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Abstract. We show that non-linear Schwarzian differential equations emerging
from covariance symmetry conditions imposed on linear differential operators with
hypergeometric function solutions can be generalized to arbitrary order linear
differential operators with polynomial coefficients having selected differential
Galois groups. For order three and order four linear differential operators
we show that this pullback invariance up to conjugation eventually reduces to
symmetric powers of an underlying order-two operator. We give, precisely,
the conditions to have modular correspondences solutions for such Schwarzian
differential equations, which was an open question in a previous paper. We analyze
in detail a pullbacked hypergeometric example generalizing modular forms, that
ushers a pullback invariance up to operator homomorphisms. We expect this
new concept to be well-suited in physics and enumerative combinatorics. We
finally consider the more general problem of the equivalence of two different order-
four linear differential Calabi-Yau operators up to pullbacks and conjugation, and
clarify the cases where they have the same Yukawa couplings.
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1. Introduction

In a previous paper [1] we focused on identities relating the same 2F1 hypergeometric
function with two different‡ algebraic pullback transformations. These identities
correspond to modular forms, the algebraic transformations being solutions of a (non-
linear) differentially algebraic [3, 4] Schwarzian equation, that also emerged in a
paper by Casale on Galoisian envelopes [5, 6]. This covariance symmetry of 2F1

hypergeometric functions could be regarded as one of the simplest illustrations of
the concept of symmetries (of the renormalization group type [2, 7]) in physics or
enumerative combinatorics, a univariate function being covariant (automorphic) with
respect to an infinite set of rational or algebraic transformations. This paper [1] was
essentially focused on nFn−1 hypergeometric functions and modular forms actually
represented as 2F1 hypergeometric function with two different algebraic pullback
transformations (modular correspondences [1, 8]).

The applications of this Schwarzian equation [1] known to be associated to a quite
large mathematical framework† (Malgrange’s pseudogroup, Galois groupoid [9, 10, 11,
12, 13, 14, 15]), extend well beyond hypergeometric functions in physics. We have
seen, for instance in [1], an example of identity relating the same Heun function with
two different pullbacks††. This Heun example [1] could suggest that such Schwarzian
differential equations emerge in physics with holonomic functions having a narrow set
of singularities (three for hypergeometric functions, four for Heun functions, ...) like
the Heun example in [1]. Going further we show, in this paper, that such differentially
algebraic [3, 4] Schwarzian equations do emerge in a much more general holonomic
framework.

We will show in section 2 that the covariance symmetry condition of general
order-two linear differential operators with polynomial coefficients automatically yields
this Schwarzian differential equation. We will then show in sections 3 and 4 that
the covariance symmetry condition imposed on linear differential operators having
order three and order four with respective orthogonal and symplectic differential
Galois groups, yield Schwarzian differential equations like the one examined in [1].
When their respective symmetric and exterior powers are of order five (instead of
six), one finds that these order-three and order-four operators reduce to symmetric
square and symmetric cube of an underlying order-two operator. In section 5 we
show that the Schwarzian condition can be derived for linear differential operators
of arbitrary order N . The reduction of the solutions of this Schwarzian differential
equation to only modular correspondences [8] was an open question in [1]: in section 6
a necessary condition to have such modular correspondences [8] is derived. In section
7 generalizations of modular forms provide examples of pullback invariance of an
operator, up to operator homomorphism. This invariance should be important to
describing the symmetries of linear differential operators and thus, is of relevance to
physics. Finally in section 8, we consider the more general problem already addressed
in [17] where Schwarzian differential equations also occurred, of the equivalence of two

‡ Beyond the x → 1 − x, 1/x, ... known pullback symmetries of hypergeometric functions.
The correspondence between the two pullbacks must be an infinite order rational or algebraic
transformation [1, 2].
† In Casale’s paper [5, 6] the Schwarzian equation is associated with meromorphic functions instead
of the rational functions of our paper [1]. See also [9, 10, 11].
††This Heun function being not, in general, reducible to a 2F1 pullbacked hypergeometric
function [16].



Schwarzian conditions 3

different order-four linear differential Calabi-Yau operators [18] up to pullbacks and
conjugation, possibly yielding the same Yukawa couplings [17], and we will generalize
it to linear differential operators of arbitrary orders.

2. Beyond hypergeometric and Heun functions: order-two linear
differential operators

We will show here that non-linear ODEs involving Schwarzian derivatives (cf. equation
(9) below), that we will call “Schwarzian ODEs”‡, obtained in [1] for hypergeometric
and Heun functions [22, 23], can be generalized to arbitrary globally nilpotent [24]
linear differential operators having an arbitrary numbers of singularities (as opposed
to three and four singularities for hypergeometric and Heun functions).

Let us consider a linear differential operator of order two

L2 = D2
x + p(x) · Dx + q(x), where: Dx =

d

dx
, (1)

and let us also introduce two other linear differential operators of order two: the

operator L
(c)
2 = 1/v(x) · L2 · v(x) being the conjugate of (1) by a function v(x),

and the pullbacked operator L
(p)
2 which amounts to changing x → y(x) in (1), the

head coefficient being normalized† to 1. These two linear differential operators read
respectively:

L
(c)
2 = D2

x +
(

p(x) + 2 · v
′(x)

v(x)

)

· Dx + q(x) + p(x) · v
′(x)

v(x)
+

v”(x)

v(x)
, (2)

where

v′(x) =
dv(x)

dx
, v”(x) =

d2v(x)

dx2
, (3)

and

L
(p)
2 = D2

x +
(

p(y(x)) · y′(x) − y”(x)

y′(x)

)

· Dx + q(y(x)) · y′(x)2, (4)

where:

y′(x) =
dy(x)

dx
, y”(x) =

d2y(x)

dx2
. (5)

The identification of these two linear differential operators L
(c)
2 = L

(p)
2 gives two

conditions:

p(x) + 2 · v
′(x)

v(x)
= p(y(x)) · y′(x) − y”(x)

y′(x)
, (6)

q(x) + p(x) · v
′(x)

v(x)
+

v”(x)

v(x)
= q(y(x)) · y′(x)2. (7)

Since

v”(x)

v(x)
=

d

dx

(v′(x)

v(x)

)

+
(v′(x)

v(x)

)2

, (8)

‡ See [1, 19] for a definition. See also [20, 21].
† Throughout the paper we consider, for clarity and simplicity, this normalized form for the linear
differential operators. The “true” pullbacked operator which amounts to changing x → y(x) (see

the command “dchange” in PDEtools in Maple) is in fact 1/y′(x)2 · L
(p)
2 where L

(p)
2 is given by (4).
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one can eliminate the log-derivative v′(x)/v(x) between (6) and (7), and obtain the
Schwarzian condition previously given in [1]

W (x) −W (y(x)) · y′(x)2 + {y(x), x} = 0, (9)

where

W (x) =
dp(x)

dx
+

p(x)2

2
− 2 · q(x), (10)

and where {y(x), x} denotes the Schwarzian derivative [19]:

{y(x), x} =
y′′′(x)

y′(x)
− 3

2
·
(y′′(x)

y′(x)

)2

=
d

dx

(y′′(x)

y′(x)

)

− 1

2
·
(y′′(x)

y′(x)

)2

,

where: y′′′(x) =
d3y(x)

dx3
, y′′(x) =

d2y(x)

dx2
, y′(x) =

dy(x)

dx
.

Unlike in [1], the number of singularities of the second order operator (1) is arbitrary:
it does not need to be three or four like in the hypergeometric or Heun examples
in [1]. The second order linear differential operator L2 is a general order-two linear
differential operator with polynomial coefficients. Introducing w(x) the wronskian of
L2

p(x) = − w′(x)

w(x)
where: w′(x) =

dw(x)

dx
, (11)

we see that the LHS and RHS of the first condition (6) are both log-derivatives. Thus
one can immediately integrate the first condition (6) and get (up to a multiplicative
factor µ) the conjugation function v(x) in terms of the wronskian w(x) and the
pullback function y(x):

v(x) = µ ·
( w(x)

w(y(x)) · y′(x)
)1/2

. (12)

Remark 1: When the wronskian w(x) is an N -th root of a rational function, the
exact expression (12) for the conjugation function v(x), becomes an algebraic function
when y(x) is an algebraic function. This is actually the case when the order-two linear
differential operator L2 is globally nilpotent [24]. In this case the linear differential
operator is simply conjugated to its adjoint through its wronskian w(x) which is a
N -th root of a rational function:

L2 · w(x) = w(x) · adjoint(L2). (13)

Remark 2: If the linear differential operator is not globally nilpotent [24]
the wronskian is not necessarily an algebraic function. Introducing Lv(x), the log-
derivative of the conjugation function v(x), one can rewrite the two conditions (6)
and (7) as:

p(x) + 2 · Lv(x) = p(y(x)) · y′(x) − y”(x)

y′(x)
, (14)

q(x) + p(x) · Lv(x) +
dLv(x)

dx
+ Lv(x)

2 = q(y(x)) · y′(x)2. (15)

The elimination of Lv(x) in (14) and (15) gives the Schwarzian condition (9) with (10),
however the conjugation function v(x) is no longer an algebraic function when y(x)
is an algebraic function (see (12)): it is a transcendental function, and we certainly
move away from a modular correspondence [1, 8] framework†.

† For modular correspondences see also the concept of modular equations [25, 26, 27, 28].
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3. Order-three linear differential operators

3.1. General order-three linear differential operators.

Considering an irreducible order-three linear differential operator

L3 = D3
x + p(x) · D2

x + q(x) · Dx + r(x), (16)

we introduce two other linear differential operators of order three defined as previously

in section 2: the operator L
(c)
3 conjugated of (16) by a function v(x), namely

L
(c)
3 = 1/v(x) · L3 · v(x), and the pullbacked† operator L

(p)
3 which amounts to

changing x → y(x) in L3. These two linear differential operators read respectively

L
(c)
3 = D3

x +
(

p(x) + 3 · v
′(x)

v(x)

)

· D2
x

+
(

q(x) + 2 · p(x) · v
′(x)

v(x)
+ 3 · v”(x)

v(x)

)

· Dx (17)

+ r(x) + q(x) · v
′(x)

v(x)
+ p(x) · v”(x)

v(x)
+

v(3)(x)

v(x)
,

and:

L
(p)
3 = D3

x +
(

p(y(x)) · y′(x) − 3
y”(x)

y′(x)

)

· D2
x

+
(

q(y(x)) · y′(x)2 − p(y(x)) · y”(x) − y(3)(x)

y′(x)
+ 3 ·

(y”(x)

y′(x)

)2)

· Dx

+ r(y(x)) · y′(x)3. (18)

The equality of these two order-three linear differential operators gives three
conditions Cn, with n = 0, 1, 2, corresponding, respectively, to the identification

of the Dn
x coefficients of L

(p)
3 and L

(c)
3 . Introducing the wronskian w(x) of L3, the

LHS and RHS of condition C2 being, again, log-derivatives, one can easily integrate
condition C2 and get the exact expression of the conjugation function v(x) in terms
of the wronskian of L3 and of the pullback y(x):

v(x) = µ ·
( w(x)

w(y(x)) · y′(x)3
)1/3

. (19)

Similarly the elimination of the log-derivative v′(x)/v(x) between condition C2 and
condition C1 yields the Schwarzian condition

W (x) −W (y(x)) · y′(x)2 + {y(x), x} = 0, (20)

where this time W (x) reads:

W (x) =
1

2
· dp(x)

dx
+

p(x)2

6
− q(x)

2
. (21)

3.2. Symmetric Calabi-Yau condition.

Let us consider the condition corresponding to imposing the symmetric square of L3

to be of order five instead of the generic order six. This (“symmetric” Calabi-Yau [35])

† The D3
x coefficient is normalized to 1.
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condition reads:

r(x) = − 2

27
· p(x)3 +

1

3
· p(x) · q(x) − 1

3
· p(x) · dp(x)

dx

+
1

2
· dq(x)

dx
− 1

6
· d

2p(x)

dx2
. (22)

For a globally nilpotent [24] linear differential operator, this (symmetric Calabi-Yau)
condition (22) together with (11) yields an order-three linear differential operator (16)
simply conjugated to its adjoint:

L3 · w(x)2/3 = w(x)2/3 · adjoint(L3), (23)

where the wronskian w(x) is a N -th root of a rational function.
Again for a globally nilpotent [24] linear differential operator, the exact expression

(19) for the conjugation function v(x), becomes an algebraic function when y(x) is
an algebraic function.

The symmetric square of an order-two linear differential operator L2 = D2
x +

A(x) · Dx + B(x) is an order-three linear differential operator (16) with the following
coefficients:

p(x) = 3 · A(x), q(x) = 2 · A(x)2 + 4 · B(x) +
dA(x)

dx
, (24)

r(x) = 4 · B(x) · A(x) + 2 · dB(x)

dx
. (25)

These coefficients (24), (25) automatically verify the (symmetric Calabi-Yau) condition
(22): the symmetric square of a symmetric square of an order-two linear differential
operator is of order five instead of the generic order six. Conversely, the (symmetric
Calabi-Yau) condition (22) can be parametrized† by (24) and (25) and amounts to
imposing the order-three linear differential operator (16) to be exactly the symmetric
square of an order-two operator.

Thus our calculations show that the pullback-compatibility of an order-three
linear differential operator is equivalent to saying that this order-three operator reduces
to (the symmetric square of) an underlying order-two linear differential operator.
The Schwarzian condition (20) with W (x) given by (21), is thus inherited from the
Schwarzian condition (9) of the underlying order-two linear differential operator.

4. Order-four linear differential operators

Consider the irreducible order-four linear differential operator

L4 = D4
x + p(x) · D3

x + q(x) · D2
x + r(x) · Dx + s(x), (26)

and introduce two other linear differential operators of order four defined as previously

in sections 2 and 3.1: the linear differential operator L
(c)
4 conjugated of (26) by

a function v(x) and the (normalized) pullbacked operator L
(p)
4 . These two linear

differential operators read respectively

L
(c)
4 = D4

x +
(

p(x) + 4 · v
′(x)

v(x)

)

· D3
x (27)

† Note that rewriting the exact expression of W (x) given by (21) in terms of A(x) and B(x) using
(24) one recovers (10), p(x) and q(x) in (10) being now A(x) and B(x).
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+
(

q(x) + 3 · p(x) · v
′(x)

v(x)
+ 6 · v”(x)

v(x)

)

· D2
x

+
(

r(x) + 2 · q(x) · v
′(x)

v(x)
+ 3 · p(x) · v”(x)

v(x)
+ 4 · v

(3)(x)

v(x)

)

· Dx

+ s(x) + r(x) · v
′(x)

v(x)
+ q(x) · v”(x)

v(x)
+ p(x) · v

(3)(x)

v(x)
+

v(4)(x)

v(x)
,

and:

L
(p)
4 = D4

x +
(

p(y(x)) · y′(x) − 6 · y”(x)
y′(x)

)

· D3
x

+
(

q(y(x)) · y′(x)2 − 3 · p(y(x)) · y”(x) − 4 · y
(3)(x)

y′(x)
+ 15 ·

(y”(x)

y′(x)

)2)

· D2
x

+
(

r(y(x)) · y′(x)3 − q(y(x)) · y′(x) · y”(x) − p(y(x)) · y(3)(x)

+ 3 · p(y(x)) · y”(x)
2

y′(x)
− y(4)

y′(x)
+ 10 · y”(x) · y

(3)

y′(x)2
− 15 ·

(y”(x)

y′(x)

)3)

· Dx

+ s(y(x)) · y′(x)4. (28)

The identification of these two order-four linear differential operators L
(p)
4 and L

(c)
4

gives this time four conditions Cn, n = 0, 1, 2, 3, corresponding, respectively, to the

identification of the Dn
x coefficients of L

(p)
4 and L

(c)
4 .

Eliminating once again the log-derivative v′(x)/v(x) between C3 and C2 one
deduces a Schwarzian condition

W (x) −W (y(x)) · y′(x)2 + {y(x), x} = 0, (29)

where this time:

W (x) =
3

10
· dp(x)

dx
+

3

40
· p(x)2 − q(x)

5
. (30)

Introducing the wronskian w(x) of the order-four linear differential operator L4

with (11), the condition C3 just corresponds to log-derivatives and can be easily
integrated giving the exact expression of the conjugation function v(x) as:

v(x) =
( w(x)

w(y(x)) · y′(x)6
)1/4

. (31)

The next conditions C1 and C0 yield extremely involved non-linear differential
conditions on the miscellaneous derivatives of the various coefficients. It turned out to
be very difficult to proceed with such huge expressions. Yet when the linear differential
operator L4 has a selected (symplectic) differential Galois group one can go much
further in the calculations, as we will see in the coming subsection.

4.1. Calabi-Yau condition (exterior square).

Imposing the Calabi-Yau condition [29, 30] in the case of an order-four linear
differential operator gives:

r(x) =
p(x) · q(x)

2
− p(x)3

8
+

dq(x)

dx
− 3

4
· p(x) · dp(x)

dx
− 1

2
· d

2p(x)

dx2
. (32)

In this case the exterior square of the order-four operator L4 has order five instead of
order six.
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When condition (32) is verified, the order-four linear differential operator L4

has a symplectic differential Galois group Sp(4, C). Note that if condition (32) is

verified, the Calabi-Yau conditions for the pullbacked and conjugated operators L
(p)
4

and L
(c)
4 are automatically verified: this is a consequence of the fact that the Calabi-

Yau condition (32) is left invariant by conjugation and pullback¶. In other words the

following identification of the Dx coefficients of L
(p)
4 and L

(c)
4 is automatically verified

when the Calabi-Yau condition (32) is verified.
Recall that the Calabi-Yau condition (32) together with the globally nilpotent

condition [24] automatically yields L4 to be conjugated to its adjoint

L4 · w(x)1/2 = w(x)1/2 · adjoint(L4), (33)

where w(x) is a N -root of a rational function.
At the last step we consider the identification of the constant terms in Dx in

L
(p)
4 and L

(c)
4 . After injecting in this “large” non-linear differential equation, equation

(11), the Schwarzian condition (29) with W (x) given by (30), and the Calabi-Yau
condition (32), we eventually find that this last “large” equation becomes independent
of the pullback y(x) and reduces to a quite simple condition giving s(x) as a polynomial
expression in the two coefficients p(x) and q(x) and their derivatives:

s(x) =
9

100
· q(x)2 − 1

200
· q(x) · p(x)2 +

1

4
· p(x) · dq(x)

dx
− 1

50
· q(x) · dp(x)

dx

+
3

10
· d

2q(x)

dx2
− 11

1600
· p(x)4 − 9

50
· p(x)2 · dp(x)

dx
− 21

100
·
(dp(x)

dx

)2

− 1

5
· d

3p(x)

dx3
− 7

20
· p(x) · d

2p(x)

dx2
. (34)

In order to understand what this new condition (34) coming on top of the Calabi-
Yau condition (32) really means, we calculated, for various MUM† order-four linear
differential operators L4 verifying (32) and (34), the corresponding nome and Yukawa
couplings [31]. The corresponding Yukawa couplings were actually found to be trivial:
Kq = 1 !!

This amounts to saying that combining the two conditions (32) and (34)
corresponds to a drastic reduction: the (irreducible) order-four linear differential
operator L4 is not a “true” order-four operator. Typically one can imagine that
L4 reduces to an order-two operator, being homomorphic to the symmetric cube of an
underlying order-two linear differential operator. In fact it is exactly the symmetric
cube of an order-two operator.

Let us consider the symmetric cube of an order-two linear differential operator
L2 = D2

x + A(x) · Dx + B(x) which is an order-four linear differential (26) with the
following coefficients:

p(x) = 6 · A(x), q(x) = 11 · A(x)2 + 4 · dA(x)
dx

+ 10 · B(x),

r(x) = 6 · A(x)3 + 7 · A(x) · dA(x)
dx

+ 30 · B(x) · A(x) +
d2A(x)

dx2
+ 10 · dB(x)

dx
,

¶ To see that the Calabi-Yau condition is preserved by conjugation is straightforward. However, as
remarked in [17], to see that the Calabi-Yau condition is preserved by pullback transformations is
very hard to see by direct computation, since one gets an enormous fourth-order nonlinear differential
equation.
† Maximal unipotent monodromy (MUM) linear operators [24, 31].
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s(x) = 18 · A(x)2 · B(x) + 6 · B(x) · dA(x)
dx

+ 15 · dB(x)

dx
· A(x)

+ 9 · B(x)2 + 3 · d
2B(x)

dx2
. (35)

One finds straightforwardly that the coefficients given by (35) verify the Calabi-Yau
condition (32), as well as the new condition (34). In this case the differential Galois
group is no longer the symplectic differential Galois group Sp(4, C), but actually
reduces‡ to the differential Galois group of the underlying order-two linear differential
operator, namely SL(2, C). The fact that the Calabi-Yau condition (32) is verified
is not a surprise: the exterior square of a symmetric cube is naturally of order
less than six. The fact that being the symmetric cube of an underlying order-two
operator verifies automatically the new condition (34) emerging from a compatibility
condition of an order-four linear differential operator by pullback is far less obvious.
The “parametrization” (35) necessarily yields the Calabi-Yau condition (32) and the
new condition (34), and, conversely, (32) and (34) can be parametrized by (35).

Our large calculations thus show that the pullback-compatibility of an order-four
linear differential operator which verifies the Calabi-Yau condition (32), amounts to
saying that this order-four linear differential operator reduces to (the symmetric cube
of) an underlying order-two linear differential operator. The Schwarzian condition
(29) with W (x) given by (30), is thus inherited from the Schwarzian condition (9) of
the underlying order-two linear differential operator.

4.2. Reducible operators

Throughout the paper we make the assumption that the linear differential operators
are irreducible. The reduciblility of the linear differential operators is not an academic
scenario: it is the situation we encounter (almost) systematically with the linear
differential operators emerging in physics, typically in the case of the n-fold integral
χ(n) of the two-dimensional Ising model [32, 33, 34]. When the linear differential
operators are reducible, it is clear that all the calculations of this paper must be
revisited, taking into account the miscellaneous factorization scenarios.

Sketching the kind of situation we may encounter, let us consider an order-four
linear differential operator L4 = D4

x + pr(x) · D3
x + qr(x) · D2

x + · · · which factorizes
into the product of two order-two linear differential operators:

L4 = M2 · L2, where:

L2 = D2
x + p(x) · Dx + q(x), M2 = D2

x + p̃(x) · Dx + q̃(x), (36)

pr(x) = p(x) + p̃(x), qr(x) = p̃(x) · p(x) + q̃(x) + 2 · dp(x)
dx

+ q(x), · · ·
The simple case where the two operators M2 and L2 are identical is sketched in
Appendix A. In general the exterior square of L4 is an order-six linear differential
operator which is the product of an order-one operator, of the symmetric product of
L2 and M2, and of the order-one linear differential operator Dx + p(x). Therefore,
this reducible order-four linear differential operator L4 does not verify in general the
Calabi-Yau condition (32).

Imposing the (normalized) pullback by y(x) of this reducible order-four linear
differential operator L4 = M2 · L2 to be equal to a conjugation by a function v(x)

‡ When an order-four linear differential operator is the symmetric cube of an underling order-two
operator its symmetric square is no longer of order 10 but reduces to order 7.
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of that operator, it is important to remember that a change of variable x → y(x)
on a linear differential operator which is the product of two operators, is the product
of these two linear differential operators on which this change of variable has been
performed. One gets a set of equations where one can disentangle two Schwarzian
equations

W (x) −W (y(x)) · y′(x)2 + {y(x), x} = 0, (37)

W̃ (x) − W̃ (y(x)) · y′(x)2 + {y(x), x} = 0, (38)

where W (x) and W̃ (x) are the functions (10) already encountered in the analysis of
order-two linear differential operators

W (x) =
dp(x)

dx
+

p(x)2

2
− 2 · q(x), (39)

W̃ (x) =
dp̃(x)

dx
+

p̃(x)2

2
− 2 · q̃(x), (40)

corresponding to the Schwarzian conditions written separately on L2 and M2, together
with another relation which couples L2 and M2:

4 · y
′′(x)

y′(x)
+ p̃(x) − p(x) =

(

p̃(y(x)) − p(y(x))
)

· y′(x). (41)

Among the four solutions of the order-four operators L4 = M2 · L2, the two
solutions of the order-two linear differential operator L2 transform nicely under the
pullback x → y(x), provided the Schwarzian condition (37) is satisfied, but this
just corresponds to a partial symmetry. In general the set of equations (37), (38),
(41) seems to be too rigid to allow solutions other than trivial symmetries or partial
symmetries.

It is however worth mentioning a quite curious result. If one imposes the reducible
order-four linear differential operator L4 = M2 · L2 to verify the Calabi-Yau condition
(32) (i.e. to be such that the exterior square of that operator is order five instead of
order six), one gets a condition that becomes remarkably simple when written in terms
of the functions W (x) and W̃ (x) given by (39) and (40). Introducing the difference
∆W (x) = W (x) − W̃ (x), the Calabi-Yau condition (32) simply reads:

2 · d∆W (x)

dx
= (p(x) − p̃(x)) · ∆W (x). (42)

Therefore, if one restricts oneself to W (x) = W̃ (x) which identifies the two
Schwarzian conditions (37) and (38), one sees that condition (42) is automatically
verified: condition W (x) = W̃ (x) is thus a sufficient condition for the Calabi-Yau
condition (32).

The analysis of pullback symmetry on reducible linear differential operators is
clearly an interesting and challenging problem in physics. It will require many more
calculations to explore the arborescence of these various factorization scenarios.

4.3. Symmetric Calabi-Yau condition

The condition, we called in [35, 36] symmetric Calabi-Yau condition for the order-four
linear differential operator L4 (which correspond to impose that its symmetric square
is of order less than 10), is a huge† polynomial condition on the coefficients of L4 and

† This polynomial is the sum of 3548 monomials in the coefficients of L4 and their derivatives.
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their derivatives. This condition is invariant by pullback and conjugation. Provided
the Schwarzian condition (29) with W (x) given by (30) is satisfied, this symmetric
Calabi-Yau condition alone is not sufficient to have Lp

4 = Lc
4. Similarly to what

we saw with the Calabi-Yau condition (32), would a supplementary condition to the
symmetric Calabi-Yau condition be sufficient to have Lp

4 = Lc
4 ? Could one also

have, in this selected subcase, a reduction of L4 to an underlying order-two operator?
This scenario remains open.

Working with such huge polynomials will not get us far. In order to advance, let
us introduce a parametrization based on the ideas explained in [36], namely that an
order-four linear differential operator L4, with an orthogonal differential Galois group
SO(4, C) and such that its symmetric square is of order less than 10, is necessarily
of the form‡

L4 = (U1 · U3 + 1) · d(x), (43)

where U1 and U3 are order-one and order-three self-adjoint linear differential
operators:

U3 = a(x) · D3
x +

3

2
· da(x)

dx
· D2

x + b(x) · Dx +
1

2
· db(x)

dx
− 1

4
· d

3a(x)

dx3
, (44)

U1 = c(x) · Dx +
1

2
· dc(x)

dx
. (45)

This yields a parametrization of this huge polynomial differential (symmetric Calabi-
Yau) condition:

p(x) =
5

2
· a

′(x)

a(x)
+

1

2
· c

′(x)

c(x)
+ 4 · d

′(x)

d(x)
, (46)

q(x) =
b(x)

a(x)
+

3

2
· a

′′(x)

a(x)
+

3

4
· a

′(x)

a(x)
· c

′(x)

c(x)
+ 6 · d

′′(x)

d(x)

+
15

2
· a

′(x)

a(x)
· d

′(x)

d(x)
+

3

2
· c

′(x)

c(x)
· d

′(x)

d(x)
, (47)

r(x) =
1

2
· c

′(x)

c(x)
· b(x)
a(x)

+ 4 · d
′′′(x)

d(x)
+ 4 · a

′(x)

a(x)
· c

′(x)

c(x)
· d

′(x)

d(x)

+
3

2
· d

′′(x)

d(x)
· c

′(x)

c(x)
− 1

4
· a

′′′(x)

a(x)
+

3

2
· b

′(x)

a(x)
+

15

2
· d

′′(x)

d(x)
· a

′(x)

a(x)

+ 2 · d
′(x)

d(x)
· b(x)
a(x)

+ 3 · d
′(x)

d(x)
· a

′′(x)

a(x)
, (48)

s(x) =
d(4)

d(x)
+

1

2
· c

′(x)

c(x)
· d

′′′(x)

d(x)
+

1

2
· b”(x)
a(x)

− 1

4
· a

(4)(x)

a(x)

− 1

8
· a

′′′(x)

a(x)
· c

′(x)

c(x)
+

1

4
· b

′(x)

a(x)
· c

′(x)

c(x)
+

1

a(x) c(x)

− 1

4
· a

′′′(x)

a(x)
· d

′(x)

d(x)
+

3

2
· b

′(x)

a(x)
· d

′(x)

d(x)
+

b(x)

a(x)
· d”(x)

d(x)
(49)

+
3

2
· a

′′(x)

a(x)
· d

′′(x)

d(x)
+

5

2
· a

′(x)

a(x)
· d

′′′(x)

d(x)

‡ The differential Galois group SO(4, C) with an order-10 symmetric square situation corresponds
to a decomposition L4 = (U3 · U1 + 1) · d(x), see [36].



Schwarzian conditions 12

+
1

2
· c

′(x)

c(x)
· d

′(x)

d(x)
· b(x)
a(x)

+
3

4
· a

′(x)

a(x)
· c

′(x)

c(x)
· d

′′(x)

d(x)
.

One easily verifies that this parametrization (46) ... (49) is such that the polynomial
encoding the symmetric Calabi-Yau condition, is identically equal to zero. Moreover
one verifies that the order-four linear differential operator (43), with parametrization
(46), (47), (48), (49), is, generically, such that its symmetric square has order 9
(instead of 10), its exterior square being of order 6.

Imposing L
(p)
4 = L

(c)
4 for an order-four linear differential operator, corresponding

to this parametrization (such that it verifies the symmetric Calabi-Yau condition, and
such that its symmetric square is of order nine), one naturally finds the Schwarzian
condition (29) with (30), as well as the exact expression (31) for the conjugation
function v(x). Taking into account the Schwarzian condition (29), the identification

of the coefficients of Dx for L
(p)
4 and L

(c)
4 yields a relation of the form Φ(x) =

Φ(y(x)) · y′(x)3, where Φ(x) is a rational function. Together with the last condition,
this gives an invariance of the form Ψ(x) = Ψ(y(x)) yielding only trivial cases‡ for
L
(p)
4 = L

(c)
4 .

This symmetric Calabi-Yau condition, even if it is invariant by pullback and

conjugation, is thus not sufficient to get L
(p)
4 = L

(c)
4 . We have here a situation

similar to the one described in the previous section 4.1, with the emergence of the
additional condition (34) on top of the Calabi-Yau condition (32). However here
the calculations are way too large: finding the additional condition(s) together with

the symmetric Calabi-Yau condition yielding L
(p)
4 = L

(c)
4 , is beyond our reach for

now. The case, described in the previous section 4.1, where the order-four operator
(43) is the symmetric cube of an underlying order-two operator is also such that the
symmetric square of L4 is not of the generic order 10, but, in fact, of order 7: in
this case the coefficients of L4 verify† the symmetric Calabi-Yau condition. Since
the calculations are way too large, it is not possible for now to tell if the additional
condition(s) to the symmetric Calabi-Yau condition, also gives eventually a linear
differential operator that is the symmetric cube of an order-two operator, as described
in the previous section 4.1, or whether it would give something else. This would mean
the emergence of the “classic” Calabi-Yau condition (32) combined with the condition
(34). This remains an open question.

5. Order-N linear differential operators

The analysis of irreducible order-five operators is sketched in Appendix B. Let us now
consider an irreducible order-N linear differential operator

LN = DN
x + p(x) · DN−1

x + q(x) · DN−2
x + · · · (50)

and let us also introduce two other linear differential operators of orderN : the operator

L
(c)
N conjugated of (50) by a function v(x), namely L

(c)
N = 1/v(x) · LN · v(x), and

the (normalized) pullbacked operator L
(p)
N which amounts to changing x → y(x) in

LN . The pullbacked operator L
(p)
N reads

L
(p)
N = DN

x +
(

p(y(x)) · y′(x) − N · (N − 1)

2
· y”(x)
y′(x)

)

· DN−1
x

‡ See [1] for similar calculations.
† This can be verified straightforwardly substituting (35) in the 3548 monomials symmetric Calabi-
Yau condition.
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+
(

q(y(x)) · y′(x)2 − (N − 2) · (N − 1)

2
· p(y(x)) · y”(x)

− N · (N − 1) · (N − 2)

6
· y(3)

y′(x)
(51)

− (N + 1) · N · (N − 1) · (N − 2)

8
·
( y(2)

y′(x)

)2)

· DN−2
x + · · ·

and the conjugate of (50) reads:

L
(c)
N = DN

x +
(

p(x) +N · v
′(x)

v(x)

)

· DN−1
x (52)

+
(

q(x) + (N − 1) · v
′(x)

v(x)
· p(x) +

N · (N − 1)

2
· v”(x)

v(x)

)

· DN−2
x + · · ·

We impose the identification of these two order-N linear differential operators:

1

v(x)
· LN · v(x) = pullback

(

LN , y(x)
)

. (53)

The identification of the DN−1
x coefficients gives the exact expression of v(x) in terms

of the wronskian w(x) and of the pullback y(x):

v(x) = y′(x)−(N−1)/2 ·
( w(x)

w(y(x))

)1/N

where: p(x) = − w′(x)

w(x)
. (54)

Injecting this exact expression in (52), or eliminating the log-derivative v′(x)/v(x),
the identification of the DN−2

x coefficients gives the following Schwarzian equation

W (x) −W (y(x)) · y′(x)2 + {y(x), x} = 0, (55)

where

W (x) =
6

(N + 1) · N ·
dp(x)

dx
+

6 · p(x)2
(N + 1) · N2

− 12 · q(x)
(N + 1) · N · (N − 1)

, (56)

i.e.

W (x) =
6

(N + 1) · N · W(x) where: (57)

W(x) =
dp(x)

dx
+

p(x)2

N
− 2 · q(x)

N − 1
= N · z”(x)

z(x)
− 2 · q(x)

N − 1
, (58)

where:

z(x) = w(x)−1/N , p(x) = −w′(x)

w(x)
. (59)

This is in agreement with the fact that the symmetric (N − 1)-th power of an
order-two linear differential operator L2 = D2

x +A(x) · Dx + B(x) gives an order-N
linear differential operator LN = DN

x + p(x) · DN−1
x + q(x) · DN−2

x + · · · such
that

p(x) =
N · (N − 1)

2
·A(x),

q(x) =
(3N − 1) · N · (N − 1) · (N − 2)

24
· A(x)2 +

N · (N − 1) · (N + 1)

6
· B(x)

+
N · (N − 1) · (N − 2)

6
· dA(x)

dx
, (60)
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and thus conversely:

A(x) =
2

N · (N − 1)
· p(x),

B(x) =
6 · q(x)

(N + 1) · N · (N − 1)
− (3N − 1) · (N − 2) · p(x)2

(N + 1) · N2 · (N − 1)2

− 2 · (N − 2)

(N + 1) · N · (N − 1)
· dp(x)

dx
. (61)

Injecting (61) in the expression of W (x) for an order-two linear differential operator
L2 (see (10))

W (x) =
dA(x)

dx
+

A(x)2

2
− 2 · B(x), (62)

one gets again the expression (56) for W (x) for an order-N linear differential operator
LN = DN

x + p(x) · DN−1
x + q(x) · DN−2

x + · · ·
Remark: the Schwarzian condition (55) and the associated function W (x) given

by (56), correspond to an elimination of the conjugation function v(x) in (53). If
one changes the order-N linear differential operator LN by conjugation, LN →
L̃N = 1/ρ(x) · LN · ρ(x), one gets again (53), LN being replaced by L̃N and v(x)
being replaced by ṽ(x):

v(x) −→ ṽ(x) =
v(x) · ρ(y(x))

ρ(x)
. (63)

Consequently one gets again the same Schwarzian condition (55) with the function
W (x) given by (56), since they are obtained by elimination of the conjugation functions
v(x) or ṽ(x). Therefore W (LN , x) given by (56), which is invariant by the conjugation
LN → 1/ρ(x) · LN · ρ(x), is left invariant by:

p(LN , x) −→ p(LN , x) + N · ρ
′(x)

ρ(x)
, (64)

q(LN , x) −→

q(LN , x) + (N − 1) · ρ
′(x)

ρ(x)
· p(LN , x) +

N · (N − 1)

2
· ρ”(x)

ρ(x)
. (65)

Conversely imposing this invariance by conjugation (64), (65), on a function of the
form W (x) = αN · p′(x) + βN · p(x)2 + γ · q(x) gives (56) up to an overall constant
factor.

6. Solutions of the Schwarzian conditions

Let us study the solutions y(x) of the Schwarzian equation (55) that emerge for any
pullback-symmetry condition of linear differential operators of arbitrary order N .
This should provide valuable information on the pullbacks that are symmetries of
linear differential operators.

6.1. Solutions of the Schwarzian equation that are diffeomorphisms of the identity: a
condition on W (x)

The Schwarzian condition (9) has been shown in [1] to be compatible under the
composition of the pullback-functions y(x) verifying (9). The fact that the composition
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of two solutions y(x) of the Schwarzian condition (9) is also a solution‡ of the
Schwarzian condition (9), is crucial to describe the set of solutions y(x) of (9). Once
a solution y(x) of the Schwarzian condition (9) is known, the n-th composition
y(n)(x) = y(y( · · · y(x) · · · ))), yields automatically a commuting set of solutions¶
of (9). By obtaining the series expansions of these solutions, one can extend to non
integer complex values of n, and in order to build a one-parameter family of commuting
solution series, consider the infinitesimal composition [2]:

yǫ(x) = x + ǫ · F (x) + · · · (66)

The one-parameter family of commuting solution series y(n)(x) commutes with (66)
yielding the functional equations [2]:

F (x) · dy
(n)(x)

dx
= F (y(n)(x)), F (x) · dyǫ(x)

dx
= F (yǫ(x)). (67)

Inserting (66) in the Schwarzian condition (9), one sees that F (x) is actually holonomic
being solution of the linear differential equation of order-three:

d3F (x)

dx3
− 2 · W (x) · dF (x)

dx
− dW (x)

dx
· F (x) = 0, (68)

whose corresponding order-three linear differential operator L3 is exactly the
symmetric square of an underlying order-two linear differential operator§ L2:

L3 = D3
x − 2 · W (x) · Dx −

dW (x)

dx
= Sym2

(

D2
x −

W (x)

2

)

. (69)

Conversely W (x) can be expressed in terms of F (x) as follows:

W (x) =
F”(x)

F (x)
− 1

2
·
(F ′(x)

F (x)

)2

+
λ

F (x)2
(70)

=
d

dx

(F ′(x)

F (x)

)

+
1

2
·
(F ′(x)

F (x)

)2

+
λ

F (x)2
. (71)

This last result (70) is easily obtained by multiplying the LHS of (68) by F (x) and
integrating the result. One gets this way†:

F (x) · d
2F (x)

dx2
− 1

2
·
(dF (x)

dx

)2

+ λ − F (x)2 · W (x) = 0, (72)

which is (70). Thus, for a given pullback y(x), or for a given one-parameter family of
commuting solution series (66), or for a given F (x), one has a one-parameter family
(70) of W (x) in the Schwarzian equation (9). Conversely, for a given W (x), one has
at least a one-parameter family of commuting solution series (66).

‡ See Appendix D in [1].
¶ Cum grano salis: when the pullbacks y(x) are algebraic functions, they are multivalued functions.
The composition of multivalued functions is limited to their analytic series expansions (setting aside
Puiseux series).
§ The reduction of L3 to a symmetric square (69) does not mean that F (x) is solution of a second
order linear differential (Liouvillian) equation F”(x)/F (x) = W (x)/2.
† This “gauge” W (x) → W (x) + λ/F (x)2 in (70) corresponds to the fact that because of (67) one
has λ/F (x)2 − λ/F (y(x))2 · y′(x)2 = 0 which allows to change W (x) → W (x) + λ/F (x)2 in the
Schwarzian equation (9), as well as in the third order linear differential ODE (68). One easily verifies
that inserting (70) in (68) gives an identity.
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6.1.1. Selected subcase of the Schwarzian equation.
Let us consider an order-two linear differential operator L2 = D2

x + A(x) · Dx +
B(x) (where A(x) and B(x) are rational functions), such that its corresponding
function W (x) = A′(x) +A(x)2/2 − 2B(x) (see (10)) in the Schwarzian equation
(9), is of the form (see subsection 6.2 of [1])

W (x) =
dAR(x)

dx
+

AR(x)
2

2
, (73)

where AR(x) is a rational function. Introducing the rational function C(x) =
(A(x) − AR(x))/2, the identification of the expression of W (x), namely W (x) =
A′(x) +A(x)2/2 − 2B(x) with (73), gives B(x) in terms of AR(x) and C(x)

B(x) =
dC(x)

dx
+ C(x) · (C(x) + AR(x)), (74)

which is the condition for the order-two linear differential operator L2 to factorize
into two order-one linear differential operators:

L2 =
(

Dx + AR(x) + C(x)
)

·
(

Dx + C(x)
)

. (75)

In other words, condition (73) with AR(x) a rational function, is the condition
of factorization of the order-two linear differential operator L2. In this case, the
Schwarzian equation (9) reduces to a simpler second order non-linear differential
equation (that was studied extensively in [1, 2]):

d2y(x)

dx2
= AR(y(x)) ·

(dy(x)

dx

)2

− AR(x) ·
dy(x)

dx
. (76)

Seeking the following one-parameter solutions (66), yǫ(x) = x + ǫ · F (x) + · · ·, one
finds that F (x) verifies a linear differential equation of order two [2]

d2F (x)

dx2
− AR(x) ·

dF (x)

dx
− dAR(x)

dx
· F (x) = 0, (77)

corresponding to the linear differential operator of order two†:

LF = D2
x − AR(x) · Dx −

dAR(x)

dx
= Dx ·

(

Dx −AR(x)
)

. (78)

Introducing the wronskian w(x), AR(x) reads AR(x) = −w′(x)/w(x). Thus the
linear differential operator (78) has two solutions: 1/w(x) which is the solution of
the right factor Dx − AR(x), and another (transcendental) solution that we denote
SF . The function F (x) corresponds to this last (transcendental) solution, and not the
1/w(x) solution. Conversely AR(x) can be expressed‡ in terms of F (x) as follows:

AR(x) =
F ′(x)

F (x)
+

µ

F (x)
. (79)

One easily verifies that by inserting (79) in (77) ones gets an identity, and that by
inserting (79) in (73) one recovers (71) with λ = µ2/2. Here the µ/F (x) term is
crucial, because when µ = 0 condition (79) with AR(x) = −w′(x)/w(x) yield the
trivial result, F (x) = 1/w(x) which is different from the transcendental (holonomic)

† In fact the order-two operator LF is the adjoint of the operator Ω = (Dx +AR(x)) · Dx (see [2]).
When AR(x) = −w′(x)/w(x) the linear differential operator LF is conjugated by the wronskian
w(x) to the linear differential operator Ω, namely Ω · w(x) = w(x) · LF .
‡ Just integrate the LHS of (77).
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function we are looking for. For instance in the example detailed in [2], we had the
condition (79) verified with µ 6= 0, namely µ = 1/4:

F (x) = x · (1 − x)1/2 · 2F1

(

[
1

2
,
1

4
], [

5

4
], x

)

, AR(x) =
3 − 5 x

4 x (1 − x)
. (80)

At first sight one expects the order-two linear differential equation (77) on F (x) to
be a simple limit of the order-three linear differential equation (68) when the condition
(73) is imposed. This reduction is not obvious however and the interested reader can
find it explained in Appendix C.

Remark: the global nilpotence of the linear differential operators gives an AR(x)
of the form AR(x) = −w′(x)/w(x), where the wronskian w(x) is an N -th root of
a rational function [24]. Using AR(x) = −w′(x)/w(x), condition (76) can be easily
integrated into

dy(x)

dx
= c1 ·

w(x)

w(y(x))
or: (81)

Θ(y(x)) = c1 · Θ(x) + c2 with: Θ(x) =

∫ x

w(x) dx (82)

where c1 and c2 are constants of integration.

Now let us describe this one-parameter family of commuting solution series (66)
of the Schwarzian equation (9).

6.2. Solutions of the Schwarzian equation that are diffeomorphisms of the identity:
the general formal solution

Let us consider (66) as a series in ǫ:

yǫ(x) = x + ǫ · F (x) +

∞
∑

n=2

ǫn

n!
· F (x) · Qn(x), (83)

solution of the functional equation (67). This is sufficient to find, order by order in ǫ,
the solution (83) of (67) where the Qn(x) are given by

Q1(x) = F (x), Q2(x) = F (x) · dQ1(x)

dx
= F (x) · dF (x)

dx
,

Q3(x) = F (x) · d

dx
Q2(x) = F (x) ·

(

F (x) · F”(x) + F ′(x)2
)

,

Q4(x) = F (x) · d

dx
Q3(x), Q5(x) = F (x) · d

dx
Q4(x),

· · · Qn+1(x) = F (x) · d

dx
Qn(x), (84)

the most general solution (83) of (67) corresponding to linear combinations of the
Qn’s which amounts to changing ǫ in (83) into:

ǫ −→ ǫ · (1 + λ1 · ǫ + λ2 · ǫ2 + λ3 · ǫ3 + · · ·). (85)

Note that all the Qn’s are polynomial expressions of F (x) and its derivatives.
The functional equation (67) corresponds to the one-form dΘ = dx/F (x) =

dy/F (y) giving:

Θ(x) =

∫ x dx

F (x)
,

d

dΘ
= F (x) · d

dx
. (86)
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Seeing x as a function of Θ, one finds that the series (83) together with the recursion
(84), gives the well-known Taylor expansion

yǫ(x(Θ)) = x(Θ) +

∞
∑

n=1

ǫn

n!
· dn x(Θ)

dΘn
= x(Θ + ǫ), (87)

meaning that x → yǫ(x) is just a shift in Θ

Θx −→ Θy = Θx + ǫ, (88)

corresponding to the integration of the one-form dΘ = dx/F (x) = dy/F (y). The
two transformations yǫ1(x) and yǫ2(x) of the one-parameter family clearly commute‡:

yǫ1(yǫ2(x(Θ))) = yǫ1(x(Θ + ǫ2)) = x(Θ + ǫ1 + ǫ2). (89)

One verifies order by order in ǫ, that the one-parameter family of commuting
series (83) with (84) is solution of the Schwarzian equation

W (x) −W (yǫ(x)) · y′ǫ(x)2 + {yǫ(x), x} = 0, (90)

where W (x) is given by (70). In terms of Θ, the expression (70) for W (x) can be
written using the Schwarzian derivative:

W (x) + {Θ(x), x} − λ ·
(dΘ(x)

dx

)2

= 0. (91)

Recalling the chain rule for the Schwarzian derivative of a composition of functions††
and the fact that dΘ(y(x))/dx = dΘ(x)/dx, one finds that the Schwarzian condition
(90) corresponds to the equality of the two Schwarzian derivatives:

{Θ(y(x)), x} = {Θ(x), x},
which is verified since dΘ(y(x))/dx = dΘ(x)/dx. This is another way to see that
the one-parameter family of commuting series (83) (with the Qn’s given by (84)) is
solution of the Schwarzian equation.

6.3. A simple modular form example.

We have considered in [1, 29, 30, 31, 37] many examples of modular forms represented
as pullbacked 2F1 hypergeometric functions. Each time the one-parameter commuting
series combined with the modular correspondences [8] series yields one-parameter
series of the form yn(x) = an · xn + · · · , n = 2, 3, 4, · · · that are solutions of
the Schwarzian equation (90).

In [1] the pullback symmetry of the order-two linear differential operator was given
as a covariance of its solution, namely a hypergeometric function with two different¶
pullbacks related by modular equations§

2F1

(

[
1

12
,
5

12
], [1], y(x)

)

= A(x) · 2F1

(

[
1

12
,
5

12
], [1], x

)

, (92)

the pullback y(x) being solution of the Schwarzian condition (90).

‡ This can also be checked directly using (83) with (84) for any rational function F (x).
††Namely {Θ(y(x)), x} = {Θ(y(x)), y(x)} · y′(x)2 + {y(x), x}.
¶ We exclude the trivial well-known changes of variables on hypergeometric functions x →
1 − x, 1/x, ... The transformation x → y(x) must be an infinite order transformation symmetry.
§ The emergence of a modular form [29, 30, 38] corresponds to the emergence of a selected
hypergeometric function having an exact covariance property [39, 40] with respect to an infinite

order algebraic transformation (the modular correspondences).
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In this example, the pullback yǫ(x) is solution of the Schwarzian solution (90)
with w(x) and F (x) given by†:

W (x) = −32 x2 − 41 x+ 36

72 x2 · (x − 1)2
, F (x) = x · (1 − x)1/2 · 2F1

(

[
1

12
,
5

12
], [1], x

)2

. (93)

One can also check that these expressions (93) verify (70) with‡ λ = 0, thus providing
a quite non-trivial (non-linear differential) identity between the rational function W (x)
and the holonomic function F (x).

The one-parameter commuting family (66) solution of the Schwarzian equation
(90) can be expressed using the two (mirror maps) differentially algebraic [3, 4]
functions P (x) and Q(x) described in [1] and in Appendix D, as y1(a1, x) =
P (a1 · Q(x)):

y1(a1, x) = a1 · x −
31 a1 · (a1 − 1)

72
· x2 +

a1 · (9907 a12 − 30752 a1 + 20845)

82944
· x3

− a1 · (a1 − 1) · (4386286 a12 − 20490191 a1 + 27274051)

161243136
· x4 + · · · (94)

where a1 = exp(ǫ).
Besides this one-parameter commuting family (66), the Schwarzian equation (90)

has a remarkable (infinite) set of algebraic functions solutions [1] y(x) defined by the
corresponding modular equations [25, 41, 42, 43, 44, 45]. Their series expansions near
x = 0 read:

yn(x) = P (Qn(x)) = 1728 ·
( x

1728

)n

+ · · · (95)

where n is an integer n = 2, 3, 4, · · · These series expansions commute for different
values of the integer n. This is a consequence of the fact that, up to the previous
change of variables P (x), Q(x), these modular correspondences (95) correspond to
taking the n-th power of the nome: q → qn (see [1] for more details).

6.3.1. A pre-modular concept.
The composition of the one-parameter series (66) (which corresponds to q → a1 · q)

and of the modular correspondences (95), yields an infinite set of one-parameter series
yn(x) = an · xn + · · · , n = 2, 3, 4, · · · for instance [1]:

y3 = a3 · x3 +
31 a3
24
· x4 +

36221 a3
27648

· x5 − a3 · (23141376 a3− 66458485)

53747712
· x6 + · · ·

These one-parameter series do not commute but verify [1] the simple composition
formulae¶:

yn(an, ym(am, x)) = ynm(ana
n
m, x), n, m = 1, 2, 3, · · · (96)

When the an are arbitrary rational numbers the corresponding series yn(an, x) are not
globally bounded series [31] in general. Therefore, they cannot be the series expansion
of an algebraic function: they are differentially algebraic [3, 4] since they are solutions
of the Schwarzian equation (90).

In general, finding the Schwarzian equation (90) is easy, and getting solutions
order by order as series expansions is also easy. However finding the selected values of

† One can easily check that these expressions (93) for W (x) and F (x) verify (68).
‡ This selected value of λ has to be compared with the value µ = 1/4 in (80).
¶ Consequence of the fact, in the nome, they correspond to the composition of transformations like
q → an · qn.
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the rational numbers an such that the differentially algebraic [3, 4] series yn(an, x)
are globally bounded and thus can be algebraic functions, and, possibly, modular
correspondences, is a quite difficult task‡.

We will call “pre-modular♯” the existence of an infinite set of one-parameter
differentially algebraic series (solution of the Schwarzian equation) of the form yn(x) =
an · xn + · · · which verify (96), but for which one does not know if there exist some
selected values of the parameter an such that these differentially algebraic series [3, 4]
become algebraic functions.

In the next section, we will characterize the Schwarzian equations corresponding
to these “pre-modular” structure, thus finding conditions that are necessary for the
emergence of modular forms.

6.4. Schwarzian equation: conditions for modular correspondence

In the previous sections it was shown that the pullback symmetry condition of
arbitrary order-two linear differential operators yields Schwarzian equation (90). The
solutions of these order-two linear differential operators are much more general than
hypergeometric functions and Heun functions [1]: they can have an arbitrary number
of singularities. Let us see which Schwarzian equation (90), or equivalently, which
function W (x) gives relations (96) corresponding to rigid constraints necessary to
have modular correspondences [1].

Series calculations give the conditions on W (x) such that series solutions of the
form yn(x) = an · xn + · · · are solutions of the Schwarzian equation with these
yn(x)’s verifying relations (96). These constraints are conditions on the Laurent series
of W (x). For the solution series of the Schwarzian equation to have the pre-modular
structure (96), i.e. the same structure as modular correspondences, the Laurent series
of W (x) must be of the form:

W (x) = − 1

2 x2
+

b1
x

+
∞
∑

m=0

am · xm. (97)

One easily verifies that this is the case for the previous modular form example where
W (x) reads (93), as well as for all the other modular forms emerging in physics or
enumerative combinatorics we mentioned in previous papers [29, 30, 31, 35, 37].

Condition (97) is a result whose scope transcends the hypergeometric functions
framework. In order to show this, let us apply this result on the open problem
of finding Heun functions† that could be modular forms [38], or pullbacked 2F1

functions [16, 50]. The Heun function HeunG (a, q, α, β, γ, δ, x) is solution of a
linear differential operator of order two L2 = D2

x + A(x) · Dx + B(x) where A(x)

‡ Similar to finding the selected values of the parameters so that a quantum Hamiltonian becomes
integrable, or finding modular forms among Beukers’ second order differential equations depending
on three parameters [46] (36 cases emerging of a numerical exploration of 10 millions triples).
♯ Of course, this “pre-modular” term should not be confused with the term premodular in premodular
categories, (ribbon fusion categories). Here we mean prerequisites for the emergence of modular forms.
† Finding the selected values of the parameters of a Heun function [47] (in particular the accessory

parameter [48]) such that its series expansion is a series with integer coefficients (or more generally is
globally bounded [31]), or such that the corresponding order-two linear differential operator is globally
nilpotent [24] is a difficult problem. These classification problems are closely related to finding the
Heun functions reducible to pullbacked hypergeometric functions [49], and to modular forms [46].
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and B(x) read:

A(x) =
(α+ β + 1) · x2 − ((δ + γ) · a + α − δ + β + 1) · x + γ · a

x · (x− 1) · (x − a)
, (98)

B(x) =
α β · x − q

x · (x− 1) · (x − a)
. (99)

The corresponding function W (x) is easily deduced from the formula (10) given by
W (x) = A′(x)A2(x)/2 − 2B(x). It has the following Laurent series expansion:

W (x) =
γ · (γ − 2)

2 x2 − a δ γ + αγ + β γ − δ γ − γ2 + γ − 2 q

a x
+ · · · , (100)

and has the form (97) given by −1/2/x2 + · · · only when γ = 1. Thus a
general analytical constraint like (97) yields a simple exact constraint on the intriguing
problem of the classification of the Heun functions that can be modular forms, and
more specifically on the necessary conditions for the Heun functions to have a “pre-
modular” structure.

6.4.1. Schwarzian equation for W (x) = −1/2/x2.
In order to understand the Laurent series condition (97), let us try to see what is

so “special” in the case where W (x) = −1/2/x2. For

W (x) = − 1

2 x2
= −{ln(x), x}, (101)

the most general solutions of corresponding Schwarzian equation read:

y(x) = exp
(a · ln(x) + b

c · ln(x) + d

)

, (102)

which just amounts to a simple transformation on ln(x):

ln(x) −→ ln(y(x)) =
a · ln(x) + b

c · ln(x) + d
. (103)

The solutions of the form yn(x) = an · xn + · · · are given by yn(x) = an · xn and
are thus “trivial”: this is the case because the nome‡ q is nothing but the x variable!
Similarly, the ratio of periods τ is just ln(x), and thus the condition W (x) = −1/2/x2

is a “trivialization” of the mirror map.

6.4.2. Rank-two condition (76) and pre-modular structures.
The factorization of the order-two linear differential operator which corresponds to

W (x) of the form (73), yields the rank-two non-linear differential equation (76) (see
section 6.1.1). We would like to know when the modular correspondences structures
(existence of solutions series yn(x) = an · xn + · · · , n = 2, 3, 4, · · · such that (96),
thus requiring W (x) = −1/2/x2 + · · ·) are compatible with a factorization of the
order-two linear differential operator and thus with condition (73). Imposing

W (x) =
dAR(x)

dx
+

AR(x)
2

2
= − 1

2 x2
+ · · · (104)

‡ Such that the transformations x → yn(x) = an · xn + · · · simply reduce to q → an · qn, see
the concept of mirror maps [1].
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where AR(x) is a rational function, one finds that AR(x) must have the following
Laurent series expansion:

AR(x) =
1

x
+

∞
∑

m=0

rm · xm. (105)

This result (105) can be directly obtained by looking for the Laurent series for AR(x)
with a pre-modular structure, i.e. such that the series yn(x) = an · xn + · · · ,
n = 2, 3, 4, · · · are solutions of condition (76). As a byproduct, one finds that in the
case (105) the solutions yn(x) = an · xn + · · · are such that (96). In particular
the solution y1(x) = a1 · x + · · · is a one-parameter family of commuting series.
The case W (x) = −1/2/x2, or AR(x) = 1/x, corresponds to the simple order-two
linear differential operator θ2 where θ is the homogeneous derivative θ = x · Dx.

More specifically, if one revisits our Heun classification problems, imposing the
factorization condition (see the analysis sketched in Appendix E) together with the
condition (97) required for the emergence of modular correspondence structure (96),
one gets the following Laurent series expansion (see (E.4) for the definition of the
u, v, w parameters):

W (x) =
v · (v − 2)

2 · x2
− v · (aw + u)

a · x + · · · (106)

This gives the condition v = 1 (in agreement with condition (105)) and four other
conditions. Excluding the case a = 0 corresponding to the reduction from the four
singularities of the Heun function to three singularities, one gets γ = v = 1. The
Heun function HeunG (a, 0, 0, β, 1, δ, x) is a (Liouvillian) solution of a reducible
linear differential operator of order two L2 = (Dx +AR(x)) · Dx, where AR(x) then
reads:

AR(x) =
1

x
+

δ

x − 1
+

β − δ

x − a
. (107)

The pullbacks y(x) are solutions of the rank-two non-linear differential equation (76)
which can easily be integrated into (see (81), (82)):

x · y
′(x)

y(x)
= c1 ·

(y(x)− 1)δ · (y(x) − a)β−δ

(x− 1)δ · (x− a)β−δ
, (108)

giving a functional equation on the pullbacks y(x) with an Abel integral Θ(x):

Θ(y(x) = c1 ·Θ(x) + c2 where: Θ(x) =

∫ x dx

x · (x − 1)δ · (x− a)β −δ
. (109)

One has for instance the following one-parameter series solutions for the pullback y(x),
which verify (96):

y1 = a1 · x − a1 · (a1 − 1) · a δ + β − δ

a
· x2 + · · · (110)

y2 = a2 · x2 + 2 · a δ + β − δ

a
· a2 · x3 + · · · (111)

The fact that solutions of the form y(x) = an · xn + · · · occur can be clearly
seen on equation (108). Even if the “pre-modular” conditions (96) are verified for
this example, this Heun function HeunG (a, 0, 0, β, 1, δ, x) will not be necessarily
a modular form represented as a pullbacked 2F1 hypergeometric function with more
than one pullback for generic parameters†.
† The exponent-differences at the four singularities are: 0, 1 − δ, 1 + δ − β, β. Introducing e1, e2, e3
the exponents difference of the three singular points of the 2F1 hypergeometric function each the
previous exponent-differences must be a multiple of the ei’s.
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7. Pullback symmetry of an operator up to equivalence of operators

With the aim of generalizing covariance (92), we introduce the derivative of

2F1([1/12, 5/12], [1], x)

Φ(x) =
d

dx

(

2F1

(

[
1

12
,
5

12
], [1], x

))

=
5

144
· 2F1

(

[
13

12
,
17

12
], [2], x

)

, (112)

which does not correspond to a modular form, since the derivative of a modular form
is not a modular form. A derivative of the simple covariance identity (92) gives

Φ(y(x)) · y′(x) = A(x) · Φ(x) + A′(x) · 2F1

(

[
1

12
,
5

12
], [1], x

)

. (113)

Using the order-two linear differential equation verified by 2F1([1/12, 5/12], [1], x), one
can rewrite the 2F1([1/12, 5/12], [1], x) in the RHS of (113), as a linear combination of
Φ(x) and its derivative Φ′(x). One then deduces from relation (113) a slightly more
general relation than the initial simple covariance (92)

Φ(y(x)) =
(

AΦ(x) ·
d

dx
+ BΦ(x)

)

· Φ(x), (114)

where AΦ(x) and BΦ(x) read in this particular example‡:

AΦ(x) =
144 · x · (x− 1) · A(x)

5 · y′(x) , BΦ(x) =
5 · A(x) + 72 · (2 − 3 x) · A′(x)

5 · y′(x) .

Recalling two Hauptmoduls p1(x) and p2(x)

p1(x) =
1728 · x
(x + 16)3

, p2(x) =
1728 · x2

(x + 256)3
, (115)

one can also write relation (114) in a more “balanced” form (see equation (7) in [2]).
Introducing the two algebraic functions A1(x) and A2(x)

A1(x) =
(

1 +
x

16

)−1/4

, A2(x) =
(

1 +
x

256

)−1/4

, (116)

one has the (modular form) hypergeometric identity:

A1(x) · 2F1

(

[
1

12
,
5

12
], [1], p1(x)

)

= A1(x) · 2F1

(

[
1

12
,
5

12
], [1], p2(x)

)

. (117)

After performing calculations of a similar nature of the ones previously seen, one
deduces the 1 ↔ 2 balanced relation on Φ(x):

144 · p1(x) · (p1(x) − 1) · dA1(x)

dx
· Φ′(p1(x))

+
(

72 · (3 p1(x) − 2) · dA1(x)

dx
− 5 · A1(x) ·

dp1(x)

dx

)

· Φ(p1(x))

= 144 · p2(x) · (p2(x) − 1) · dA2(x)

dx
· Φ′(p2(x)) (118)

+
(

72 · (3 p2(x) − 2) · dA2(x)

dx
− 5 · A1(x) ·

dp2(x)

dx

)

· Φ(p2(x)),

which should be viewed as a (rational) parametrization of the relation having the form
(114).

‡ If instead of the simple derivative (112) we had introduced Φ(x) = L1( 2F1([1/12, 5/12], [1], x))
where L1 is an arbitrary order-one linear differential operator, we would have also obtained a relation
of the form (114) but where AΦ(x) and BΦ(x) are much more involved expressions.
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The interested reader shall find in Appendix F a detailed (and we hope
pedagogical) analysis of the more general relation (114) given for a selected
hypergeometric function¶ solution 2F1([−1/4, 3/4], [1], x).

Let us provide an example of the relevance of the relation (114) in the context
of integrable models in physics. In the case of the two-dimensional Ising model, the
covariance (114) is instantiated on χ̃(2), the simplest of the low-temperature n-fold
integrals χ̃(n) occurring in the decomposition of the susceptibility of the square Ising
model [32, 33, 34] (see subsection 5.1 in [54]). When applied to χ̃(2), the Landen

transformation k → kL = 2
√
k

1+ k , which provides an exact representation of a
generator of the renormalization group [2, 7, 53], gives the following covariance relation
(see equation‡ (64) in [54]):

χ̃(2)
( 2
√
k

1 + k

)

= 4 · 1 + k

k
· d χ̃

(2)(k)

dk
, (119)

where: χ̃(2)(k) =
k4

43
· 2F1

(

[
3

2
,
5

2
], [3], k2

)

. (120)

This relation (119) can also be written as

χ̃(2)(k) =
1

4
·
(

k · (k − 1) · d

dk
+

k2 + k + 2

k + 1

)

χ̃(2)
( 2
√
k

1 + k

)

, (121)

or introducing the inverse Landen transformation (descending Landen transforma-
tion):

1 − (1 − k2)1/2

1 + (1 − k2)1/2
=

k2

4
+

k4

8
+

5

64
k6 +

7

128
k8 +

21

512
k10 + · · · , (122)

χ̃(2)
(1 − (1 − k2)1/2

1 + (1 − k2)1/2

)

=
( (k2 − 2) · (1 − k2)1/2 + 2

4 k2

)

· χ̃(2)(k)

+
k2 − 1

4 k
·
(

1 − (1 − k2)1/2
)

· dχ̃
(2)(k)

dk
. (123)

Remark: Note that the premodular condition (97), W (x) = −1/2/x2 + · · · ,
has no reason to be verified for such generalizations of modular forms (112), (114).
For instance for χ̃(2) given by (121), the function W (x) = p′(x) + p(x)2/2 − 2 q(x)
(see (10)) has the following Laurent series expansion (here x = k):

W (x) =
3

2
· x2 − 5

x2 · (x2 − 1)
=

15

2
· 1

x2
+ 6 + 6 x2 + 6 x4 + · · · (124)

More generally these (hypergeometric) examples provide simple illustrations of a
more general pullback symmetry, where one imposes the pullback of an order N linear
differential operator to be homomorphic to that operator. In this case there exists two
intertwiners (of order N − 1 in general) LN−1 and MN−1, such that:

MN−1 · LN = pullback
(

LN , y(x)
)

· LN−1. (125)

¶ We thank A.J. Guttmann for showing us this remarkable hypergeometric function emerging
in a dual context of combinatorics and random-matrix theory, counting the number of avoiding
permutations [51, 52].
‡ Note a misprint in the expression of the Landen transformation in the unlabelled equation above
equation (62) in [54].
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The pullback symmetry up to conjugation studied in sections 2, 3, 4, 5, 6 is appropriate
for modular forms [29, 30, 31, 37], but not for derivatives of modular forms that also
occur in physics (see for instance the previous relation (119) on the square Ising model).
The emergence of such generalized covariance (125) for the representation of the
Landen transformation (and more generally the modular correspondences providing
exact representations of the generators of the renormalization group) on the other n-
fold integrals χ̃(n)’s of the susceptibility of the Ising model [32, 33, 34] is a challenging
open problem, that will require one to consider reducible operators (see subsection 4.2).

Analyzing these more general constraints (125) will require many additional
assumptions (beyond the one of having selected differential Galois group) on the linear
differential operator LN to be able to perform more calculations.

8. Schwarzian conditions for different Calabi-Yau operators with the
same Yukawa couplings

In the previous sections we have analyzed the question of the covariance under
algebraic pullbacks of a linear differential operator of arbitrary order N , i.e. the
question of linear differential operators with algebraic pullback symmetries. Let us
consider here the more general problem of the equivalence under pullbacks up to
conjugations of two different linear differential operators, which is an enlightening sieve
when one tries to classify selected linear differential operators in theoretical physics
(Calabi-Yau linear differential operators [17, 18]). The interested reader will find in
Appendix G an illustration of this important question where we revisit in detail some
calculations of a paper by Almkvist, van Straten and Zudilin [17]. This calculation
reexamines the question of pullback equivalence up to conjugation, of two selected
order-four operators L4 and L4 verifying the Calabi-Yau condition:

v(x) · L4 ·
1

v(x)
= pullback

(

L4,
−4 x

(1 − x)2

)

, (126)

with: v(x) =
(x · (1 + x)

1 − x

)1/2

. (127)

One finds that a Schwarzian equation verified by these two order-four linear differential
operators L4 and L4 reads:

ÛR(x) − UM (y(x)) · y′(x)2 + {y(x), x} = 0, (128)

where UM (x) and ÛR(x) are given by (30), and where p(x) and q(x) are the
coefficients of D3

x and D2
x for respectively L4 and L4, (see (G.12) and (G.13) in

Appendix G).

One sees on this example that the nome and Yukawa couplings, expressed in terms
of the x variable, are related (see (G.16), (G.18)) by the pullback transformation. Yet,
the Yukawa couplings of the two linear differential operators expressed in term of the
nome, are related in an even simpler and “universal” way: Kq(L4) = Kq(L4)(−4· q),
as shown in Appendix E of [31]. For a pullback y(x) with a series expansion of the
form

y(x) = λ · xn + · · · (129)

the nome and Yukawa couplings expressed in terms of the x variable, of two order-four
operators such that

v(x) · L4 ·
1

v(x)
= pullback

(

L4, y(x)
)

, (130)
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are simply related through the relations

qx(L4)n =
1

λ
· qx(L4)

(

y(x)
)

, Kx(L4) = Kx(L4)
(

y(x)
)

. (131)

The Yukawa couplings expressed in terms of the nome‡, are related in an even simpler
“universal” way as so:

Kq(L4) = Kq(L4)(λ · qn). (132)

The previous example (126) corresponds to n = 1 and λ = −4. In the case n = 1
and λ = 1, the pullback is a deformation of the identity y(x) = x + · · · and
the Yukawa couplings expressed in terms of the nome, of the two linear differential
operators are equal. Thus one recovers Proposition (6.2) of Almkvist et al. paper [17]
where the Yukawa couplings coincide.

Since the Schwarzian equation (128) corresponds to the equivalence of two linear
differential operators by pullback with remarkably simple relations (132) on their
Yukawa couplings expressed in terms of the nome, the Schwarzian equation (128)
can be seen as a condition to have simply related Yukawa couplings. In the case of
deformation of the identity y(x) = x + · · · pullbacks, it can be seen as a condition
of preservation of the Yukawa couplings (seen as functions of the nome). These results
are not restricted to order-four linear differential operators (see Appendix E of [31]
and Appendix G). For instance, one can impose that two different pullbacks of the
same order-N linear differential operator LN are homomorphic, i.e. there exist two
intertwiners (of order N − 1 in general) LN−1 and MN−1 such that:

pullback
(

LN , p1(x)
)

· LN−1 = MN−1 · pullback
(

LN , p2(x)
)

. (133)

This last generalization turns out to be instructive for physics and enumerative
combinatorics.

9. Conclusion

In a previous paper [1] we focused on identities relating the same 2F1 hypergeometric
function with two different algebraic pullback transformations

A(x) · 2F1

(

[a, b], [c], x
)

= 2F1

(

[a, b], [c], y(x)
)

, (134)

along with the existence of nFn−1 analogues of the previous relation. Such remarkable
identities correspond to modular forms that emerged in the analysis of multiple
integrals related to the square Ising model [29, 30, 31, 35] or in other enumerative
combinatorics context [37]. They can be seen as a simple occurence of infinite order††
covariance symmetries in physics [2] or enumerative combinatorics.

The current paper generalizes these previous results beyond hypergeometric
functions¶, analyzing the conditions for order-N linear differential operators with
an arbitrary number of singularities† to be pullback invariant up to conjugations:

1

v(x)
· LN · v(x) = pullback

(

LN , y(x)
)

. (135)

‡ This function is often viewed as a function of the nome q = eτ , since its q-expansion in the case
of degenerating family of Calabi-Yau 3-folds is supposed to encode the counting of rational curves of
various degrees on a mirror manifold.
††We have for instance in mind to provide exact representations of the renormalization group [2, 7, 53].
¶ Or even Heun functions, see [1].
† Far beyond operators with hypergeometric solutions, or pullbacked hypergeometric solutions.
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One finds that the pullbacks y(x) are differentially algebraic [3, 4], being necessarily
solutions of the same Schwarzian equations as in [1]

W (x) −W (y(x)) · y′(x)2 + {y(x), x} = 0, (136)

where the function W (x) encoding the Schwarzian equation (136) is a simple
expression of the first two coefficients of the linear differential operator (see (56)).
For order-two linear differential operators this Schwarzian condition turns out to
be sufficient. In the case of linear differential operators with selected differential
Galois groups however, we showed, for orders three and four, that the “Calabi-Yau”
conditions (see sections 4.1) are rigid enough to force the pullbacked-invariant (up
to conjugation) operators (see (135)) to reduce to symmetric powers of an order-two
linear differential operator.

The reduction of the solutions of this Schwarzian differential equation to modular
correspondences was an open question in [1]. Modular correspondences require the
existence, for any integer n, of solutions of the Schwarzian equation (136) of the form
yn(x) = an · xn +· · · such that, for any integer m and n, the following “pre-modular”
condition is satisfied:

yn(an, ym(am, x)) = ynm(ana
n
m, x). (137)

We derived in this paper a necessary and sufficient condition to obtain such “pre-
modular” solutions for the “Schwarzian condition” (136). This condition turns out
to be a simple condition on the Laurent series of W (x) encoding the Schwarzian
condition:

W (x) = − 1

2 · x2
+

b

x
+

∞
∑

m=0

am · xm. (138)

In light of what we have discussed so far, the current paper generates more
questions than answers that give directions for further research. We have seen
for example that (138) is a necessary and sufficient condition for obtaining “pre-
modular” solutions for the “Schwarzian condition”, corresponding, in general,
to a transcendental‡ declination of modular correspondences. To have modular
correspondences one needs the existence of selected values of the parameters such
that the solution series yn(x) = an · xn + · · · (see (96)) actually reduce to algebraic
functions. Is it only in the case of modular correspondences that such algebraic
reductions for selected values take place ?

Then we showed that an order-two linear differential operator emerging in the
context of avoiding permutations counting [51, 52], provides a good illustration of
a generalization of the pullback-covariance (134) or of the pullback invariance up

to conjugation (135): the 2F1

(

[−1/4, 3/4], [1], x
)

that comes up in the context of

avoiding permutations counting [51, 52], verify a relation (see (F.9), (F.11)), whose
general form is given by

Φ(y(x)) =
(

A(x) · d

dx
+ B(x)

)

· Φ(x), (139)

giving a non-trivial explicit example of a pullback invariance of an operator up to
operator homomorphisms (see (125))

MN−1 · LN = pullback
(

LN , y(x)
)

· LN−1. (140)

‡ The series yn(x) (see (137)) are differentially algebraic, but, not necessarily algebraic functions.
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Equation (119) providing an exact representation of the Landen transformation
(generator of the renormalization group) on χ̃(2), together with the explicit
calculations of section 7, make quite clear that conditions like (139) provide a natural
and interesting generalization ofmodular forms, going beyond the Schwarzian equation
(136).

At last, we examined the equivalence of two different linear differential operators,
under pullback and conjugation, yielding again some Schwarzian condition relating
these two linear differential operators (see relation (G.26)), and we discussed the
consequence of such equivalence on the corresponding Yukawa couplings. These results
revisiting and complementing the results of [17], provide powerful tools to analyze
various symmetry and classification problems of selected linear differential operators,
in particular linear differential operators of the Calabi-Yau type [18] (not necessarily
of order four [31]).

When dealing with linear differential operators, we have seen the emergence
of Schwarzian derivatives, consequence of the fact that the Schwarzian derivative
is appropriate for the composition of functions [19] (see the chain rule of the
Schwarzian derivative of the composition of function). Do higher order Schwarzian
derivatives [55, 56, 57, 58] occur for pullback-symmetries of non-linear ODE’s, or,
more generally, for functional equations?

Restraining oneself to the univariate linear differential operators case, let us
remark that if condition (134), or (135), describe effectively all the modular forms
that often occur in physics [29, 30, 35], or enumerative combinatorics [37], a pullback
symmetry up to conjugation constraint like (135) could be restrictive in some sense
since it seems to yield systematic reduction¶ to order-two linear differential operators.
In contrast the simple hypergeometric example of section 7 seems to provide a
natural generalization of modular forms: the pullback invariance of an operator up to
operator homomorphisms condition (140) promises to cover a larger ensemble of exact
representations of symmetries in physics or enumerative combinatorics. In particular
the emergence of conditions like (139) of higher order, namely generalized covariance
(140) for the representation of the Landen transformation† on the other n-fold χ̃(n)’s
of the Ising susceptibility (see [32, 33, 34]), together with their corresponding large
order reducible linear differential operators, is a challenging open problem.

Acknowledgments: We would like to thank S. Boukraa, M. van Hoeij and J-A.
Weil for very fruitful discussions on differential systems. We thank A.J. Guttmann
for providing an interesting pullbacked hypergeometric example. This work has been
performed without any ERC, ANR or MAE financial support.

Appendix A. A simple reducible linear differential operator of order four

Let us consider an order-four linear differential operator which is the square of an
order-two linear differential operator: L4 = L2 · L2, where L2 = D2

x + p(x) ·
Dx + q(x). This reducible order-four linear differential operator L4 is of the form

¶ At least in the case where the operators verify Calabi-Yau conditions and thus have selected
differential Galois groups.
† And more generally the modular correspondences providing exact representations of the generators
of the renormalization group [2, 53].
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D4
x + pr(x) · D3

x + qr(x) · D2
x + · · · where the two coefficients pr(x) and qr(x) read

respectively:

pr(x) = 2 · p(x), qr(x) = p(x)2 + 2 · q(x) + 2 · dp(x)
dx

. (A.1)

The coefficients of the order-four operator L4 verify the Calabi-Yau condition‡ (32).
We even have the identity†† that the exterior square of L4 = L2

2 is the product of an
order-one operator (having the wronskian of L4 as solution), an order-three operator
which is the symmetric square of L2 and again the same order-one operator:

Ext2(L2 · L2) = (Dx + p(x)) · Sym2(L2) · (Dx + p(x)). (A.2)

For this reducible order-four linear differential operator L4 = L2
2 the first steps

of the L
(p)
4 = L

(c)
4 calculations give a function W (x) given by (30), namely

Wr(x) = 3/10 · p′r(x) + 3/40 · pr(x)2 − qr(x)/5. Using (A.1) one can rewrite Wr(x)
in terms of p(x) and q(x). One gets an expression similar to (10) but different,
namely Wr(x) = (p′(x)+ p(x)2/2 − 2 q(x))/5, which is exactly (10) but divided by 5.
Therefore the pullback condition on this square operator L4 = L2

2 does not reduce
to the pullback condition on the (underlying) L2.

The change of variable x → y(x) on a linear differential operator which is the
product of two operators, is the product of these two linear differential operators
on which this change of variable has been performed. More precisely with our

normalization of the pullback of a linear differential operator a condition L
(p)
4 = L

(c)
4

would give the relation

1

y′(x)4
· pullback(L2

2, y(x)) =

=
( 1

y′(x)2
· pullback(L2, y(x))

)

·
( 1

y′(x)2
· pullback(L2, y(x))

)

=
( 1

y′(x)2
· 1

v(x)
· L2 · v(x)

)

·
( 1

y′(x)2
· 1

v(x)
· L2 · v(x)

)

(A.3)

=
1

y′(x)4
·
( 1

v(x)
· M2 · L2 · v(x)

)

where: M2 = y′(x)2 · L2 ·
1

y′(x)2
.

In other words the pullback of L4 = L2
2 corresponds to a conjugate of another order-

four linear differential operator M4 = M2 · L2, which is not L4 but is also reducible
into two different order-two linear differential operators. Note that the order-two
linear differential operator M2 depends on the change of variable x → y(x).

Appendix B. Order-five linear differential operators

Let us consider an irreducible order-five linear differential operator

L5 = D5
x + p(x) · D4

x + q(x) · D3
x + r(x) · D2

x + s(x) · Dx + t(x), (B.1)

and let us also introduce two other linear differential operator of order five, the

operator L
(c)
5 conjugated of (B.1) by a function v(x), namely L

(c)
5 = 1/v(x)·L5· v(x),

‡ The exterior square of that an order-four operator L4 = L2
2 is of order five instead of order six.

This is a general result: the order of the symmetric squares of operators L2n = Ln
2 is less than

2n (2n − 1)/2. Such n-th powers verify higher order Calabi-Yau conditions.
††More generally, the order-one linear differential operator Dx +p(x) rightdivises the exterior square
of the n-th power of L2, for any integer n.
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and the pullbacked operator L
(p)
5 which amounts to changing x → y(x) in L5.

Imposing a generalized (symmetric) Calabi-Yau condition amounts to imposing that
the symetric square of (B.1) is of order less than (the generic order) 15. Using
this (symmetric) Calabi-Yau condition to perform any calculation is a very difficult
task since this condition corresponds to a huge polynomial in the coefficients and
their derivatives. However, similarly to what we did in section 4.3 we can introduce
a parametrization, similar to (46) of this huge (symmetric) Calabi-Yau condition.
We saw in [36] that the (symmetric) Calabi-Yau condition for an order-five linear
differential operator L5 (which amounts to saying that the symmetric square of L5 is
of order less than 15), amounts to saying that L5 has the following decomposition

L5 = (U1 · V1 · U3 + U1 + U3) · e(x), (B.2)

where U1 and U3 are order-one, order-one, and order-three self-adjoint linear
differential operators of the form previously given with (44) and (45), and V1 is another
order-one self-adjoint operator:

V1 = e(x) · Dx +
1

2
· d e(x)

dx
, (B.3)

It is straightforward to get the coefficients of the order-five operator (B.1):

p(x) =
7

2
· a

′(x)

a(x)
+

1

2
· c

′(x)

c(x)
+ 4 · d

′(x)

d(x)
+

3

2
· e

′(x)

e(x)
, · · · (B.4)

This gives a parametrization of the (symmetric) Calabi-Yau condition and thus a way
to perform calculations for an order-five operator that verifies this huge (symmetric)
Calabi-Yau condition. Again, one finds that just imposing this (symmetric) Calabi-

Yau condition is not sufficient to have L
(p)
5 = L

(c)
5 .

There is one subcase of that huge polynomial condition that can be written
explicitly (in a similar manner we wrote the Calabi-Yau (32) and symmetric Calabi-
Yau (22) conditions, see (B.6), (B.7), (B.8) below).

Let us consider an order-two linear differential operator L2 = D2
x + A(x) · Dx

+B(x), and the symmetric fourth power of L2, the coefficients of that order-five
operator read:

p(x) = 10 · A(x), q(x) = 35 · A(x)2 + 20 · B(x) + 10 · dA(x)
dx

,

r(x) = 50 · A(x)3 + 120 · B(x) · A(x) + 45 · A(x) · dA(x)
dx

+ 30 · dB(x)

dx
+ 5 · d

2A(x)

dx2
, (B.5)

s(x) = 24 · A(x)4 + 208 · A(x)2 · B(x) + 46 · A(x)2 · dA(x)
dx

+ 120 · dB(x)

dx
· A(x) + 11 · A(x) · d

2A(x)

dx2
+ 64 · B(x)2

+ 56 · B(x) · dA(x)
dx

+ 7 ·
(dA(x)

dx

)2

+ 18 · d
2B(x)

dx2
+

d3A(x)

dx3
,

t(x) = 96 · A(x)3 · B(x) + 104 · A(x)2 · dB(x)

dx
+ 128 · A(x) · B(x)2

+ 80 · A(x) · B(x) · dA(x)
dx

+ 36 · d
2B(x)

dx2
· A(x) + 64 · B(x) · dB(x)

dx

+ 8 · B(x) · d
2A(x)

dx2
+ 28 · dB(x)

dx
· dA(x)

dx
+ 4 · d

3B(x)

dx3
.
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Conversely this means A(x) = p(x)/10 and

r(x) = − 4

25
· p(x)3 − 6

5
· p(x) · dp(x)

dx
+

3

5
· p(x) · q(x)

− d2p(x)

dx2
+

3

2
· dq(x)

dx
, (B.6)

s(x) = − 9

625
· p(x)4 − 58

125
· p(x)2 · dp(x)

dx
− 1

125
· p(x)2 · q(x)

− 28

25
· p(x) · d

2p(x)

dx2
+

3

5
· p(x) · dq(x)

dx
− 17

25
·
(dp(x)

dx

)2

− 1

25
· dp(x)

dx
· q(x) +

4

25
· q(x)2 − 4

5
· d

3p(x)

dx3
+

9

10
· d

2q(x)

dx2
, (B.7)

t(x) = −11

25
· dp(x)

dx
· d

2p(x)

dx2
− 8

25
· p(x) · d

3p(x)

dx3
+

4

625
· p(x)3 · dp(x)

dx

− 11

625
· p(x)3 · q(x) − 17

125
· p(x)2 · d

2p(x)

dx2
− 1

250
· p(x)2 · dq(x)

dx

− 3

25
· p(x) ·

(dp(x)

dx

)2

+
4

125
· p(x) · q(x)2 +

9

50
· p(x) · d

2q(x)

dx2

− 1

50
· dp(x)

dx
· dq(x)

dx
− 3

25
· q(x) · d

2p(x)

dx2
+

4

25
· q(x) · dq(x)

dx
(B.8)

− 17

125
· p(x) · q(x) · dp(x)

dx
− 1

5
· d

4p(x)

dx4
+

1

5
· d

3q(x)

dx3
+

7

3125
· p(x)5.

When the three conditions (B.6), (B.7), (B.8) are verified, the symmetric square of
the order-five linear differential operator L5 is of order 9 instead of 15 (and thus its
differential Galois group is SO(5, C)). The three conditions (B.6), (B.7), (B.8) are
necessary for L5 to be reducible to the symmetric cube of an underlying order-two
linear differential operator. If one imposes the three conditions (B.6), (B.7), (B.8),
the order-five linear differential operator is simply conjugated to its adjoint:

L5 · w(x)2/5 = w(x)2/5 · adjoint(L5), (B.9)

where w(x) denotes the wronskian of L5. Recalling that an order-two linear
differential operator L2 = D2

x +A(x) · Dx +B(x), having a wronskian w2(x) is such
that L2 · w2(x) = w2(x) · adjoint(L2), the identity (B.9) is a simple consequence
of the fact that the order-five operator reduces to the symmetric fourth power of an
order-two linear differential operator.

Note that by imposing the two conditions† (B.6), (B.7), the symmetric square of
the order-five operator L5 becomes of the generic order 15, yet the symmetric square
of L5 does not have a rational solution (the operator L5 and its adjoint are not
homomorphic: the differential Galois group of L5 is not equal, or included, in the
orthogonal group SO(5, C)).

The identification of these two order-four linear differential operators L
(p)
5 and

L
(c)
5 gives four conditions Cn, n = 4, 3, 2, 1, 0, corresponding respectively to

identification of the Dn
x coefficients of L

(p)
5 and L

(c)
5 .

Performing the same pullback-compatibility calculations we did for order-three,
and order-four operators for L5 is a tremendously difficult task in a general framework.

† We have the same result imposing the two conditions (B.6) and (B.8), or (B.7) and (B.8)
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The first calculation steps can be performed, giving the exact expression of the
conjugation function v(x) from C4 as:

v(x) = y′(x)−2 ·
( w(x)

w(y(x))

)1/5

. (B.10)

and, eliminating the log-derivative v′(x)/v(x) between C4 and C5, giving the
Schwarzian equation

W (x) −W (y(x)) · y′(x)2 + {y(x), x} = 0, (B.11)

where, this time:

W (x) =
1

5
· dp(x)

dx
+

1

25
· p(x)2 − q(x)

10
. (B.12)

Again one finds that the expression of W (x) given by (B.12) gives back the expression
(10) when p(x) and q(x) are deduced from (B.5) ( p(x) and q(x) becoming A(x) and
B(x)).

The condition that we called in [35] symmetric Calabi-Yau condition for the
operator L5 (corresponding to impose that its symmetric square is of order less than
15) is a huge polynomial condition on the coefficients of L5 and its derivative. Seeing if
these pullback-compatibility calculations yield necessarily the huge (symmetric Calabi-
Yau‡) condition and the three conditions (B.6), (B.7), (B.8), or, in other words, that
the order-five linear differential operator necessarily reduces again to (a symmetric
fourth power of) an underlying order-two linear differential operator, remains an open
question.

Appendix C. Reduction of the order-three ODE (68) to the order-two
ODE (77) in the rank-two case (73).

The order-three linear differential equation (68) on F (x) should reduce to the order-
two linear ODE (77) in the rank-two subcase (73). When AR(x) = −w′(x)/w(x),
the order-three linear differential operator L3 (see (69)) has three solutions:

1

w(x)
, SF , and: w(x) · S2F . (C.1)

This can be seen as a consequence of the fact that the order-two linear differential
operator LF rightdivides the order-three operator L3:

L3 =
(

Dx +AR(x)
)

· Dx ·
(

Dx −AR(x)
)

=
(

Dx +AR(x)
)

· LF . (C.2)

In this rank-two subcase (73), the function F (x) is SF and not the third solution
w(x) · S2F which prevails in the general Schwarzian case (see (93)). The form of the
last solution w(x)· S2F can be deduced from the fact that order-three linear differential
operator L3 is the symmetric square of an order-two self-adjoint operator L2 (see (69))
which is simply conjugated to the order-two operator LF given by (78):

L2 = D2
x −

W (x)

2
=

(

Dx +
AR(x)

2

)

·
(

Dx −
AR(x)

2

)

= w(x)1/2 · LF · w(x)−1/2 (C.3)

which has clearly the solution w(x)1/2 · SF as well as the solution w(x)1/2 · w(x)−1

= w(x)−1/2, deduced from the solutions of LF (see (78)). The three solutions (C.1)

‡ Meaning that the order-five operator has a SO(5, C) differential Galois group.
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correspond to all the products of these two solutions namely the square of w(x)−1/2

and w(x)1/2 · SF , and their product. Note that the factorization (C.3) requires
condition (73) to be satisfied.

Remark : Recalling (69), (78), (C.3), one can see that the rightdivision (C.2)
can be seen as a consequence of the identity

Sym2
(

L2
)

= Sym2
((

Dx +
AR(x)

2

)

·
(

Dx −
AR(x)

2

))

=
(

Dx +AR(x)
)

· Dx ·
(

Dx −AR(x)
)

. (C.4)

Appendix D. Mirror maps for 2F1([1/12, 5/12], [1], x).

The modular correspondences x → y(x) are infinite order algebraic transformations
such that

2F1

(

[
1

12
,
5

12
], [1], y(x)

)

= A(x) · 2F1

(

[
1

12
,
5

12
], [1], x

)

, (D.1)

where A(x) is an algebraic function. The modular correspondences y(x) are solutions
of the Schwarzian condition (90), where W (x) simply related to the function F (x)
(see (68)) are given by equations (93). These modular correspondences have series
expansion at x = 0 of the form

yn(x) = P (Qn(x)) = 1728 ·
( x

1728

)n

+ · · · n = 2, 3, 4, · · · (D.2)

where P (x) and Q(x) are such that P (Q(x)) = Q(P (x)) = x, corresponding to
the “simplest” examples of mirror maps [1]. More precisely, the well-known “mirror
maps” [61, 62, 63, 64] are often described as series with integer coefficients [65, 66].
These series correspond to a rescaling of P (x) and Q(x) by 1728, namely [1]:

Q(1728 · x)
1728

= x + 744 x2 + 750420 x3 + 872769632 x4 + 1102652742882 x5 + · · ·

and:

P (1728 · x)
1728

= x − 744 x2 + 356652 x3 − 140361152 x4 + 49336682190 x5 + · · ·

The two functions P (x) and Q(x) are differentially algebraic [3, 4], but not
holonomic functions. Introducing the function Q(x) = exp(Θ(x)), equation (70)
with λ = 0 yields the following Schwarzian relations on Q(x)

W (x) + {Q(x), x} +
1

2
·
(Q′(x)

Q(x)

)2

= 0, or: (D.3)

W (x) + {ln(Q(x)), x} = 0 where:
Q′(x)

Q(x)
=

1

F (x)
, (D.4)

when P (x) the (composition) inverse of Q(x) verifies the functional equation and
Schwarzian equation:

x · dP (x)

dx
= F (P (x)), {P (x), x} − 1

2 · x2
− W (P (x)) = 0. (D.5)

Note that the one-parameter commuting family (66) solution of the Schwarzian
equation (90), can be expressed using these two functions P (x) and Q(x) as
y1(a1, x) = P (a1 · Q(x)) where a1 = exp(ǫ).



Schwarzian conditions 34

Appendix E. Selected subcase: Heun function examples.

Since the classification of Heun function is an interesting non trivial problem, let us
use the condition (73), W (x) = A′

R(x) + AR(x)
2/2, to find the Heun functions

corresponding to such factorizations (like the example analysed in detail in [1]). The
Heun function HeunG (a, q, α, β, γ, δ, x) is solution of a linear differential operator
of order two L2 = D2

x +A(x) · Dx +B(x) where A(x) and B(x) read:

A(x) =
(α+ β + 1) · x2 − ((δ + γ) · a + α − δ + β + 1) · x + γ · a

x · (x − 1) · (x − a)
, (E.1)

B(x) =
α β · x − q

x · (x− 1) · (x − a)
. (E.2)

One thus simply deduces the corresponding function W (x) function from the formula
(10), namely W (x) = A′(x) +A2(x)/2 − 2B(x). At first sight we exclude the values
a = 0 and a = 1 in order to have Heun functions with four singularities 0, 1, a, ∞ to
avoid trivial subcases where the Heun functions could reduce to 2F1 hypergeometric
functions. If one imposes that the function W (x) is of the form (73), the rational
function AR(x) must be of the form:

AR(x) =
u

x − a
+

v

x
+

w

x − 1
. (E.3)

The identification of W (x) given by (73) with AR of the form (E.4), with W (x) =
A′(x) +A2(x)/2 − 2B(x) where A(x) and B(x) are given by (E.1) and (E.2), gives a
set of five equations in the parameters of the Heun function and in the three coefficients
u, v, w in (E.4), the simplest one being

a2 · (γ − v) · (γ − 2 + v) = 0. (E.4)

The example analysed in [1] corresponding to the factorization condition (73)
corresponds to the following values of these parameters:

a = M, q = (M + 1)/4, α = 1/2, β = 1, γ = 3/2, δ = 1/2, (E.5)

with: u = 1/2, v = 1/2, w = 1/2, (E.6)

which corresponds to the γ − 2 + v = 0 branch of (E.4). The analysis of these
five equations gives four solutions that we have excluded at first sight because they
corresponds to a = 1 and yield reduction to 2F1 hypergeometric functions†, except
when a bunch of conditions occur

α − γ + 1 = 0, β − δ − 1 = 0, α − δ − γ + 2 = 0, (E.7)

and α − γ − 1 = 0, α − δ − γ = 0, β − δ + 1 = 0, · · · (E.8)

The example analyzed in [1] corresponding to (E.5) is equivalent to

α − γ + 1 = 0. (E.9)

Appendix F. Pullback invariance up to operator homomorphisms: a
simple hypergeometric example.

Let us consider the order-two linear differential operator

L2 = D2
x +

3 x − 2

2 · x · (x− 1)
· Dx −

3

16 · x · (x− 1)
, (F.1)

† Like for instance a = 1, q = β · γ, with u = α − β − δ − γ + 1, v = γ, w = δ.
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which has the hypergeometric function solution 2F1([−1/4, 3/4], [1], x). We have the
following homomorphism of the type (133) between L2 pullbacked by two simple
different rational functions p1(x) and p2(x):

pullback
(

L2, p1(x)
)

· L1 · α(x) = α(x) · M1 · pullback
(

L2, p2(x)
)

, (F.2)

where: p1(x) =
− 64 x

(1− x) · (1 − 9 x)3
, p2(x) =

− 64 x3

(1− x)3 · (1 − 9 x)
, (F.3)

α(x) = x3 ·
( 1 − x

1 − 9 x

)1/2

, M1 = 8 · (1− 9 x)

(1 − x) · x2
· Dx +

171 x2 − 142 x+ 19

(1 − x)2 · x3
,

and: L1 = 8 · (1− 9 x)

(1 − x) · x2
· Dx −

189 x2 − 226 x+ 21

(1 − x)2 · x3
. (F.4)

Denoting A and B the two rational pullbacks p1(x) and p2(x) in (F.2) one finds that
they are related by the following rational algebraic curve:

Γ3(A, B) = 4096 · AB · (A2B2 + 1) − 4608 · AB · (AB + 1) · (A +B)

− (A4 − 900A3B + 28422A2B2 − 900AB3 +B4) = 0. (F.5)

The two Hauptmoduls parametrizing the modular equation‡ corresponding to the
representation of τ → 3 τ , are given as follows:

P1(x) =
1728 x

(x+ 27) · (x+ 3)3
, P2(x) =

1728 x3

(x+ 27) · (x + 243)3
. (F.6)

Note that we have the following relations between p1(x) and p2(x), and the two
Hauptmoduls P1(x) and P2(x):

p1(x) = P1(−27 x), p2(x) = P2(−243 x), (F.7)

which explain the compatibility between the two relations:

p2(x) = p1

( 1

9 x

)

, P2(x) = P1

(729

x

)

. (F.8)

Relation (F.2) yields the following identity on the 2F1 hypergeometric function

2F1

(

[−1

4
,
3

4
], [1], p1(x)

)

= L1
(

2F1

(

[−1

4
,
3

4
], [1], p2(x)

))

, (F.9)

where: L1 =
8 · (1 − 9 x)1/2

3 · (1− x)1/2
· x · d

dx
+

1 − 3 x − 45 x2 − 81 x3

(1− x)3/2 · (1− 9 x)3/2
, (F.10)

2F1

(

[−1

4
,
3

4
], [1], p2(x)

)

= L2
(

2F1

(

[−1

4
,
3

4
], [1], p1(x)

))

, (F.11)

where: L2 = − 8 · (1− x)1/2

3 · (1− 9 x)1/2
· x · d

dx
+

1 + 5 x + 3 x2 − 9 x3

(1− x)3/2 · (1 − 9 x)3/2
. (F.12)

Introducing the order-two linear differential operator H1 annihilating the pullbacked
hypergeometric function 2F1([−1/4, 3/4], [1], p1(x)):

H1 = D2
x +

(1 − 3 x)2

x · (1 − x) · (1 − 9 x)
· Dx +

12

x · (1 − x)2 · (1 − 9 x)2
, (F.13)

the compatibility between relation (F.9) and (F.11) is a consequence of the identity

L1 · L2 = 1 − 64 x2

9
· H1, (F.14)

‡ See equation (108) in subsection 5.1 of [1].
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namely that the product L1 · L2 is equal to 1 modulo H1. Of course introducing the
order-two linear differential operator H2 annihilating the pullbacked hypergeometric
function 2F1([−1/4, 3/4], [1], p2(x)) one also has a very similar identity:

L2 · L1 = 1 − 64 x2

9
· H2, (F.15)

which means that the product L2 · L1 is equal to 1 modulo H2.

One can get rid of the unpleasant square roots in (F.10), (F.12) introducing
instead of the pullbacked hypergeometric functions 2F1([−1/4, 3/4], [1], p2(x)) and

2F1([−1/4, 3/4], [1], p1(x)), the functions

Ξ2(x) = x · (1 − x)3/4 · (1 − 9 x)1/4 · 2F1

(

[−1

4
,
3

4
], [1], p2(x)

)

, (F.16)

Ξ1(x) = 37/2 · Ξ2

( 1

9 x

)

=
(1 − x)1/4 · (1 − 9 x)3/4

x2
· 2F1

(

[−1

4
,
3

4
], [1], p1(x)

)

.

Ξ2(x) is a series with integer coefficients

Ξ2(x) = x − 3 x2 − 6 x3 − 22 x4 − 108 x5 − 612 x6 − 3786 x7 − 24858 x8

− 170406 x9 − 1207014 x10 − 8771850 x11 + · · ·
when Ξ1(x) is a Laurent series with integer coefficients. These two functions are
simply related as follows:

Ξ1(x) = M1

(

Ξ2(x)
)

where: (F.17)

M1 =
8

3
· (1 − 9 x)

x2 · (1 − x)
· Dx +

117 x − 5

3 · x3 · (1 − x)
. (F.18)

In fact the function Ξ2(x) is solution of the order-two linear differential operator Ω2

Ω2 = D2
x −

(1 − 3 x)

x · (1 − x)
· Dx +

1 − 9 x + 36 x2

x2 · (1 − 9 x) · (1 − x)
, (F.19)

with a remarkable duality property. It is homomorphic to its pullback by x → 1/9/x:

pullback
(

Ω2,
1

9 x

)

· M1 = N1 · Ω2 (F.20)

where: N1 =
8 · (1 − 9 x)

3 · (1 − x) · x2
· Dx −

27 x − 11

3 · (1 − x) · x3
. (F.21)

The simple relation (F.17), which is a rewriting of (F.9) with the order-one operator
L1 being replaced by the order-one operator M1, is an obvious consequence of the
homomorphism (F.20). Of course we also have the (mirror) relation‡, compatible with
(F.17), which is a rewriting of (F.11) with the order-one operator L2 being replaced
by the order-one operator M2

Ξ2(x) = M2

(

Ξ1(x)
)

where: (F.22)

M2 = − 8 · (1 − x) · x4

3 · (1 − 9 x)
· Dx +

(5 x − 13) · x3

3 · (1 − 9 x)
. (F.23)

Note that M1 and M2 given by (F.18) and (F.23) are related by the involutive change
of variable x → 1/9/x:

M1 = 6561 · pullback
(

M2,
1

9 x

)

, 6561 · M2 = pullback
(

M1,
1

9 x

)

. (F.24)

‡ Consequence of the (mirror) homomorphism relation: N2 · pullback((Ω2, 1/9/x) = Ω2 · M2.
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Denoting Ω1 the order-two operator annihilating Ξ1, the compatibility between the
relations (F.17) and (F.22) corresponds to the relations:

M1 · M2 = 1 − 64 x2

9
· Ω1, M2 · M1 = 1 − 64 x2

9
· Ω2, (F.25)

which should be compared with (F.15) and (F.41).

Relations (F.11), or† (F.22), can be seen as a particular case of a generalized
pullback symmetry condition of the form

2F1

(

[α, β], [γ], y(x)
)

=
(

A(x) · d

dx
+ B(x)

)

· 2F1

(

[α, β], [γ], x
)

, (F.26)

where A(x) and B(x) are algebraic functions. Identities like (F.9) can be seen
as generalizations of the identities 2F1([α, β], [γ], y(x)) = A(x) · 2F1([α, β], [γ], x)
analysed in [1].

Appendix F.1. Representation of the composition of the algebraic transformations
x → y(x).

We want to see the algebraic transformations x → y(x) as symmetries. In particular
we want to have a representation of the composition of these algebraic transformations,
like:

2F1

(

[α, β], [γ], y(y(x))
)

=
(

A2(x) ·
d

dx
+ B2(x)

)

· 2F1

(

[α, β], [γ], x
)

. (F.27)

Let us show here that by building on the previous example we can actually provide
identities of the type (F.27). Introducing

q1(x) =
−1728 · x · (1 − 81 x + 2187 x2)

(1 − 81 x)9 · (1 − 27 x) · (1 + 2187 x2)
, (F.28)

q2(x) = q1

( 1

2187 x

)

=
−1728 · 324 · x9 · (1 − 81 x + 2187 x2)

(1 + 2187 x2) · (1 − 27 x)9 · (1 − 81 x)
. (F.29)

one has the new pullback symmetry relation similar to (F.9):

2F1

(

[−1

4
,
3

4
], [1], q1(x)

)

= L̂1

(

2F1

(

[−1

4
,
3

4
], [1], q2(x)

))

, (F.30)

where:

L̂1 =
32

9
· x · (1 − 81 x + 2187 x2) · U1(x)

(1 − 81 x) · (1 − 27 x)5
· Dx

+
V1(x)

(1 − 108 x + 2187 x2) · (1 − 81 x) · (1 − 27 x)5
, (F.31)

U1(x) = 1 − 81 x + 4374 x2 − 177147 x3 + 4782969 x4, (F.32)

V1(x) = 1 − 26244 x2 + 3779136 x3 − 277412202 x4 + 12397455648 x5

− 311486073156 x6 + 3012581722464 x7 + 22876792454961 x8. (F.33)

One also has the new pullback symmetry relation similar to (F.11)

2F1

(

[−1

4
,
3

4
], [1], q2(x)

)

= L̂2

(

2F1

(

[−1

4
,
3

4
], [1], q1(x)

))

, (F.34)

† Or relations (F.9) or (F.17), but in that case the series corresponding to y(x) are Puiseux series :
y(x) = x1/3 + · · ·
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L̂2 = − 32

9
· x · (1 − 81 x + 2187 x2) · U2(x)

(1 − 81 x)5 · (1 − 27 x)
· Dx

+
V2(x)

(1 − 108 x + 2187 x2) · (1 − 81 x)5 · (1 − 27 x)
, (F.35)

U2(x) = 1 − 81 x + 4374 x2 − 177147 x3 + 4782969 x4, (F.36)

V2(x) = 1 + 288 x − 65124 x2 + 5668704 x3 − 277412202 x4 + 8264970432 x5

− 125524238436 x6 + 22876792454961 x8. (F.37)

Let us introduce the order-two linear differential operator Ĥ1 annihilating the
pullbacked hypergeometric function 2F1([−1/4, 3/4], [1], q1(x)):

Ĥ1 = D2
x +

α1(x)

(1 − 81 x) · (1 − 27 x) · (1 + 2187 x2) · (1 − 81 x+ 2187 x2) · x · Dx

− 324

x · (1 − 81 x+ 2187 x2) · (1 + 2187 x2)2 · (1− 81 x)2 · (1 − 27 x)2
, (F.38)

where

α1(x) = 1 + 2187 x2 − 354294 x3 + 23914845 x4 − 774840978 x5 + 10460353203 x6.

The compatibility between relation (F.9) and (F.11) is a consequence of the identity:

L̂1 · L̂2 = 1 +R1,2(x) · Ĥ1, where: (F.39)

R1,2(x) = − 1024

81
· x

2 · (1 − 81 x + 2187 x2)4 · (1 + 2187 x2)2

(1 − 81 x)6 · (1 − 27 x)6
. (F.40)

Of course introducing the order-two linear differential operator Ĥ2 annihilating the
pullbacked hypergeometric function 2F1([−1/4, 3/4], [1], q2(x)), one also has a similar
identity with the same rational function R1,2(x):

L̂2 · L̂1 = 1 +R1,2(x) · Ĥ2. (F.41)

Again we have that L̂1 and L̂2 are obtained from each other by the (involutive) change
of variable x ←→ 1/2187/x:

− 9 · L̂1 = pullback
(

L̂2,
1

2187 x

)

, L̂2 = −9 · pullback
(

L̂1,
1

2187 x

)

. (F.42)

Note that the two pullbacks q1(x) and q2(x) (see (F.28), (F.29)) are related to the
two previous pullbacks p1(x) and p2(x) (see (F.3)):

q1(x) = p1

(

27 · x · (1 − 81 x + 2187 x2)
)

, (F.43)

q2(x) = p2

( 19683 · x3

1 − 81 x + 2187 x2

)

= p1

(1 − 81 x + 2187 x2

177147 · x3

)

. (F.44)

Recalling Φ(x) = 2F1([−1/4, 3/4], [1], p1(x)) the new identities (F.30) and (F.34)
read

Φ
(

27 · x · (1 − 81 x + 2187 x2)
)

= L̂1

(

Φ
(1 − 81 x + 2187 x2

177147 · x3

))

, (F.45)

Φ
(1 − 81 x + 2187 x2

177147 · x3

)

= L̂2

(

Φ
(

27 · x · (1 − 81 x + 2187 x2)
))

, (F.46)

or, introducing Ψ(x) = 2F1([−1/4, 3/4], [1], q1(x)):

Ψ(x) = L̂1

(

Ψ
( 1

2187 · x
))

, Ψ
( 1

2187 · x
)

= L̂2

(

Ψ(x)
)

. (F.47)
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Denoting A and B the two pullbacks in (F.45), (F.46),

A = 27 · x · (1 − 81 x + 2187 x2), B =
1 − 81 x + 2187 x2

177147 · x3
, (F.48)

one sees that they are related by the simple A, B symmetric algebraic curve:

9A3B3 − 30A2B2 + 12AB · (A +B) −A2 −AB −B2 = 0. (F.49)

Let us consider the algebraic equation (F.5), that we denote Γ3(A, B) = 0 because
it is so closely related to the modular equation representing τ → 3 τ (see their
close relation with the Hauptmoduls (F.6) and (F.8)). Performing the resultant in
B of the polynomial Γ3(A, B) with the same one Γ3(B, C) one gets a new algebraic
equation Γ9(A, C) = 0. The two pullbacks q1(x) and q2(x) are actually a rational
parametrization of that new algebraic equation Γ9(A, C) = 0. In other words, if we
think identity (F.11) as a symmetry transformation identity of the type (F.26), the new
identity (F.30) must be seen as the identity for the iteration of that transformation:

2F1

(

[α, β], [γ], y(y(x))
)

=
(

A2(x) ·
d

dx
+ B2(x)

)

· 2F1

(

[α, β], [γ], x
)

. (F.50)

We are very close to a modular form, the previous algebraic curve (F.5) playing the
role of the modular equation‡ (see (F.8)), and the algebraic curve Γ9(A, C) = 0
playing the role of the modular equation corresponding to τ → 9 · τ .

Note that if one calculates the function W (x) = A′(x) + A(x)2/2 − 2B(x)
corresponding to the order-two operator L2, one gets

W (x) =
x − 4

8 · (x− 1) · x = − 1

2 x2
− 7

8 x
− 5

4
− 13

8
x − 2 x2 + · · · (F.51)

which is of the form W (x) = −1/2/x2 + · · · (in contrast with the result for χ̃(2),
see (124)).

Appendix G. Schwarzian conditions for different Calabi-Yau operators
with related Yukawa couplings

Appendix G.1. Revisiting a Calabi-Yau operator in [17]

Following Almkvist, van Straten and Zudilin [17], let us consider the order-four linear
differential operator L4 such that its exterior square annihilates¶

5F4

(

[
1

2
, a, 1− a, b, 1− b], [1, 1, 1, 1], x

)

. (G.1)

This order-four linear differential operator such that its exterior square is order-five
(it verifies the Calabi-Yau condition (32)) reads

L4 = D4
x + P (x) ·D3

x + Q(x) ·D2
x + R(x) ·Dx + S(x), (G.2)

where P (x) and Q(x) read:

P (x) =
4 − 5 x

x · (1 − x)
,

Q(x) =
(3 x − 2) · (11 x − 10)

8 · x2 · (x − 1)2
+

a · (1 − a) + b · (1− b)

2 · x · (x− 1)
. (G.3)

‡ Given by equation (108) in subsection 5.1.1 in [1].
¶ See also [59].
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The other rational functions R(x) and S(x) are more involved rational functions that
will not be given here. The operator L4 can be seen as the “exterior (or antisymmetric)
square root†” of the order-five linear differential operator that annihilates the 5F4

hypergeometric function (G.1).

Remark: In [17] the authors introduce a proxy of the exact “exterior square
root” L4 namely the so-called Yifan Yang pullback, given in general by the equations
in the section “Definition” page 10 of [60]‡ and, in this example, by equations (3.11),
page 278 in [17], which reads

M4 = D4
x + PY Y (x) ·D3

x +QY Y (x) ·D2
x +RY Y (x) ·Dx + SY Y (x), (G.4)

where PY Y (x) and QY Y (x) read:

PY Y (x) =
2 · (3 − 5 x)

x · (1 − x)
,

QY Y (x) =
99 x2 − 122 x + 28

4 · x2 · (x− 1)2
+

a · (1− a) + b · (1− b)

2 · x · (x − 1)
, (G.5)

the other rational functions RY Y (x) and SY Y (x) being more involved rational
functions that will not be given here. The “Yifan Yang pullback” M4 is related to the
exact “exterior square root” L4 by a simple conjugation M4 · u(x) = u(x) · L4, with
u(x) = x−1/2 · (1 − x)−3/4. In general one may prefer to introduce the Yifan Yang
pullback defined page 10 and 11 of [60] instead of the exact “exterior square root”,
because the corresponding formulae are simpler. It does not make any difference
however since the two operators are simply conjugated.

Let us consider the order-four linear differential operator L4 given on page 284
of [17] which annihilates the Hadamard product of two simple 2F1 hypergeometric
functions:

( 1

1 − x
· 2F1([a, 1− a], [1], x)

)

⋆
( 1

1 − x
· 2F1([b, 1− b], [1], x)

)

. (G.6)

This order-four operator L2 reads

L4 = D4
x + P̂ (x) ·D3

x + Q̂(x) ·D2
x + R̂(x) ·Dx + Ŝ(x), (G.7)

where:

P̂ (x) = 2
5 x2 + 4 x− 3

x · (x+ 1) (x− 1)
,

Q̂(x) = 2 · a · (1− a) + b · (1 − b)

x · (x− 1)2
+

25 x4 + 40 x3 − 16 x2 − 32 x+ 7

x2 · (x+ 1)2 (x− 1)2
. (G.8)

Introducing the pullback y(x) and the function v(x)

y(x) =
−4 · x
(1 − x)2

, v(x) =
(x · (1 + x)

1 − x

)1/2

, (G.9)

one has the relation

v(x) · L4 ·
1

v(x)
= pullback

(

L4,
−4 x

(1 − x)2

)

. (G.10)

† See the concept of Yifan Yang pullback introduced in [60].
‡ The author of [60] has benefited from an unpublished result by Yifan Yang. Note that there
is a misprint in [60] in the “Definition” of Yifan Yang pullback: on top of page 11, the term
b3 b4/25 should be replaced by b3 b′4/25. With this correction the exact ‘exterior square root” L4

and the Yifan Yang pullback M4 are related by a simple conjugation M4 · u(x) = u(x) · L4, where
3/10 · b4 = −u′(x)/u(x).
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and one verifies that a Schwarzian equation (G.11) is actually verified for (G.5) and
(G.8)

ÛR(x) − UM (y(x)) · y′(x)2 + {y(x), x} = 0, (G.11)

with:

UM (x) = −Q(x)

5
+

3

40
· P (x)2 +

3

10
· dP (x)

dx
, (G.12)

ÛR(x) = − Q̂(x)

5
+

3

40
· P̂ (x)2 +

3

10
· dP̂ (x)

dx
. (G.13)

This Schwarzian equation (G.11), together with the definitions (G.12) and (G.13), are
exactly the Schwarzian equation (6.5) together with definition (6.4), page 290 of [17].

Appendix G.1.1. Schwarzian conditions for Calabi-Yau operators and Yukawa
couplings.
Let us calculate the series expansion of the nome and Yukawa couplings [31] of L4

and L2. In order to perform the calculations for arbitrary values of a and b, let us
introduce the same variables s and p as the one introduced by [17]:

s = a · (1− a) + b · (1− b), p = a · b · (1− a) · (1− b). (G.14)

Considering the subcase a = 3 and b = 5, the nome of L4 reads

qx(L4) = x + (2 p − s + 1) · x
2

2

+ (93 p2 − 98 ps+ 26 s2 + 112 p− 60 s+ 40) · x3

128
(G.15)

+ (27748 p3 − 45289 p2s+ 24798 ps2 − 4554 s3 + 55759 p2

− 61734 ps+ 17190 s2 + 43848 p− 24516 s+ 13608) · x4

62208
+ · · · ,

while the nome of L4 reads:

qx(L4) = − 1

4
· qx(L4)

( −4 · x
(1 − x)2

)

= x − 2 · (2 p − s) · x2

+
(

(93 p2 − 98 ps + 26 s2 − 16 p + 4 s
)

· x
3

8

−
(

27748 p3 − 45289 p2s + 24798 ps2 − 4554 s3 + 9708 ps − 12038 p2

− 1764 s2 + 1080 p − 216 s
)

· x
4

972
+ · · · (G.16)

The respective Yukawa couplings of L4 and L4 read:

Kx(L4) = 1 − (5 p+ 1− 2 s) · x +
(

825 p2 − 638 ps + 120 s2 + 244 p − 80 s
)

· x
2

64

−
(

119240 p3 − 133883 p2s + 48642 ps2 − 5688 s3 − 20346 ps + 35609 p2

+ 2448 s2 − 3420 p + 1728 s
)

· x3

5184
+ · · · (G.17)

Kx(L4) = Kx(L4)
( −4 · x
(1 − x)2

)

= 1 + 4 · (5 p − 2 s + 1) · x
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+
(

825 p2 − 638 ps + 120 s2 + 404 p − 144 s + 32
)

· x
2

4

+
(

119240 p3 − 133883 p2s + 48642 ps2 − 5688 s3 − 72024 ps + 102434 p2

+ 12168 s2 + 21204 p − 6696 s + 972
)

· x
3

81
+ · · · (G.18)

In terms of the nome the Yukawa couplings read:

Kq(L4) = 1 − (5 p − 2 s + 1) · q

+
(

1145 p2 − 926 ps + 184 s2 + 468 p − 176 s + 32
)

· q
2

64
(G.19)

−
(

571795 p3 − 698524 p2s + 280506 ps2 − 36972 s3 + 355447 p2

− 273162 ps + 51390 s2 + 54072 p − 18900 s + 1944
)

· q3

10368
+ · · ·

and

Kq(L4) = Kq(L4)(−4 · q) = 1 + 4 · (5 p − 2 s + 1) · q

+
(

1145 p2 − 926 ps + 184 s2 + 468 p − 176 s + 32
)

· q
2

4
(G.20)

+
(

571795 p3 − 698524 p2s + 280506 ps2 − 36972 s3 + 355447 p2

− 273162 ps + 51390 s2 + 54072 p − 18900 s + 1944
)

· q3

162
+ · · ·

On this example we see that the nome and Yukawa couplings expressed in
terms of the x variable, are simply related (see (G.16), (G.18)) by the pullback
transformation. The Yukawa couplings expressed in term of the nome of the two
linear differential operators are related in an even more simple and “universal” way:
Kq(L4) = Kq(L4)(−4 · q). This is a general result (see Appendix E of [31]). For a
pullback y(x) with a series expansion of the form

y(x) = λ · xn + · · · , (G.21)

the nome and Yukawa couplings expressed in terms of the x variable of two order-four
linear differential operators such that

v(x) · L4 ·
1

v(x)
= pullback

(

L4, y(x)
)

, (G.22)

are simply related as follows:

qx(L4)n =
1

λ
· qx(L4)

(

y(x)
)

, Kx(L4) = Kx(L4)
(

y(x)
)

. (G.23)

Their Yukawa couplings, expressed in terms of the nome, are related in an even simpler
“universal” way:

Kq(L4) = Kq(L4)(λ · qn). (G.24)

The previous example corresponded to the case n = 1 and λ = −4. In the case
n = 1 and λ = 1, the pullback is a deformation of the identity y(x) = x + · · · and
the Yukawa couplings expressed in terms of the nome of the two operators are equal.
One thus recovers Proposition (6.2) of [17] where the Yukawa couplings coincide.
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Appendix G.2. Schwarzian conditions for Calabi-Yau operators related by pullback
and conjugation.

In fact the Schwarzian condition (G.11) can be obtained in a totally general framework
where two order-four linear differential operators are equal up to pullback and
conjugation. Let us consider two order-four operators L4 and M4 such that

v(x) · M4 ·
1

v(x)
= pullback

(

L4, y(x)
)

. (G.25)

A straightforward calculation similar to the one performed in section 4 yields the
Schwarzian relation‡

W (M4, x) − W (L4, y(x)) · y′(x)2 + {y(x), x} = 0, (G.26)

where the W (M4, x) and W (L4, x) are given by (30), the p(x) and q(x) being the
ones of the corresponding operators M4 and L4:

W (M4, x) =
3

10
· dp(M4, x)

dx
+

3

40
· p(M4, x)

2 − q(M4, x)

5
, (G.27)

W (L4, x) =
3

10
· dp(L4, x)

dx
+

3

40
· p(L4, x)

2 − q(L4, x)

5
. (G.28)

Remark 1: There is nothing specific with order-four linear differential operators,
one has the same result for two operators of arbitrary orders N equal up to pullback
and conjugation (see (G.25)): the expressions of W (MN , x) and W (LN , x) being the
ones given in (56), (57). One also has

W (MN , x) − W (LN , y(x)) · y′(x)2 + {y(x), x} = 0. (G.29)

Remark 2: The expressions of W (MN , x) and W (LN , x) are related by (G.29).
Let us assume that W (LN , x) is compatible with the modular correspondences
structures (existence of solutions of the Schwarzian equations of the form y(x) =
an · xn + · · · with (96)). One thus has W (LN , x) = −1/2/x2 + · · · Is this condition
automatically satisfied for W (MN , x) as a consequence of (G.29) ? For pullbacks of
the form y(x) = an · xn + · · · , the function W (MN , x) deduced from (G.29), reads:

W (MN , x) = W (LN , y(x)) · y′(x)2 − {y(x), x}

=
(

− n2

2 x2
+ · · ·

)

+
(n2 − 1

2 x2
+ · · ·

)

= − 1

2 x2
+ · · · (G.30)

The condition (97) for the modular correspondences structures is thus preserved by
pullbacks.

Appendix G.3. More general framework

For arbitrary orders we observed that the functions W (x) that occur in the Schwarzian
conditions are left invariant under conjugations of the operators (64) and (65). More
generally, one can consider operators that are not conjugated by a function ρ(x), yet
homomorphic, in the sense of the equivalence of operators†. For a given operator LN

of order-N , one can easily obtain operators L̃N homomorphic to LN . For instance,
for an order-two linear differential operator L2 = D2

x +A(x)Dx +B(x), introducing

‡ This result is the same as the one in [17].

† Two linear differential operators LN and L̃N of order N are homomorphic [35, 36] when there
exists operators (intertwiners) of order at most N − 1, such that MN−1 LN − L̃N M̃N−1 = 0.
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the order-one operator L1 = η(x)Dx+ρ(x), an order-two operator L̃2 homomorphic
to L2 is easily obtained performing†† the rightdivision by L1 of the LCLM of L2 and
L1. If one now compares the functions W (x) corresponding respectively to L2 and
L̃2, one sees that they are quite different, except when η(x) = 0, in which case one
reduces the operator equivalence to a conjugation by a function ρ(x). The analysis of
the conditions for two order-N operators LN and MN to be homorphic up to pullback

MN−1 · MN = pullback
(

LN , y(x)
)

· LN−1, (G.31)

is a much more general problem corresponding to massive calculations even if one
restricts to operators that are homomorphic to their adjoint (thus corresponding to
selected, orthogonal or symplectic, differential Galois groups¶). Performing such
calculations will require new tools and ideas. This cannot be performed in general
(like we did in the first section of this paper) but could be considered on particular
problems emerging from physics or enumerative combinatorics, where the operators
will be of some “selected” form.
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[8] M. Eichler, Lectures on Modular Correspondences, Lectures on mathematics and physics, Volume
9, Tata Institute of Fundamental Research lectures on mathematics and physics, 1955,
http://www.math.tifr.res.in/∼publ/ln/tifr09.pdf

[9] G. Casale, An introduction to Malgrange pseudogroup, (2011), SMF - Séminaires et Congrès 23
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[44] M. Hanna, The Modular Equations, Proc. London Math. Soc. 28, 46-52, 1928.
[45] Weisstein, Eric W. ”Modular Equation.” From MathWorld–A Wolfram Web Resource.

http://mathworld.wolfram.com/ModularEquation.html
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