w w w w w w

w w

1 2 2 2 2 2 2 2

2 2 . 43

2 8 26 80 242 728

2186 6560

( )
( )

= + + + + + + +
+ + + 

If one considers the expression w S w w1 2 2· ( ( ))+ - , one actually finds that it is nothing
but the selected lacunary series w w3

3
n ( )å = :

w
S w w w

w w w w w w
w w w w

2
1

. 44

2
3

3 9 27 81 243

729 2187 6561 19 683

· ( ( )) ( )

( )

+ - =

= + + + + +
+ + + + + 

Following the ideas displayed in [34], one can see that this series is not algebraic modulo 6.
This series S w( ) is algebraic modulo 3 (because S w w S w3( ) ( )= + and
S w S w mod 33 3( ) ( )= ), but it is not algebraic modulo 2. If it were algebraic modulo 2,
it would be20 algebraic modulo 6.

5. Comparison with other reductions modulo primes

This first example of reduction to algebraic functions modulo primes, or power of primes, of
(probably non-holonomic) functions, satisfying nonlinear differentiable equations, is unex-
pected in a more general non-holonomic, nonlinear framework.

In order to have some perspective on such kind of results, let us consider series with
integer coefficients, that are solutions of linear differential equations (holonomic). Let us
consider diagonals of rational functions [36–41], and also holonomic globally bounded G-
series which are not known to be diagonals of rational functions [42, 43].

20 There is a theorem by Cobham [35] which says that if a series has only coefficients 1+ it can be algebraic modulo
two successive primes (here 2 and 3) only if it is rational. Furthermore if a series is algebraic modulo two relatively
prime numbers, namely a prime p and also another prime q, it is algebraic modulo p q· .
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5.1. Reductions modulo primes of holonomic functions: diagonals of rational functions and
beyond

Diagonals of rational functions are known to reduce to algebraic functions modulo any prime
[42, 43] (or power of primes). Reductions modulo primes of diagonals of rational functions
are, in general, quite easy and quick to perform. When the order of the linear differential
operator is not too large one gets quite easily the algebraic functions corresponding to this
reduction. One should note that diagonals of rational functions that are Fn n 1- hypergeometric
series are ‘almost too simple’ (see appendix B). The reduction of hypergeometric series are,
most of the time, very simple algebraic functions of the form P x N1( )- (where N is an
integer and P x( ) is a polynomial), which correspond to the truncation of the series expansion
of the hypergeometric series modulo the prime p. We sketch a few results of such reductions
of hypergeometric series modulo primes in appendix B.

Along this hypergeometric line it is worth recalling the hypergeometric function
F x1 9, 4 9, 5 9 , 1 3, 1 , 33 2

6([ ] [ ] ) introduced by Christol [42–44], a few decades ago, to
provide an example of holonomic G-series with integer coefficients that may not be the
diagonal of rational function. After all these years, it is still an open question to see whether
this function is, or is not, the diagonal of rational function. In such cases it is not guaranted21

that the corresponding series modulo primes are algebraic functions (or that the series are
‘automatic’ [1]).

If one performs the same reductions modulo primes, one finds, in contrast with the
previous studies of reductions modulo primes of diagonals of rational functions, that it
becomes quite hard to see whether a series like F x1 9, 4 9, 5 9 , 1 3, 1 , 33 2

6([ ] [ ] ), modulo
primes are algebraic functions (they could be of the form P x N1( )- where N is an extremely
large integer, see appendix B.4, or they could satisfy polynomial relations of the ‘Frobenius’
type of large degree, see appendix B.4). Probably different strategies (p-automatic approa-
ches) should be considered to find these polynomial relations (if any).

To sum up: As far as the reduction of holonomic functions modulo primes is concerned,
we seem to have the following situation: either the holonomic function is actually the
diagonal of a rational function [42, 43], the reduction to algebraic function modulo primes is
thus guaranted, and one finds, very simply and quickly, these algebraic functions, or the
holonomic function is not ‘obviously’ the diagonal of the rational function, and getting these
algebraic functions can be very difficult (see appendix B.4).

This difficulty to find polynomial relations modulo rather small primes, for such a
holonomic function (which is not obviously the diagonal of a rational function), has to be
compared with the rather easy way we obtained, in section 4.1, polynomial relations for a
(probably non-holonomic) series solution of the q 4= nonlinear differential equation (4).

Remark: Modulo a prime p we have linear differential operators of two22 different
natures annihilating a given diagonal of rational function: one has linear differential operators
of nilpotent p-curvatures [46] (which are the reduction, modulo p, of the globally nilpotent
linear differential operators [46] annihilating the series in characteristic zero), and one also
has linear differential operators of zero p-curvatures, corresponding to the fact that a diagonal
of rational function reduces to algebraic functions modulo a prime p. For holonomic functions
(in our case globally bounded [42] G-series), the order of the linear differential operator (of
nilpotent p-curvature) ‘saturates’ with the order of the linear differential operator in

21 The question to know if globally bounded D-finite formal power series (non-zero radius of convergence) are
globally automatic (their reduction modulo all but finitely many primes p is p-automatic), remains an open one:
see Question and remark, p 385 of [45].
22 In fact three if one takes into account the ‘spurious’ linear differential operators (18).
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characteristic zero. In contrast, for selected non-holonomic functions, reducing to algebraic
functions modulo primes, one just has the second set of linear differential operators of zero
p-curvature, their order having no reason to have such an upper bound. Increasing the value
of the prime p in the modular guessing of the linear differential operator could, thus, be a way
to disentangle between holonomic functions and selected non-holonomic functions reducing
to algebraic functions modulo primes.

5.2. Reductions modulo primes of other selected non-holonomic functions

One would like to accumulate more examples of reductions modulo primes of other selected
non-holonomic functions. In an integrable lattice model perspective where the theory of
elliptic curves plays so often a crucial role (as well as mirror symmetries), a quite natural
candidate amounts to considering the ratio of two selected holonomic functions, namely the
ratio of two periods of an elliptic curve [47, 48]. Unfortunately, as can be seen in appendix C,
one cannot perform such a reduction because one of the two holonomic functions, in such a
ratio, is not globally bounded [42, 43], which means that the series cannot be recast into a
series with integer coefficients: one cannot consider such series modulo primes23.

Therefore let us rather consider non-holonomic functions that are, not only the ratio of
holonomic functions, but, in fact, the ratio of diagonals of rational functions. Let us consider,
for instance, the ratio of two simple hypergeometric functions that are diagonals of rational
functions [42, 43]:

R x
F x

F x

, , 1 , 27

, , 1 , 16
. 45

2 1
1
3

1
3

2 1
1
2

1
2

( )
( )( )

[ ]

[ ]
( )=

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

This ratio satisfies a nonlinear differential equation that can be obtained from the two order-
two linear differential equations satisfied by these two simple hypergeometric functions. We
give this nonlinear differential equation in appendix D.

The series expansion of this ratio (45) is a series with integer coefficients:

R x x x x x x x x

x x x

1 4 208 5549 133 699 3142 224 73 623 828

1733 029 548 41 095 725 700 982 470 703 424 . 46

2 3 4 5 6 7

8 9 10

( )
( )

= - + + + + + +
+ + + + 

These two hypergeometric functions are diagonals of a rational function: their reductions
modulo primes must be algebraic functions. For instance, modulo p 7= , it reads:

F x x x x
1

2
,

1

2
, 1 , 16 1 4 mod 7, 472 1

2 3 1 6[ ] ( ) ( )= + + + -
⎛
⎝⎜

⎡
⎣⎢

⎤
⎦⎥

⎞
⎠⎟

F x x x
1

3
,

1

3
, 1 , 27 1 3 mod 7. 482 1

2 1 6[ ] ( ) ( )= + + -
⎛
⎝⎜

⎡
⎣⎢

⎤
⎦⎥

⎞
⎠⎟

If one considers the non-holonomic series (46) corresponding to their ratio (45), it
reduces modulo the prime 7, as it should, to the ratio of the (algebraic) reductions (47) and
(48):

23 An infinite number of primes occurs at the denominator of the successive coefficients of the series, preventing the
consideration of such series modulo this infinite set of primes.

J. Phys. A: Math. Theor. 49 (2016) 074001 S Boukraa and J-M Maillard

15



R x
x x x

x x

1 4

1 3
mod 7. 49

2 3

2

1 6

( ) ( )=
+ + +

+ +

⎛
⎝⎜

⎞
⎠⎟

The set of non-holonomic series with integer coefficients, reducing to algebraic functions
modulo every prime (or power of prime), is clearly a very large set.

6. Conclusion

We have recalled that the full susceptibility series of the Ising model satisfies, modulo powers
of the prime 2, exact algebraic equations [1] which is a consequence of the fact that, modulo
2r , one cannot distinguish the full susceptibility from some simple diagonals of rational
functions which reduce to algebraic functions modulo 2r. We also recalled the nonlinear
polynomial differential equation (4) obtained by Tutte for the generating function of the q-
coloured rooted triangulations by vertices.

Along the line of a previous work [1] on the susceptibility model, we considered this
series, solution of (4), modulo the first eight primes 2, 3, ... 19, and showed that this
(probably non-holonomic) function actually reduces, modulo these primes, to algebraic
functions. We conjecture that this probably non-holonomic function reduces to algebraic
functions modulo (almost) every primes, or power of primes, numbers.

We believe that this result on the q 4= solution of Tutte’s nonlinear differential
equation (4) for the generating function of the q-coloured rooted triangulations by vertices, is
not an isolated curiosity, but corresponds to a first pedagogical example of a large class of
remarkable non-holonomic functions in theoretical physics (lattice statistical physics, enu-
merative combinatorics ...) that reduce to algebraic functions modulo primes (and power of
primes). It is important to understand these remarkable non-holonomic functions: Are they a
ratio of holonomic functions (having in mind a ratio of diagonals of rational functions), or
more generally algebraic functions of diagonals of rational functions [1], do the nonlinear
differential equations they satisfy have the Painlevé property24, etc ... ?

It is essential to build new tools and algorithms to see whether a given (large) series is
solution of a nonlinear differential equation, and, in particular, of a polynomial differential
equation. Too often Rubel’s universal equation25 is recalled to discourage any such ‘non-
linear differential Padé ’ search. It must be clear that this kind of ‘nonlinear differential Padé’
analysis, should not be performed in the most general nonlinear framework: it must be
performed with some assumptions, ansatz, corresponding to the problem of theoretical
physics one considers (Painlevé property assumption [51], regular singularities assumptions,
autonomous assumptions, see (16), nonlinear differential equations associated with
Schwarzian derivatives [47, 52–54] or modular forms [55–60], ...).

It is crucial to build new tools and algorithms to see whether a given (large) series is a
ratio of holonomic functions (having in mind the ratio of diagonals of rational functions), or
more generally algebraic functions of diagonals of rational functions.

24 One can actually show that nonlinear equation (4) does not have the Painlevé property. We thank Ramani and
Conte for two different proofs of this result.
25 Rubel’s nonlinear differential equation [49] corresponds to a homogeneous polynomial differential equation such
that any continuous function can be approximated, on the real axis, by a solution of this ‘universal’ equation. Other
examples were obtained [50] which correspond to the idea of piecewise polynomial approximation on the real axis.
This kind of real analysis theorem do not mean that any function of a complex variable is ‘almost’ a solution of a
nonlinear differential equation in the complex plane, which would mean that any ‘nonlinear differential Padé’ would
be pointless.

J. Phys. A: Math. Theor. 49 (2016) 074001 S Boukraa and J-M Maillard

16



Such a result is clearly a strong incentive to obtain longer series (modulo some small
primes p 3= , ...) for the full susceptibility of the Ising model to see if the susceptibility
series reduces, for instance modulo 3, to an algebraic function.
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Appendix A. Polynomial relations modulo p ¼ 17 and p ¼ 19

Let us give the two polynomial relations satisfied by S w H w w12 2( ) ( ) ( )= , namely the
series (19), modulo p 17= and p 19= .

A.1. Polynomial relation for p ¼ 17

Modulo p 17= , we obtained the polynomial relation

r w S w 0, A.1
n

n
n

0

24

( ) · ( ) ( )å =
=

where:

r w w w w w w w w w w

w w w w w w
w w w w

w w w w w
w w w

r w w w w w

w w w w w
w w w w w w w
w w w w w

w w w w w w

r w w w w w

w w w w w
w w w w w

w w w w
w w w w w w w
w w w

10 9 8 14 12 7 8

3 6 16 3 4
5 6 2 9
12 4 11 11 4
4 5 9 10,

2 7 15 12

15 5 7 14 6
7 11 3 3 4 8 16
8 15 15 2
16 16 7 6 7 6 7,

12 7 8

11 13 3 10 14
7 6 12 14 16
16 14 10 4
13 7 11 2 8 4 5
13 7 10 5 ,

0
27 26 25 24 23 22 21 20 19

18 17 16 15 14 13

12 11 10 9

8 7 6 5 4

3 2

1
27 26 25 24

23 22 21 20 19

18 17 16 15 14 13 12

11 10 9 8 7

6 5 4 3 2

2
27 26 25

24 23 22 21 20

19 18 17 16 15

14 13 12 11

10 9 8 7 6 5 4

3 2

( )

( )

( ) · (

)

= + + + + + + + +
+ + + + + +
+ + + +
+ + + + +
+ + + +

= + + +
+ + + + +
+ + + + + + +
+ + + + +
+ + + + + + +

= + +
+ + + + +
+ + + + +
+ + + +
+ + + + + + +
+ + + +
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r w w w w w

w w w w w
w w w w w
w w w w

w w w w w
w w w w

r w w w w w w w w w w

w w w w
w w w w
w w w w w w w w

r w w w w w w w w w

w w w w w
w w w w
w w w w w w

r w w w w w w w w w w

w w w w w
w w w w

w w w w w w w

r w w w w w w w w w

w w w w w
w w w w

w w w w w

r w w w w w w w w w

w w w w
w w w w
w w w w w w

r w w w w w w w w w

w w w w w w w
w w w w

r w w w w w w w w w

w w w w w w
w w w w w

r w w w w w w w w w

w w w w w

5 9 9

16 4 11 15 9
16 12 3 7 15
15 11 3 16
9 15 9 13

5 5 7 1 ,

15 13 16 13 7 5 3 2

10 10 11 11
6 16 12 9
11 2 15 15 3 15 12 15 ,

8 4 7 11 4 5

15 15 2 13
3 13 11
5 10 4 8 16 10 8 ,

16 7 2 16 12 16 6

10 6 3 14 16
11 11 15
7 16 4 8 14 7 3 14 ,

7 4 3 2 11 15

3 14 6 8 6
15 5 3 8
4 15 12 14 14 14 ,

2 14 4 10 8 16

6 4 10 9
12 6 14 14
16 12 8 5 4 12 4 ,

14 15 7 10 6 14

10 4 14 11 6 9
9 4 10 4 15 ,

10 7 5 12 8 16

16 15 13 15 13 4
7 3 3 12 11 1 ,

6 11 5 2 8 12 16

16 14 6 10 15 7 ,

3
2 26 25 24

23 22 21 20 19

18 17 16 15 14

13 12 11 10

9 8 7 6 5

4 3 2

4
3 26 25 24 23 22 21 20 19

18 17 16 15

13 12 11 10

9 8 7 5 4 3 2

5
4 25 24 23 22 21 20 19

18 16 15 14 13

12 11 10 8

7 6 5 4 3

6
5 25 24 23 22 21 20 19 18

17 16 15 14 13

12 11 10 9

8 7 6 5 4 3

7
6 24 23 22 21 20 19 18

17 16 15 14 13

12 11 10 9

8 7 6 4 3

8
7 24 23 22 21 20 19 18

17 16 15 14

13 12 11 10

9 8 7 6 4 3

9
11 20 19 18 17 16 15 14

13 12 11 10 9 8 7

6 5 4 3

10
12 20 19 18 17 16 15 14

13 12 11 10 9 8

7 6 5 4 3

11
16 16 15 14 12 11 10 8

7 6 4 3 2

( ) · (

)
( ) · (

)
( ) · (

)
( ) · (

)
( ) · (

)
( ) · (

)
( ) · (

)
( ) · (

)
( ) · (

)

= + +
+ + + + +
+ + + + +
+ + + +
+ + + + +
+ + + + +

= + + + + + + +
+ + + +
+ + + +
+ + + + + + + + +

= + + + + + +
+ + + + +
+ + + +
+ + + + + + +

= + + + + + + +
+ + + + +
+ + + +
+ + + + + + + +

= + + + + + +
+ + + + +
+ + + +
+ + + + + +

= + + + + + +
+ + + +
+ + + +
+ + + + + + +

= + + + + + +
+ + + + + + +
+ + + + +

= + + + + + +
+ + + + + +
+ + + + + +

= + + + + + +
+ + + + + +

r w w w w w w w w w

w w w w w

r w w w w w w w w w

r w w w w w w w w w

r w w w w w

r w w w w w

6 16 8 2 7 9 16

14 2 6 13 7 7 ,

6 6 9 11 10 7 1 ,

10 13 15 4 13 16 6 5 ,

14 3 12 8 ,

2 15 9 6 ,

12
17 16 15 14 12 11 10 8

7 6 4 3 2

13
20 13 12 9 8 5 4

14
21 13 12 9 8 5 4

15
22 12 8 4

16
23 12 8 4

( ) · (
)

( ) · ( )
( ) · ( )
( ) · ( )
( ) · ( )

= + + + + + +
+ + + + + +

= + + + + + + +
= + + + + + + +
= + + +
= + + +
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r w w w w w w w w w

r w w w w w w w w

r w w w w w

r w w w w w r w w w

r w w w r w w r w w

1 7 13 10 2 9 9 ,

16 12 2 12 11 5 6 ,

8 14 7 9 ,

15 15 4 2 , 5 14 ,

3 4 3 , 2 , .

17
27 2 6 5 4 3

18
28 8 7 6 5 4 3

19
32 4 3 2

20
33 4 3 2

21
36

22
37

23
38

24
39

( ) · ( ) · ( )
( ) · ( )
( ) · ( )
( ) · ( ) ( ) · ( )
( ) · ( ) ( ) ( )

= - + + + + + +
= + + + + + +
= + + +
= + + + = +
= + = =

One verifies that this polynomial equation is actually satisfied with our series of 24 001
coefficients modulo p 17= .

A.2. Polynomial relation for p ¼ 19

Modulo p 19= , we obtained the polynomial relation

s w S w 0, A.2
n

n
n

0

30

( ) · ( ) ( )å =
=

where:

s w w w w w w w w w

w w w w w w w w
w w w w
w w w w w

w w w w w w w

s w w w w w w w w w

w w w w w
w w w w
w w w w w w w w w
w w w w w w w

s w w w w w w w w w w

w w w w w
w w w w
w w w w w
w w w w

w w w w w w w

s w w w w w w w w w w

w w w w w w w w
w w w w w
w w w w

w w w w w w w w w

s w w w w w w w w w

w w w w w w w w
w w w w
w w w w w

w w w w w
w w w w

7 2 18 8 8 10 9

10 16 2 7 8 2 18 12
14 4 12 13
15 7 8 12 16

15 17 3 7 6 14 13,

10 9 6 9 8 10 17

5 7 4 16 15
9 16 16 11
5 5 14 5 13 3 6 16 17
17 11 3 15 10 4 9 6,

3 10 9 4 5 3 12 5

5 7 18 9
2 13 17 4
18 15 10 16
14 17 18
2 11 12 2 13 3 ,

4 11 8 5 8 4 12

11 14 9 10 10 3 11 15
7 13 7 18 13
18 4 4 13
7 7 16 3 7 18 12 8 ,

12 4 15 16 18 16 6

18 17 15 12 5 15 15 5
8 18 8 15
12 17 4 6 3
6 16 10 5 7
14 6 15 12 11 ,

0
35 34 33 32 31 30 29 28

27 26 25 24 23 22 21 19

18 17 16 15

14 13 12 10 9

7 6 5 4 3 2

1
35 34 33 32 31 30 28 27

26 25 24 22 21

20 19 18 17

16 15 14 13 12 11 10 9 8

7 6 5 4 3 2

2
35 34 33 32 31 30 29 28

27 26 25 23 22

21 20 19 18

17 16 15 14 13

12 11 10 8

7 6 5 4 3 2

3
2 34 33 32 31 30 29 28 27

26 25 24 23 22 21 20 19

18 17 16 15 14

13 12 11 10

9 8 7 6 5 4 3 2

4
3 34 33 32 31 30 29 28

27 26 25 24 23 22 21 20

19 18 17 15

14 13 12 11 10

9 8 7 6 5

4 3 2

( )

( )

( ) · (

)
( ) · (

)
( ) · (

)

= + + + + + + +
+ + + + + + + +
+ + + +
+ + + + +
+ + + + + + + +

= + + + + + + +
+ + + + +
+ + + +
+ + + + + + + + +
+ + + + + + + +

= + + + + + + +
+ + + + +
+ + + +
+ + + + +
+ + + +
+ + + + + + + +

= + + + + + + +
+ + + + + + + +
+ + + + +
+ + + +
+ + + + + + + + + +

= + + + + + +
+ + + + + + + +
+ + + +
+ + + + +
+ + + + +
+ + + + +
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s w w w w w w w w w w

w w w w
w w w w w
w w w w w w w w

w w w w w

s w w w w w w

w w w w
w w w w w w w w
w w w w w w w w w

w w w w w

4 11 10 15 3 2 4 12

3 13 4 11
7 10 9 9
2 16 13 16 18 17 8 18
14 4 5 17 18 18 ,

8 9 5

14 11 5 11
10 17 17 17 2 8 2 13
16 2 2 16 15 15 7 7
4 8 2 13 15 11 ,

5
4 33 32 31 30 29 28 27 26

25 24 23 22

21 19 18 17 16

15 14 13 12 11 10 9 8

5 4 3 2

6
5 33 32 31 30

29 28 27 26

25 24 23 22 21 20 18 17

16 15 14 13 12 11 10 9 8

6 5 4 3

( ) · (

)
( ) · (

)

= + + + + + + +
+ + + +
+ + + + +
+ + + + + + + +
+ + + + + +

= + + +
+ + + +
+ + + + + + + +
+ + + + + + + + +
+ + + + + +

s w w w w w w w w w w

w w w w w w w w
w w w w w w w w

w w w w w

18 13 2 13 13 2 6

7 2 13 12 6 2 11 2
2 3 12 5 13 18 18 3
17 3 11 17 4 5 ,

7
6 32 31 30 29 28 27 26 25

24 23 21 20 19 18 17 16

15 14 13 12 11 10 9 8

6 5 4 3

( ) · (

)

= + + + + + + +
+ + + + + + + +
+ + + + + + + +
+ + + + + +

s w w w w w w w w w

w w w w w w w w
w w w w w w w w
w w w w w

s w w w w w w w w w

w w w w w w w w
w w w w w w w w

w w w w

11 5 12 2 18 11 12

16 8 16 2 12 9 5 9
18 5 6 16 9 13 14 14
18 14 14 2 4 15 ,

7 7 16 2 3 10 18

5 13 17 12 17 17
6 15 11 10 9 10 2
15 4 18 15 1 ,

8
7 32 31 30 29 28 27 26

25 24 23 22 20 19 18 17

16 15 14 13 12 11 10 9

8 6 5 4 3

9
8 31 30 29 28 27 26 25

24 23 22 21 20 19 18 17

16 15 14 13 12 11 10 9

8 6 4 3

( ) · (

)
( ) · (

)

= + + + + + +
+ + + + + + + +
+ + + + + + + +
+ + + + + +

= + + + + + +
+ + + + + + + +
+ + + + + + + +
+ + + + +

s w w w w w w w w

w w w w w w w
w w w w w w w

w w w w w w

s w w w w w w w w w

w w w w w w w w
w w w w w w w

16 10 13 12 5

18 17 7 4 18 6 16
2 18 6 13 2 17 17
16 8 9 17 6 14 16 ,

8 13 16 8 2 14 15

12 14 2 8 14 11 11 7
17 6 18 4 6 3 12 9 ,

10
12 28 27 26 25 24 23

22 21 20 19 18 17 16

15 14 13 12 11 10 9

8 7 6 5 3

11
13 27 26 25 24 23 22 21

20 18 17 16 15 14 13 12

11 9 8 7 6 5 3

( ) · (

)
( ) · (

)

= + + + + +
+ + + + + + +
+ + + + + + +
+ + + + + + +

= + + + + + +
+ + + + + + + +
+ + + + + + + +

s w w w w w w w w w

w w w w w w w
w w w w w

s w w w w w w w w w w

w w w w w w w

s w w w w w w w w w

w w w w w w

8 4 18 9 3 15

6 6 2 3 3 9 7
6 16 4 10 9 ,

15 6 12 2 14 3

2 13 3 6 12 11 9 16 ,

2 10 8 18 15 12 5

14 16 7 13 12 6 3 ,

12
14 27 26 25 24 22 21 20

18 17 16 15 13 12 11

9 8 7 6 3

13
18 23 22 21 19 18 17 14 13

12 10 9 8 5 4 3

14
19 23 22 21 18 17 14 13

12 9 8 5 4 3

( ) · (

)
( ) · (

)
( ) · (

)

= + + + + + +
+ + + + + + +
+ + + + + +

= + + + + + + +
+ + + + + + + +

= + + + + + +
+ + + + + + +

J. Phys. A: Math. Theor. 49 (2016) 074001 S Boukraa and J-M Maillard

20



s w w w w w w w w w

w w w

16 18 3 17 8 3 9

13 4 4 10 ,
15

20 22 21 18 17 13 12 9

8 4 3

( ) · (
)

= + + + + + +
+ + + +

s w w w w w w w w w

s w w w w w w

s w w w w

s w w w w w w w w w

w w w w w

12 12 16 6 2 10 3 9 ,

2 4 9 7 8 3 ,

18 3 4 ,

13 15 17 18 17 4

15 17 14 8 14 8 ,

16
24 19 18 14 10 9 5

17
25 18 14 9 5

18
26 18 9

19
30 14 13 12 11 10 8 7

6 5 4 3

( ) · ( )
( ) · ( )
( ) · ( )
( ) · (

)

= + + + + + + +
= + + + +
= + +
= + + + + + +

+ + + + + +

s w w w w w w w

w w w
w w w w

s w w w w w w w w w w

w w

s w w w w w w w w w

w w

s w w w w w w w w w

4 8 3 3 15

4 18 3
15 14 10 5 2 ,

15 13 17 3 14 3

6 6 12 ,

4 9 13 15 8 15

15 5 15 ,

16 4 18 18 5 2 16 14 ,

20
31 14 13 12 11 10

9 8 7

6 5 4 3

21
32 13 12 11 10 9 8 7 6

4 3

22
36 10 9 8 7 6 5 4

3

23
37 9 8 7 6 5 4 3

( ) · (

)
( ) · (

)
( ) · (

)
( ) · ( )

= + + + +
+ + +
+ + + + +

= + + + + + + +
+ + +

= + + + + + +
+ + +

= + + + + + + +

s w w w w w w w w

s w w w w w w

s w w w w w

s w w w w

s w w w s w w s w w

8 6 7 6 2 13 7 ,

5 18 15 4 2 ,

14 3 15 ,

9 6 13 ,

12 5 , 12 , .

24
38 9 8 7 6 4 3

25
42 5 4 3

26
43 5 4 3

27
44 4 3

28
48

29
49

30
50

( ) · ( )
( ) · ( )
( ) · ( )
( ) · ( )
( ) · ( ) ( ) ( )

= + + + + + +
= + + + +
= + + +
= + +
= + = =

One verifies that this polynomial equation is actually satisfied with 23 756 coefficients of our
series modulo p 19= .

Appendix B. Reduction of hypergeometric functions

B.1. Reduction of nF n−1 hypergeometric functions modulo primes

Let us consider the series expansions (with integer coefficients) of the hypergeometric
function F x1 2, 1 2, 1 2, 1 2 , 1, 1, 1 , 2564 3 ([ ] [ ] ), which corresponds to a Calabi–Yau
operator [47, 61]. It is the diagonal of a rational function [42, 43] since it is the Hadamard
product [42] of four times the algebraic function x1 4 1 2( )- - . This ensures that this series
reduces to an algebraic function modulo any prime [42, 43] (or power of prime).

Let us perform the same calculations as in sections 3 and 4. The series reads:

F x

x x x x
x x x

1

2
,

1

2
,

1

2
,

1

2
, 1, 1, 1 , 256

1 16 1296 160 000 24 010 000
4032 758 016 728 933 458 176 138 735 983 333 376 . B.1

4 3

2 3 4

5 6 7

[ ]

( )
= + + + +

+ + + + 

⎛
⎝⎜

⎡
⎣⎢

⎤
⎦⎥

⎞
⎠⎟

The reduction of this hypergeometric series is a very simple algebraic function of the
form P x N1( )- where N is an integer and where P x( ) is a polynomial, which corresponds to
the truncation of the series expansion of the hypergeometric series modulo the prime p.
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For instance, modulo 23, the hypergeometric function (B.1) becomes the algebraic
function P x1 1 22( ) , where the polynomial P x( ) reads:

P x F x

x x x x x x x
x x x x

1

2
,

1

2
,

1

2
,

1

2
, 1,1,1 , 256 mod 23

1 16 8 12 3 4
18 16 12 B.2

4 3

22

2 3 4 5 6 7

8 9 10 11

( ) [ ]

( )

=

= + + + + + + +
+ + + +

-⎛
⎝⎜

⎛
⎝⎜

⎡
⎣⎢

⎤
⎦⎥

⎞
⎠⎟

⎞
⎠⎟

More generally one can conjecture that, modulo almost all prime p, the hypergeometric series
to the power p 1( )- - is a polynomial:

P x F x p
1

2
,

1

2
,

1

2
,

1

2
, 1,1,1 , 256 mod . B.3

p

4 3

1

( ) [ ] ( )
( )

=
- -⎛

⎝⎜
⎛
⎝⎜

⎡
⎣⎢

⎤
⎦⎥

⎞
⎠⎟

⎞
⎠⎟

This polynomial is of degree 98 for the prime 197, of degree 411 for the prime 823, of
degree 1121 for the prime 2243. One can conjecture, modulo almost all prime p, that the
degree of this polynomial is p 1 2( )- .

Remark: One remarks that the polynomial P x( ) corresponds to a truncation of the
hypergeometric function we started from. For instance, modulo p 23= , the series expansion
of the F4 3 hypergeometric function reads:

F x

x x x x x x x
x x x x
x x x x x

1

2
,

1

2
,

1

2
,

1

2
, 1, 1, 1 , 256

1 16 8 12 3 4
18 16 12
16 3 13 8 16 mod 23,

4 3

2 3 4 5 6 7

8 9 10 11

23 24 25 26 27

[ ]

= + + + + + + +
+ + + +
+ + + + + + 

⎛
⎝⎜

⎡
⎣⎢

⎤
⎦⎥

⎞
⎠⎟

F x

x x x x x

1

2
,

1

2
,

1

2
,

1

2
, 1,1,1 , 256

16 3 13 8 16 mod 23, B.4

4 3

22

23 24 25 26 27

[ ]

( )

=

+ + + + + +

-



⎛
⎝⎜

⎛
⎝⎜

⎡
⎣⎢

⎤
⎦⎥

⎞
⎠⎟

⎞
⎠⎟

which corresponds to the fact that:

F x

x x x x

1

2
,

1

2
,

1

2
,

1

2
, 1,1,1 , 256 1

16 8 12 mod 23. B.5

4 3

23

23 46 69 92

[ ]

( )

-

= + + + + 

⎛
⎝⎜

⎡
⎣⎢

⎤
⎦⎥

⎞
⎠⎟

More generally, one has:

F x M x M M x

M M M x

1

2
,

1

2
,

1

2
,

1

2
, 1,1,1 , 256 1 16 16 8 73

256 3 8 219 1648

B.6

M

4 3
2

2 3

[ ] · · ( ) ·

· · ( ) ·
( )

- = + +

+ + + + 

⎛
⎝⎜

⎡
⎣⎢

⎤
⎦⎥

⎞
⎠⎟

all the coefficients of this series (B.6) are of the form M P M d· ( ) where P M( ) is a
polynomial with integer coefficients, the denominator d is an integer. Modulo M the
coefficients of this expansion are all equal to zero, except when the denominator of this
coefficient is divisible by M .
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B.2. Reduction of hypergeometric functions modulo power of primes

The algebraic expressions, corresponding to reductions of hypergeometric functions modulo
power of primes, are much more complicated. Let us just consider the previous F4 3 hyper-
geometric function, for instance, modulo 32. This series modulo 32 reads:

S x x x x x x x x x
x x x x x x

1 7 7 7 7 4 7 7 7 4
4 4 7 4 7 7 B.7

3 4 9 10 12 13 27 28

30 31 36 37 39 40 ( )
= + + + + + + + + +

+ + + + + + + 

It is solution of the polynomial relation

x x x x x S

x x x S x

2 2 1

1 7 1 0 mod 3 . B.8

7 6 5 2 4

6 5 2 5 2

( ) ·
( ) · · ( ) ( )

+ + + + +
+ + + + + + =

B.3. More reduction of hypergeometric functions

Such result generalizes to other hypergeometric functions. For instance for the F5 4 hyper-
geometric functions:

P x x x

F x

1 2

1

2
,

1

2
,

1

2
,

1

2
,

1

2
, 1,1, 1,1 , 2 mod 5, B.9

2

5 4
10

4

( )

[ ] [ ] ( )

= + +

=
-

⎜ ⎟
⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟

P x x x

F x

1 2 5

1

2
,

1

2
,

1

2
,

1

3
,

1

3
, 1,1, 1,1 , 2 3 mod 7, B.10

2

5 4
6 4

6

( )

[ ] [ ] ( )

= + +

=
-

⎜ ⎟
⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟

but

P x x x x x x

F x

1 2 4 3 2

1

2
,

1

2
,

1

2
,

1

3
,

1

3
, 1,1, 1,1 , 2 3 mod 5. B.11

2 5 6 7

5 4
6 4

24

( )

[ ] [ ] ( )

= + + + + +

=
-

⎜ ⎟
⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟

In fact the hypergeometric series, modulo p, are of the form P x N1( )- where N is an integer,
not necessarily equal to p 1( )- - , which is such that N p1 mod- = .

B.4. Reductions modulo primes of 3F 2 1 9;4 9; 5 9�; 1 3; 1�; 36 x� �������

Let us now consider the F3 2 hypergeometric function F x1 9, 4 9, 5 9 , 1 3, 1 , 33 2
6([ ] [ ] ).

This hypergeometric function has a series expansion with integer coefficients:

F x x x x

x x x
x

1

9
,

4

9
,

5

9
,

1

3
, 1 , 3 1 60 20 475 9373 650

4881 796 920 2734 407 111 744 1605 040 007 778 900
973 419 698 810 097 000 . B.12

3 2
6 2 3

4 5 6

7

[ ] [ ]

( )

= + + +

+ + +
+ + 

⎜ ⎟⎛
⎝

⎞
⎠

This F3 2 hypergeometric function has been introduced by Christol [42–44], a few
decades ago, to provide an example of holonomic G-series with integer coefficients that may
not be a diagonal of a rational function (it is still an open question to see whether this function
is, or is not, the diagonal of rational function).

If this hypergeometric function were the diagonal of a rational function it would reduce
to algebraic functions modulo every prime, in particular small primes like 2, 3, 5, 7.
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Considering the series (B.12) modulo these primes, in order to see whether they reduce, or
not, to algebraic functions modulo these primes, is certainely worth doing to have a better hint
on the very nature of this hypergeometric function: diagonal of rational function, or not.

Considering the previous series expansion with integer coefficients (B.12), modulo the
prime 2, we obtained a (quite lacunary) series of the first 533 000 coefficients:

S x x x x x x x
x x x x x
x x O x

1

. B.13

2 128 130 8192 8194 8320 8322

524 288 524 290 524 416 524 418 532 480

532 482 532 608 533 000( ) ( )

= + + + + + + +
+ + + + +
+ + +

In contrast with the calculations performed in sections 3 and 4, or in the previous
section (B.1), it becomes hard to find the polynomial relation (if it exists !) this series (B.13)
satisfies, even modulo 2. The reason is that the series (B.13) satisfies26, modulo 2, an
algebraic relation of slightly large degree 2 1 636 - = , namely x S1 1 02 63( ) ·+ - = .
One can check directly that:

F x x
1

9
,

4

9
,

5

9
,

1

3
, 1 , 3 1 mod 2. B.143 2

6 2 1 63[ ] ( ) ( )= + -
⎛
⎝⎜

⎡
⎣⎢

⎤
⎦⎥

⎞
⎠⎟

The series (B.12) becomes trivial modulo the prime 3, however, if one considers,
instead, the series S= F x1 1 9, 4 9, 5 9 , 1 3, 1 , 3 1 153 2

6( ([ ] [ ] ) )+ - , this series
expansion, modulo 3, is the lacunary series x1 3n+ å :

x x x x x x x x x x1 B.153 9 27 81 243 729 2187 6561 19 683 ( )+ + + + + + + + + + + 

which is algebraic since it satisfies, modulo 3, the polynomial relation S x S3 + = .
Remark: Even in a holonomic framework, the property to reduce to an algebraic function

modulo every prime (and power of prime) is probably more general than being the diagonal
of a rational function. For holonomic G-series with integer coefficients that do not reduce to
diagonal of a rational function, one must not search for polynomial relations P x S, 0( ) =
where the degrees in x and S are not too drastically different, but one must rather seek
polynomial relations of the ‘Frobenius’ type:

a x S p0 mod B.16i
pi( ) · ( )å =

where the degree in S, namely pN for some N integer, can be quite large.
Modulo 5 the series (B.12) becomes a function of the variable27 x5:

x x x x x x x x x

x x x x x x x x

1 4 2 3 2 2 2 3 4

3 2 3 3 3 2 4 .

B.17

5 10 25 30 35 50 55 250 255

260 275 280 285 300 305 375 380

( )

+ + + + + + + + +

+ + + + + + + + + 

For this series (B.17), as well as the reduction of (B.12) modulo 7, it is extremely hard to see
whether these series satisfy a polynomial relation, even of the Frobenius type (B.16).

Appendix C. Ratio of holonomic functions versus ratio of diagonal rational
functions

Let us consider a quite pedagogical and important example related to the theory of elliptic
curves, and the concept of mirror maps [47, 48].

26 We thank Bostan for kindly providing this result.
27 Sometimes called ‘constant’ by some authors because its derivative is x5 4· which is zero mod 5.
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Let us consider t p r= - the ratio of the two periods of an elliptic function as a
function of the lambda modulus k2l = :

F k

F k

, , 1 , 1

, , 1 ,
, C.1

2 1
1
2

1
2

2

2 1
1
2

1
2

2

( )
( )

[ ]

[ ]
( )r =

-⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

where the complete elliptic integral of the first kind and the complementary complete elliptic
integral of the first kind have the series expansions

F x
x

x x x
1

2
,

1

2
, 1 , 1

4

9

64

25

256

1225

16 384
C.22 1

2
2

4 6 8[ ] ( )= + + + + + 
⎛
⎝⎜

⎡
⎣⎢

⎤
⎦⎥

⎞
⎠⎟

and

F x x F k y x

y x
x x x x x x

x x x

1

2
,

1

2
, 1 , 1 ln

1

2
,

1

2
, 1 , where:

4

21

128

185

1536

18 655

196 608

102 501

1310 720

1394 239

20 971 520
33 944 053

587 202 560

3074 289 075

60 129 542 144

99 205 524 275

2164 663 517 184
.

C.3

2 1
2

2 1
2

0

0

2 4 6 8 10 12

14 16 18

[ ] ( ) · [ ] ( )

( )

( )

- = +

= + + + + +

+ + + + 

⎛
⎝⎜

⎡
⎣⎢

⎤
⎦⎥

⎞
⎠⎟

⎛
⎝⎜

⎡
⎣⎢

⎤
⎦⎥

⎞
⎠⎟

Introducing the two second order linear differential operators (here D xd dx = )

L x x D x D x1 3 1 , C.4x x2
2 2 2( ) · · ( ) · ( )= - + - +

M x x D x x D1 3 1 1, C.5x x2
2 2 2 2( ) · · ( ) · · ( )= - + - +

the complete elliptic integral of the first kind (C.2) is solution of L2 when the series y x0 ( ) in
(C.3) is solution of the fourth-order linear differential operator L M L4 2 2·= . Therefore the
ratio r in (C.1) reads

x r x r x
y

F x
ln where:

1

2
,

1

2
, 1 ,

. C.60

2 1
2

( ) ( ) ( )
[ ] [ ]

( )r = + =
⎜ ⎟⎛
⎝

⎞
⎠

It is well-known that the ratio t (and thus the ratio r) satisfies a very simple nonlinear
‘Schwarzian differential equation’:

,
1

2

1

1
, C.7

2

2 2
{ } · ( )

· ( )
( )r l

l l
l l

=
- +

-

where, if x is the modulus k of elliptic function, where l denotes the ‘lambda modulus’
k x2 2l = = , and where ,{ }r l denotes the Schwarzian derivative.
From (C.6) and (C.7) one immediately finds that r x( ), the ratio of two holonomic

functions, satisfy a nonlinear differential equation, that we will not write here.
In order to have series with integer coefficients, let us scale x by a factor 4: x x4 .

The elliptic integral (C.2), which is a diagonal of a rational function, has very simple
reductions modulo primes. For instance, modulo p 7= , it reads:

F x x x x
1

2
,

1

2
, 1 , 16 1 4 mod 7. C.82 1

2 2 4 6 1 6[ ] ( ) ( )= + + + -
⎛
⎝⎜

⎡
⎣⎢

⎤
⎦⎥

⎞
⎠⎟
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Unfortunately one cannot define the reduction of the holonomic series y0, the solution of
a fourth-order linear differential operator. One sees that this series (even with a rescaling
x x4 , or even any rescaling by an integer, cannot be recast into a series with integer
coefficients: it is not globally bounded [42, 43]. In the denominators of the successive
coefficients of this series almost every prime occurs, thus, one cannot look at this series
modulo a prime28.

Appendix D. Nonlinear differential equation for a ratio of diagonal rational
functions

The series expansion (46) of the ratio of two F2 1 hypergeometric series of section 5.2

R x
F x

F x

, , 1 , 27

, , 1 , 16
, D.1

2 1
1
3

1
3

2 1
1
2

1
2

( )
( )( )

[ ]

[ ]
( )=

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

is solution of the nonlinear differential equation ( R denotes R x( ), and Rn denote R xd dn n ):

x x x x x R x R R
x x x x x R

x x x R R

x x x R R

x x x R

x x x x R

x x R

2 27 1 16 1 27 1 16 1 72 1
2 3 16 1 72 1 27 1

93 312 168 297 4

2 29 376 5580 221 1

3 27 1 16 1

16 1 1944 1569 58 1

144 432 1 0. D.2

2
1 3

1
3 2

2
3 2

1
2 2 2

2
2

3 2
1
2

2 2

· ( )( ) · (( ) · ( ) · ( ) · ) ·
· ( · ( ) ( ) ( ) ·

( ) · ) ·
· ( ) · ·

· ( ) ( ) ·
( )( ) ·
( ) · ( )

- - - - - - +
- - + -
- - - +
+ + - +
+ - -
+ - - + -
+ - + =
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