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We show that the Yang-Baxter equations for two-dimensional vertex models admit as a group of symmetry the infinite discrete 
group A~ ~) . The existence of this symmetry explains the presence of a spectral parameter in solutions of the equations. We show 
that similarly, for three-dimensional vertex models and the associated tetrahedron equations, there also exists an infinite discrete 
group of symmetries. Although generalizing very naturally the previous one, this is a much bigger hyperbolic Coxeter group. We 
indicate how this symmetry should be used to resolve the Yang-Baxter equations and their higher-dimensional generalizations 
and initiate the study of a family of three-dimensional vertex models. 

1. Introduction 

The Yang-Baxte r  equations,  which appeared  twenty years ago ~ ,  have acquired a p redominan t  role in the 
theory of  integrable two-dimensional  models  in stat ist ical  mechanics  [ 6,7 ] and  field theory (quan tum or clas- 
sical) .  They have actually surpassed the borders  o f  physics and have become fashionable in some parts  o f  the 
mathemat ics  l i terature.  They suppor t  in par t icular  the construct ion o f  quantum groups [ 8,9 ]. 

We show here that  they possess an infini te  discrete symmet ry  group. This group accounts for the existence of  
a spectral pa ramete r  and  permits  the so-called "bax te r iza t ion"  [ 10 ]. We then extend our  results to the higher 
d imensional  general izat ions of  the Yang-Bax te r  equations,  namely the te t rahedron and hypers impl ic ia l  equa- 
tions. The results we present  here are the t ransposi t ion  to the vertex models  o f  the symmetr ies  o f  the s t a r -  
triangle equat ions presented in ref. [ I 1 ] (see also refs. [ 12,13 ] ). These symmetr ies  are built  f rom the inversion 
relation, a t ransformat ion  al ready widely used in statist ical  mechanics  [ 14-18 ] and the symmetry  group o f  the 
vertices ( symmet ry  group o f  the square, of  the cube, . . .  ). 

2. The Yang-Baxter relation for vertex models 

We consider  a vertex model  on a two-dimensional  square lat t ice of  size M X M  with per iodic  boundary  con- 
dit ions.  To each bond  is associated a var iable  with q possible states and a Bol tzmann weight w(i ,  j ,  k, l) is 
assigned to each vertex: 

Also at Research Institute for Theoretical Physics, University of Helsinki, Siltavuorenpenger 20C, SF-00170 Helsinki, Finland. 
~ In fact, fifty years, Lars Onsager was totally aware of the key role played by the star-triangle relation in solving the two-dimensional 

Ising model, but he preferred to give an algebraic solution emphasizing Clifford algebras [ 1-5 ]. 
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For each line configuration one can build the row-to-row transfer matrix with periodic boundary conditions, 
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The transfer matrix acts then on a qM-dimensional space. 
In order to write the Yang-Baxter relation, the q4 homogeneous weights w(i,  j, k, l) are first arranged in a 

q2 X q2 matrix R: 

R ~ = w ( i , j , k ,  l) . (1) 

The Yang-Baxter relation is a trilinear relation between three matrices R ( 1, 2), R (2, 3 ) and R ( 1, 3 ): 

Z ili2 0 '1 i3  ~3~20~3 i2i3 "~J~ilfl31( 1, 3)R#'P= ( 1, 2) R~,.2(1, 2)Rj,.3(1, 3)R:,a, (2, 3 ) =  ~ . (2) R&~3(2,-,*-/~m~ . j j : .  
~1 ,oe2,oe3 f l l  ,f12,f13 

The assignation ( 1 ) is arbitrary and we may specify it by complementing the vertex with an arrow and attrib- 
uting numbers to the lines 
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= d ) .  

With these rules the relation (2) has the following graphical representation: 
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The lines carry indices I, 2, 3. We shall not get here into the arcanes of this relation, which appears in the theory 
of integrable models [9 ], the theory of the factorizable S matrix in two-dimensional field theory, the quantum 
inverse scattering method [ 19 ], and knot theory, and has been given a canonical meaning in terms of Hopf  
algebras [ 20 ] (quantum groups [ 8,9,21-23 ] ) and the list is far from exhaustive. We however want to stress 
some of its characteristic features. 
- The innocent look of these multilinear equations is fallacious since the system is largely overdetermined and 
the full solution is not known. The results we present here lead to a strategy for its resolution. 
- The most powerful property of  the Yang-Baxter equation is to produce global results from a local property: 
this relation on the local weights of  the model yields the commutation of transfer matrices with periodic bound- 
ary conditions of arbitrary size M (and is actually to some extent a necessary condition for it [ 24 ] ). 
- Some especially interesting solutions depend on a continuous parameter called the spectral parameter. The 
presence of this parameter is fundamental for many applications in physics, as for example the Bethe ansatz 
method [25,5,19]. One has to realize that one of the main issues in the full resolution of (2) is precisely to 
describe what is this parameter and the algebraic variety on which it lives, although its presence may obscure 
the algebraic structures underlying the Yang-Baxter equation (the discovery of quantum groups was allowed by 
forgetting this parameter [23,8,26,9 ] ). The problem of building up continuous families of solutions from an 
isolated one, known as the baxterization [ 10 ], is made straightforward by our study. Indeed our results explain 
the presence of the spectral parameter in the solution of the equation (see also ref. [ 12] ). 

3. S o m e  a lgebra  

3. I. Notations 

The R-matrix appears naturally as a representation of an element of the tensor product d ®  d of some algebra 
with itself. This algebra is a nice Hopf  algebra in the context of  quantum groups. We shall not dwell on this 

here but recall some simple operations on R. 
In d ®  d we have a product inherited from the product in ~ :  

( a ® b )  ( c®d)  =ac®bd .  (4) 

R is an invertible element of ~ ®  ~ for this product and we shall denote the inverse for this product by I ( R ) :  

R . I ( R ) = I ( R ) . R = I ® I  . (5) 

In terms of the representative matrix this reads 

ij a l~ i j ~ ij Oil] R,~J(R)u~ = S u ~ -  ~ (6) I(R)~,pR,,v . 
a , #  a , #  

This is nothing else but the so-called inversion relation for vertex models [ 14,15,27-29 ]. On ~¢® d we have a 
permutation operator a: 

a ( a ® b )  = b ® a ,  (7) 

ij j i  ( aR ) uv = R ~,  for the matrix R .  (8) 

Note that the representation of a is just the conjugation by the permutation matrix P: 

P~) =,~,Sjk , (9) 

trR = PRP . ( 1 O) 

In the language of matrices we have a notation of transposition. Let us define partial transpositions tg and ta 
by 
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ij uj (tgR)uv=R,v , 

ij __ iv ( tdR)uv-R~j,  

and the full transposition 

t=tgtd =tat~ . 

We shall in the sequel use another inversion J defined by 

J= t j ta  = tdltg , 

or equivalently 

E ctu oti i " ifl  u f l  RvpJ(R)jp =Ou6Jv= ~ J(R)~jR,~o 
a , #  a , #  

These operators verify straightforwardly 

I2=J2=1, l t=tL Jt=tJ, a 2 = t 2 = l ,  al=Ia, aJ=Ja,  
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(11) 

(12) 

(13) 

(14) 

(15) 

(ate) 2=  (tTtd)Z----t, at~ata= 1 . (16) 

Note that the two inversions I and J do not commute. They generate an infinite discrete group F, the infinite 
dihedral group, isomorphic to the semi-direct product Z~Z2. This group is represented on the matrix elements 
by birational transformations [ 12,30,31 ]. Remark that for the vertex models, the birational transformations 
associated to the two involutions I and J are naturally related by collineations (this should be compared with 
the situation for nearest neighbour interaction spin models [ 12,32] ). 

3.2. Graphical representation 

Each of these operations has a graphical representation. For the inversion I or more precisely for aI it is 

I ( R )  v 

i ---- i (17) 

The inversion J reads 

j J 

- -  t (18) 

Ul 

The graphical representation mixes very well with the various operations introduced in section (3.1): 
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An immediate consequence is that we may picture the Yang-Baxter relation in a more symmetric way: 

2 

1 

B A 

/ ¢  
2 

3 

B 

at the price of the redefinitions 

A=tR(2,3), 

B=atdR(1, 3) , 

C=R(I ,  2) .  

We may bracket (19) with 1 ~ ~ / .  ,where C=gI(C). 

We get 

A / 

B \  

B i 

that is to say 

(19) 

(20) 

(21) 

(22) 

(23) 
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This relation is nothing but (19) after the redefinitions 

A~tgA, B~tdB, C~t lC .  
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(24) 

(25) 

We may denote by K3 the operation (25). We have two other similar operations K~ and K2 

K~ : A--,tlA, B-.tgB, C~tdC , 

l(2: A~tdA, B~tlB, C~t~C. 

The discrete group J u t  generated by the Ki's (i = 1, 2, 3) is a symmetry group of the Yang-Baxter equations. 
These generators Ki (i = 1, 2, 3) are involutions. We have 

K~K2:A~ItgA, B--,tdlB, C~ tC .  

The Ki's satisfy the relation (K1K2K3)2= 1. Actually, the operation K~K2K3 is just the inversion I on R. 
To make the structure of the group more transparent, let us introduce KA, KB and Ko which are simply related 

to the Ki's by the transposition of two vertices: 

KA:A~atlA, B~tgtyC, C~atgB, 

Ks: A--,t~tgC, B~atlB, C~tgcrA, 

Kc:A-~tgaB, B~atgA, C~at lC.  

It is easily verified that 

K 2 2 2 = K s = K c =  1 , (26) 

and 

( KAKn) 3= ( KBKc) 3= ( KcKA)3= 1 , (27) 

with no other relations. We recover the affine Coxeter group A~ ~) we already encountered in ref. [ 11 ]. 
A fundamental remark. Beware that, due to the different arrangement of indices, the relations we consider are 

not the Yang-Baxter equation that one considers in the study of quantum groups (shortly RRR =RRR) but 
rather its avatars (RTT= TTR) or even ABC= CBA. We will even in a forthcoming publication consider the 
ABC=DEA relation which also leads to remarkable relations on the transfer matrices of arbitrary size. The 
meaning of these relations is detailed in the standard literature on integrable models [ 9 ] and quantum groups 
[ 21,22,23 ]. However we will show in the following that choices of the form of the matrices R will metamorphose 
the action o f / J  and of similar products into a mere shift of the spectral parameter. This is the core of our strategy 
for the resolution of the Yang-Baxter equations and their higher dimensional generalizations. 
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Among the elements of  the discrete group generated by the Ki's we have in particular 

(KiK2)2: A-~ItgItgA=tlJA, B-,toItdIB=tJIB, C-~C. 

Since IJ is of  infinite order, we have generated an infinite discrete group of symmetries. This is exactly the 
phenomenon that we described in ref. [ 12 ] for the star-triangle equations. 

We have here a very powerful instrument for two purposes: 
(1) Define adequate patterns for the matrix R [ 33 ]. Indeed if a set of  relations among the entries of  R are 

preserved by IJ (or at least by tIJ) this operation will be a transformation on the varieties associated to these 
relations. These varieties are of paramount importance in the resolution of the Yang-Baxter equations, since 
they are the varieties on which the spectral parameters lie. 

(2) Permit the so-called baxterization of an isolated solution just acting with tIJ. 
To illustrate point ( 1 ), we shall take in the next paragraph the example of the Baxter eight-vertex model 

[34,35 ], and we shall show subsequently how to introduce a spectral parameter for the solutions of the Yang- 
Baxter equations associated to sl (n) algebras. 

4. The baxterization 

4.1. Baxterization of  the Baxter model 

Consider the matrix of  the symmetric eight-vertex model 

R =  0 b c (28) 
O c b  

~ d O 0  

Notice that this form is preserved by the operations I and d and that tR = R. The action of I is 

a b - c  - d  
a--, a2 d2, b~  b2_c----~, c--* bZ c----~, d--, aZ_d----- 5 

and the action of J is 

a b - c  - d  
a o  a2_c2, b--, bE d- - - -~ ,  c--* a2_c------5, d-~ b2_d~--- 5 .  

We shall look at the solutions of  the Yang-Baxter equations for matrices R of the form (28). The leading idea 
is to say that the parametrization of the solutions is just the parametrization of the algebraic varieties preserved 
by tIJ in the projective space CP3 of the entries (a, b, c, d). The remarkable fact is that not only these varieties 
exist but we may describe them completely. We use the visualization method we have already used [ 12,13 ] for 
spin models, that is to say just draw the orbits obtained by numerical iteration and look. 

The problem of the baxterization is to introduce a spectral parameter into an isolated solution of the Yang- 
Baxter equations. We have solutions of  this problem by acting with the symmetry group F of these equations. 

This is best illustrated by fig. 1. This figure shows the orbit of point • which is a matrix of the form (28). It is 
drawn by the iteration of IJ acting on the initial point . .  The resulting points densify on the elliptic curve given 
by the intersection of the quadrics d~ =const. and d2=const. (Clebsch's biquadratic), with d~ and A2 the F 
invariants 

ae + b 2 - c E - d  2 a b - c d  
AI= ab+cd , A E - a b + c d .  (29) 
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-2 

/ 
l a ~ , , I , , h ~ l , , , = l , ~ , l  

-2 -1 0 1 2 Fig. 1. Baxterization of the point ,. 

4.2. Baxterization of the R matrix of slq(n) 

Another example corresponds to the baxterization of  solutions associated to sl(n) algebras [36].  There are 
special solutions generally denoted R+ and R_.  For the simplest four-dimensional representation of  the sl (2) 
case, we have 

1 q -q -~  (30) 
R + =  0 1 ' 

0 0 

and a similar expression for R_ [36].  Looking for a family containing both R+ and R_,  our baxterization 
procedure leads to the well known six-vertex model R-matrix R = 2R + + 1/2R_. 

We leave it as an exercise for the reader to treat the sl(3 ) case. 

5. The tetrahedron equation 

This equation is a generalization of  the Yang-Baxter equation to three-dimensional vertex models [37-39] .  
In three dimensions a vertex is given by 

This vertex has a Boltzmann weight w(i, j, k, l, m, n). Here again the weights may be arranged in a matrix o f  
entries 
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ik R'/,~n = w (  i,j,  k, l, m, n) . 

The tetrahedron equation has a pictorial representation: 

/ 

/ 3  6 

3 

-- 2 
1 

5 

The algebraic form is 

R123R543RsI6R426 =R426RsI6R543R123 . 

We may here again introduce an inverse L 

Z (IR)igimid " R  OtgO~mt3fd --~ig~im~id 
g Ol Jglm/d Jg Jm Jd 

Otg ,O/rn ,O~d 

with the pictorial representation 

= , ¢ . ~ 6 i . m ~  d 
3o 3m 3d " 

We also introduce the partial transpositions tg, tm and td with 

( tgR )Jv.~d 

and similar definitions for t,~ and td. 
Generalizing the introduction of a more symmetric Yang-Baxter equation (19), we redefine 

A--RI23 ,  B=tdR543, C=tgtmRsl6, D=tR426, 

9 May 1991 

(31) 

(32) 

(33) 

(34) 

(35) 
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where t is the full transposition tgtmtd. Eq. (32) then takes the more symmetric form 

r4r2r6 rsrlr6 r5r4r3 rlr2r3 E "ztili2i3A s 1 s2s3 ~l~isi4J3sss4s3 ~sss(-'jsjli61s6 ~FlJ4J2J6s4s2s6 ---- ~ Oi4i2i6 Cisilj6 Bjs j ,  i3 Ajozj 3 . ( 36 ) 
s i  , . . . , s6  r l  , . . . , r6  

We may multiply the previous equation by ( I A ) i ~  u3 and (tlA)j%~z3v3 and sum over (il, i2, i3 ) and 0"~, J2, J3). 
This amounts to a bracketing of the tetrahedron equations by two times the same vertex, in a procedure trivially 
generalizing the one for the Yang-Baxter equation (23). We recover ( 36 ) with A, B, C and D transformed by 

K~:A--,tlA, B~taB, C~tmC, D ~ t ~ D .  (37) 

We have in a similar way the operations 

K2:A~tdA, B-+tlB, C~tgC, D~tgD,  

K3:A--*tgA, B~tgB, C~tlC,  D--,tdD, 

K4:A~tmA, B~tmB, C~toC, D ~ t l D .  

Each of these four operations is an involution. They satisfy various relations, for instance (K~K2K3K4)2= 1. The 
K/s generate a group ~dut~ which is a symmetry group of the tetrahedron equations. This group is "monstrous" 
since the number of elements of length smaller than l is of exponential growth with respect to 1, unlike the case 
of the affine Coxeter groups (as A~ ~ ) for the Yang-Baxter equation ) where this number is of  polynomial growth. 
It is also a symmetry group for the three-dimensional vertex model even if  [ 16 ] the model does not satisfy the 
tetrahedron equation. The operations playing a role similar to the one of I and J in the two-dimensional Yang- 
Baxter equations are the four involutions 

I, J=tgltmtd, K=tmltdtg, L=tdltgtm . (38) 

In order to precise the algebraic structure of the group l-" 3 generated by I, J, K and L, it is simpler to consider as 
generators two of the partial transpositions tg and td, I and the full transposition t. The third partial transposition 
can be recovered as the product ttgtd and t commutes with all other generators and so contributes a mere Z2 
factor in the group. We are thus considering the Coxeter group generated by three involutions tg, td and I, with 
two of them commuting. This is represented by the following Dynkin diagram: 

o o  o o  

For this group again the number of elements of length smaller than l is greater than 2 t/2. This is in fact a hyper- 
bolic Coxeter group [40]. 

6. A three-dimensional model 

Our strategy for finding solutions of the tetrahedron equations is to seek for patterns of the Boltzmann weights 
of the three-dimensional vertex compatible with the symmetry group F3. By this we mean that its form should 
be preserved by F 3. 

6.1. The model 

We will therefore consider a simple model where i, j, k, l, m and n take only two values + 1 and - 1. The 
matrix (31 ) is an 8 × 8 matrix. We will require that its pattern is invariant under the inverse I [ 33 ] and the 
various partial transpositions tg, tm and td. We aim at having (see remark 1 below) a generalization of the Baxter 
eight-vertex model and we impose the following restrictions: 
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w(i,j, k, l, m, n) =w(  - i ,  - j ,  - k ,  - l ,  - m ,  - n ) ,  (39) 

w(i,j, k, l, m, n) = 0  if ijklmn= - 1 . (40) 

These constraints amount to saying that the 8 × 8 matrix is the direct product of  two times the same 4 × 4 matrix. 
It is further possible to impose that this matrix is symmetric since, in this case, tgR (and any other partial 
transpose) is also symmetric. Let us introduce the following notations for the entries of  the 4 × 4 block of the R 
matrix: 

dl bl C3 C2 (41) 
d2 C3 b2 Cl " 

d3 c2 c~ b3 

The four rows and columns of this matrix correspond to the states ( + ,  +,  + ), ( + ,  - ,  - ), ( - ,  + ,  - ) and 
( - ,  - ,  + ) for the triplets (i,j, k) or (l, m, n). The R-matrix can be completed by spin reversal, according to 
the rule (39). tg (respectively tin, td) simply exchanges cl and d~ (respectively c2 and d2, c3 and d3) and / ac t s  as 
the inversion of this 4 X 4 matrix. 

Here two preliminary remarks are in order. 

Remark 1. The tetrahedron equation allows for the commutation of plane-to-plane transfer matrices of  arbi- 
trary width and depth, and in particular, with depth 1. This amounts to saying that row-to-row transfer matrices 
of  the two-dimensional model deduced by taking the trace on one of the three axes commute (R~/m = Zk R~/~k). 
In the particular case we consider, (39), (40), (41 ), this leads to an eight-vertex model, with the homogeneous 
variables of  the Baxter model a, b, c, dgiven by 

a~a+b3, b-,b~+b2, c~2c3, d--,2d3. (42) 

The communication of these deduced row-to-row transfer matrices implies that the integrability varieties are 
subvarieties of  the intersection of the six quadrics A~ (a+b3,  bt +b2, 2c3, 2d3) =const. 32(a+b3, b~ +bE, 2c3, 
2d3) = const, and similar expressions for the two other axes. The observation that the integrability varieties of  
d-dimensional models are subvarieties of  those of  the ( d -  1 )-dimensional models obtained by this partial trace 
procedure is quite general and not restricted to model (39 ), (40), (41 ). 

Remark 2. There exist gauge-like transformations (weak-graph duality) on the matrix R ~ ,  which amount to 
performing some particular conjugation on the matrix [ 41,42 ]. In view of this symmetry, and having in mind 
to find variables with a good behaviour with respect to the inversion/, it is interesting to consider the coefficients 
of  the characteristic polynomial of the matrix R. 

6.2. Algebraic invariants 

For heuristic reasons we consider first the eight-vertex model. In terms of the four eigenvalues 2i of  the 4 × 4 
matrix (28), the algebraic invariants of  the Baxter model A I and zJ2 (29) are given by any two ratios of the three 
roots of the polynomial 

( x - 2 1 2 2 - ~ 3 ~ 4 ) ( X - ~ l ~ 3 - ~ 2 ~ 4 ) ( X - ~ l t ~ 4 - ~ 3 t ~ 2 ) = x 3 - G 2 x 2 + ( a l a 3 - 4 6 4 ) x - ( a 4 a 2 1 + a ~ - 4 a 2 a 4 )  . (43) 

These invariants correspond to the breaking of the ~ permutation symmetry of the eigenvalues down to C4v. This 
very example is deeply related to the Galois theory of the solvability of  a polynomial [43 ]. 

For our three-dimensional mode, the characteristic polynomial is the square of the one of the 4 × 4 matrix 
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Fig. 2. Orbit of a point symmetric under the exchange 2*-*3. 

l , l , , i , , , - - T l , , , , I  

- 1  0 1 

Fig. 3. Orbit of a generic point• 

(41 ), the coefficients of  which are 

0"I 3d)  =a+b~ +b2 +b3 , 

f f~3d)=a(bl+bz+b3)+blb2+bzb3+b3bl_(c  ~ ..1.. C22 . + C  32 +d12 +d22 @d3)2 , 

(44) 

(45) 

Since a~ 3d) is invariant by t v tm and ta and takes a simple factor (the inverse of  the determinant) under the 
action of  I, the variety a~ 3a~ = 0  is invariant under F3. Given the hugeness of  the group F3, it is already an 

- 2  

- 4  

1 i 

- 4  - 2  

, :9 ~v..Z:ff. " ~ .  

~ i . a ~  ~.: : -~ . . . . .  

I i L l [  

0 2 
L i 1 

4 

7 

J 

Fig. 4. Random orbit of the same generic point. 
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astonishing fact to have such a covariant expression. We shall give elsewhere a more extensive study of the 
invariants of F3. 

6. 3. Orbits of _F'3 

To have some flavour of the possible (integrable?) algebraic varieties invariant under F3, w e  study its orbits 
[ 12,13 ]. We start with the study of the subgroup generated by some infinite order element namely IJ. This 
element gives a special role to axis 1. With an initial point symmetric under the exchange of 2 and 3, we get 
remarkably a curve!! (see fig. 2). Other starting points lead to orbits lying on higher dimensional varieties (see 
fig. 3 ). However, what we are really interested in are the orbits of the whole F 3 group. The size of this group 
prevents us from studying exhaustively the full set of  group elements of  a given length even for quite small values 
of this length. We have nevertheless explored the group by a random construction of typical elements of increas- 
ingly large length (see fig. 4 ). We will give elsewhere a more extensive study of these orbits. 

7. Conclusion 

We have exhibited an infinite discrete symmetry group for the Yang-Baxter equations for vertex models. This 
group is the Coxeter group A~ l) which is the semi-direct product of  Z × Z by some finite group. The same group 
has already been found as a symmetry group of the star-triangle relation [ 11 ]. 

As happened there, the symmetry is responsible for the presence of the spectral parameter. In other words, the 
discrete symmetry gives rise to a continuous one (see ref. [ 11 ] ). 

A similar study for the generalized star-triangle relation of the interaction around a face (IRF) model, sketched 
in ref. [27 ], can be performed rigorously along the same lines, leading to the same result. 

For three-dimensional vertex models, the symmetry group, though generalizing very naturally the previous 
group (generated by four involutions with similar relations) is drastically different: it is so "large" that the 
chances are quite small that it leaves enough room for any invariant integrability varieties. It is not useless to 
recall the unique non-trivial known solution of the tetrahedron equations [37,38,39 ]. For this model the group 
~¢ut  3 does not have a free action. The three axes are not on the same footing, so that we do not have a "true" 
three-dimensional symmetry (two-dimensional checkerboard models coupled together). 

Is there still any hope for a three-dimensional exactly solvable model with genuine three-dimensional sym- 
metry? The group of symmetries we have described gives the best line of attack to this problem. 
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