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Abstract
We consider the isotropic perimeter generating functions of three-choice,
imperfect, and one-punctured staircase polygons, whose 8th order linear
Fuchsian ODEs are previously known. We derive simple relationships
between the three generating functions, and show that all three generating
functions are joint solutions of a common 12th order Fuchsian linear ODE.
We find that the 8th order differential operators can each be rewritten as a
direct sum of a direct product, with operators no larger than 3rd order. We
give closed-form expressions for all the solutions of these operators in terms
of 2F1 hypergeometric functions with rational and algebraic arguments. The
solutions of these linear differential operators can in fact be expressed in
terms of two modular forms, since these 2F1 hypergeometric functions can be
expressed with two, rational or algebraic, pullbacks.
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1. Introduction

Self-avoiding walks (SAWs) and self-avoiding polygons (SAPs) have long been studied in
enumerative combinatorics as models of percolation, polymers, surface roughness, and more
[1], although both their generating functions remain unsolved to this day. SAPs can be
considered to be embeddings of simple closed curves into a regular lattice, typically the
hypercubic lattice. Several classes of SAWs and SAPs have been solved by imposing either
convexity or directedness constraints, or both. Convexity is defined with respect to an angle:
the SAP is said to be convex with respect to an angle if for any line at that angle there are at
most two intersections of the SAP with the line. Horizontal and vertical convexity are
common constraints. Examples of a directed walk, a generic SAP, and column convex SAPs
are shown in figure 1. Within a class, walks and polygons usually have the same growth
constant, also known as the connective constant, although recently prudent polygons have
been shown to be exponentially sparse among prudent walks [2].

The study of SAPs and its sub-categories involves the search for exact expressions of
their generating functions as a function of various parameters of interest. These include the
perimeter, width, height, site perimeter, left and right corners, and area, and for certain classes
of SAPs, a generating function has been found which include all of these parameters expli-
citly, e.g. [3]. Among the known generating functions, rational, algebraic, D-finite, non-D-
finite, and natural boundaries have been derived (see [4] for a good review). Furthermore,
among still unsolved classes, it is possible to prove results concerning the nature of the
unsolved generating function. For example, the anisotropic perimeter generating function for
the full SAPs class has been proven to not be a D-finite function in [5]. The wide variety of
types of functions which arise in the study of SAPs offers an intriguing source of knowledge
for what constitutes exact solutions in statistical mechanics.

Among known perimeter generating functions are rational functions, algebraic functions,
q-series, and natural boundaries [4], and quite generically the nature of the isotropic and
anisotropic perimeter generating functions are the same. In the case of column-convex but not
row-convex SAPs, the area generating functions are simpler than the corresponding perimeter
generating function, being rational functions [4]. However, all known cases of area-perimeter
generating functions involve q-series [4].

Three-choice and one-punctured staircase polygons are two classes of SAPs well studied
in the literature [6, 7], known to be D-finite functions [8, 9] but whose perimeter generating
functions have resisted closed-form solutions [10]. We here provide hypergeometric solutions
to the operators appearing in their linear ODEs. It has long been suspected that their gen-
erating functions are related to each other [7–9, 11], and indeed we here show that they are
equal up to the sum of an algebraic factor. Our hypergeometric solutions constitute the first
example of a SAP generating function which is D-finite but not algebraic.

We begin by reviewing the literature of staircase, three-choice, and punctured staircase
polygons in section 2, followed by an analysis of the linear differential operators of the three-

Figure 1. From left to right, examples of a spiral (a directed walk), a general self-
avoiding polygon (SAP), a column convex polygon, and a histogram (column convex).
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choice and punctured staircase polygon linear ODEs in section 3. We then provide solutions
for the linear differential operators in section 4 and explore hypergeometric and modular
function identities of the solutions in section 5. We end with a discussion of generalizations of
the results in section 6, followed by conclusions in section 7.

2. Known results

2.1. Staircase polygons

Staircase polygons are polygons formed from two SAWs that both start at the origin, move
using only north or east steps (sometimes south and east steps [11]) and only intersect once
again at their common endpoint. An example of a staircase polygon is shown in figure 2.
Even though they have a long history in enumerative combinatorics and are among the most
well studied classes of SAPs, their literature can be difficult to navigate, with numerous
erroneous references, many independent proofs, and multiple equivalent names. Viewed in
terms of their area, they are often called parallelogram polyominoes. In [12] they are also
called skew Ferrers diagrams, defined as the difference between two Ferrers diagrams. While
it is unstated in [12], it is clear from [13] that only the connected skew Ferrers diagrams are
being considered in [12], such that indeed they correspond to staircase polygons. Finally,
viewed in terms of two vicious walkers which start at the origin and end at their only other
common point, they have also been called two-chain watermelons, or two-watermelons
in [14].

Staircase polygons are examples of convex and directed SAPs and all typical quantities
of interest are known exactly for them. Jack Levine appears to be the first to have published a
proof of the isotropic and anisotropic perimeter generating functions in 1959 [15]. Never-
theless, his paper seems to have been largely neglected in the literature. Pólya in 1969
published the formula for the isotropic perimeter generating function, stated without proof but
with reference to a diary entry from 1938 [16]. Other independent proofs have appeared, in
1984 [17] and in 1987 [18] for the isotropic perimeter. The site perimeter is a relevant
quantity in percolation theory, and for staircase polygons it can be computed from the
perimeter and the number of corners the polygon has. The perimeter-corner generating
function is given in [19].

The inclusion of area in the generating function began with Pólya in 1969 [16], who
provided an expression for the area-perimeter generating function, stated without proof. An
expression for the area generating function was first proven in 1974 [20], followed by various
proofs of the area-perimeter generating function as a continued fraction [21, 22], as well as a
ratio of q-Bessel functions [22, 23]. The area-width generating function was given in [12],
while the area-perimeter-left/right height generating function was given in [24]. The most
general generating function, enumerated by area, perimeter, width, height, and left/right
corners, was given in [3].

Figure 2. Example of a staircase polygon, which is also a directed and convex SAP.
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Here we collect a few expressions. The isotropic perimeter generating function of half-
perimeter n is related to the Catalan numbers Cn
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We note the single square root singularity at =x 1 4.
The anisotropic perimeter generating function, in terms of h horizontal and v vertical

perimeter, is given by
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where the previous result is obtained by setting = y x x . The anisotropic perimeter
generating function satisfies the simple algebraic equation

= + +P P x P y , 4( ) · ( ) ( )
and the inversion relation
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Finally, we note the following functional equation for the isotropic half-perimeter x and area q
generating function [25]
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2.2. Three-choice and imperfect staircase polygons

Three-choice SAWs were defined by Manna in 1984 [26] as SAWs where right-handed turns
are disallowed after travelling in the east or west directions, and in 1993 their SAP equivalents
were considered [6]. See figure 3 for a graphical definition of three-choice walks. There are
two classes of three-choice polygons, the usual staircase polygons and imperfect staircase
polygons whose perimeter can be broken up into four directed paths, examples of which are
also shown in figure 3. Depending on the authors, ‘three-choice polygons’ can either mean
both classes, or only the imperfect staircase polygons, e.g. [7]. A polynomial time algorithm

Figure 3. From left to right, Manna’s three-choice walk possible turn directions after
proceeding one step from the origin, an imperfect staircase polygon, and a staircase
polygon.
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for the enumeration of three-choice polygons by isotropic perimeter was given in [27], which
hinted at its solvability. In that same work, it was shown using the theory of algebraic
languages, that the perimeter generating function is not algebraic. Nevertheless, in [9] its 8th
order linear ODE was found from a long series expansion, so that it is a D-finite transcen-
dental function. The singularity closest to the origin on the positive real axis is at =x 1 4,
the same location as for staircase polygons.

From the analysis of its series expansion [28], it is also expected that the anisotropic
perimeter generating function is both solvable and D-finite (see page 85 of [10] for the
mention, see [4] of [10], of an unpublished proof that it is D-finite). Furthermore, the gen-
erating function for the area and anisotropic perimeter was shown in [7] to satisfy self-
reciprocity and inversion relations. The anisotropic generating function for imperfect staircase
polygons satisfies the following inversion relation [29]
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D = + + + - - + - -x y x y x y x y1 1 1 1 . 8( )( )( )( ) ( )

The full three-choice polygon perimeter generating function series reads

= + + + + + + + P x x x x x x x4 12 42 152 562 2108 7986 , 9T 2 3 4 5 6 7 8 ( )

and the subset of only imperfect staircase polygon perimeter generating function series reads

= + + + + + + + P x x x x x x x6 29 130 561 2368 9855 10I 4 5 6 7 8 9 10 ( )

2.3. Punctured staircase polygons

Punctured staircase polygons are staircase polygons with holes in the shape of a smaller
staircase polygons whose perimeter does not share any vertices with the outer perimeter. We
give an example of a one-punctured staircase polygon in figure 4. We here only consider one-
punctured staircase polygons and below use ‘punctured staircase polygons’ synonymously
with one-punctured staircase polygons. Punctured staircase polygons were first considered in
[7], where the generating function for the area and anisotropic total perimeter were shown to
satisfy self-reciprocity and inversion relations. In [11], a polynomial time algorithm was given
for the enumeration of the total isotropic perimeter generating function for one to three holes,
hinting at its solvability. In that same work, the exact generating functions for punctured
staircase polygons with holes of perimeter 4 and 6 were found. Subsequently in [8], the total
perimeter generating function was found to satisfy an 8th order linear ODE by consideration
of a large series expansion. The singularity closest to the origin on the positive real axis is at

Figure 4. Example of a one-punctured staircase polygon.
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=x 1 4, coinciding with the location of the staircase polygon and three-choice SAP
singularities.

In [11], it was noticed that all of the differential approximant exponents for the three-
choice and punctured staircase polygons were equal, and in [7] it was seen that the inversion
relation for their area and anisotropic perimeter generating functions were similar. Further-
more, in [8, 9] it was noted that the same transfer matrix can be used to enumerate the
perimeter generating functions of both three-choice and punctured staircase polygons, subject
simply to different boundary conditions. It therefore does not come as a surprise below that
we find an exact algebraic relationship relating these generating functions.

We note that the exact perimeter generating function for staircase polygons with holes in
the shape of 90 -rotated staircase polygons has been given and proven in [30] as an algebraic
function, the solution of a 4th order linear ODE. It appears that there is no relation between
the rotated-punctured generating function and the punctured perimeter generating function
considered here.

The punctured staircase polygons total perimeter generating function series reads

= + + + +
+ + + 

P x x x x x
x x

12 94 604 3463
18 440 93 274 11

P 8 9 10 11 12

13 14 ( )

3. Differential operator structures

In the following, we denote the order of operators by subscripts. We also denote with ⊕ the
direct sum = ÅO O On m p of two order-m and order-p linear differential operators Om and Op,
such that all solutions of Om and Op are solutions of On. The direct sum structure means that
the two operators Om, Op are two possible right-factors of On, namely

= =O O O O On m p p m
˜ · ˜ · . Conversely, forming the operator On from lower order operators

Om, Op amounts to taking the O OLCLM ,m p( ) of the two operators, where LCLM stands for
least common left multiple (see [31] for more details).

The 8th order linear differential operator L8
P denotes the operator annihilating the peri-

meter generating function of punctured staircase polygons. This linear differential operator
has the following product and direct sum decomposition, where the product structure is of a
different form than in [8]

= = Å = ÅL I I I I I J J K K K N J . 128
P

3 1 2 1 1 7 1 3 2 1 1 1· · · ¯ · ˜ ( · · · ) ( )

Similarly, for the case of the three-choice staircase polygon perimeter generating function
with imperfect staircase polygons included, we have the following 8th order operator product
and direct sum decomposition

= = Å Å
= Å Å
L L L L L L M M M

N N N M M . 13
8
T

3 2 1 1 1 6 1 1

3 2 1 1 1

· · · ¯ · ˜ ¯

( · · ) ¯ ( )

And finally, the corresponding 8th order operator for only imperfect staircase polygons also
decomposes as follows

= = Å Å
= Å Å

L Q Q Q Q Q M R R

N N N R R . 14
8
I

3 2 1 1 1 6 1 1

3 2 1 1 1

· · · ¯ · ˜ ¯

( · · ) ¯ ( )

Comparing L8
T and L8

I, both have direct sum decompositions into the same 6th order linear
differential operator =M N N N6 3 2 1· · , and simple first order operators. As a consequence,
these two linear differential operators are homomorphic (up to 7th order intertwinners).
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In the product form, operators of the same order for the three cases are homomorphic [31]
to each other, for instance  I L Q3 3 3 and  I L Q2 2 2. That is, =I V W L3 2 2 3· · for
intertwinner operators V2, W2 of second order. The solutions of the operator M6 which
appears both in L8

T and L8
I are also solutions of the operator J7 of L8

P. The J7 and M6 are
homomorphic to each other with sixth order intertwining operators. The K2 and N2 operators
are homomorphic to each other with first order intertwining operators, and the K3 and N3

operators are homomorphic to each other with second order intertwining operators in one
direction, and first order intertwining operators in the other direction. Not surprisingly, L 8

P is
homomorphic to L8

T and L8
I (again with 7th order intertwinners).

The operator M6 has three solutions analytic at =x 0, and J7 has four analytic solutions.
The operators N3, N2, N1 have the following form (Dx denotes, here, and elsewhere in the
paper, the differential operator
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where the polynomials p q,j j of order j are given in appendix A. The solution of N1

is - x1 4( ).
Since the L8

T and L8
I operators are quite similar, as noted previously, it is not surprising

that their LCLM only has order 10 instead of the generic 16th order expected of the LCLM of
two 8th order operators. Similarly, that is the case among any pair of the operators L8

T, L8
I,

L8
P. To some extent this explains that the LCLM of all three operators, which encapsulates the

generating functions of three-choice, imperfect, and punctured staircase polygons, is only of
12th order, half of the expected order. See appendix B for details of the LCLM structures.
Note that any linear combination of the form
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is actually solution of the 12th order LCLM of the three 8th order linear differential operators
L8

T, L8
I, and L8

P.

3.1. Equivalence of generating functions

From [27], the relationship between the three-choice and imperfect staircase polygons is
known to be

⎛
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where PS is the staircase polygon generating function in(1).
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The right-hand side of(19) is a solution of a 2nd order operator which is the LCLM of
two simple first order operators. From equation (19) one immediately deduces that PT is a
solution of the LCLM of L8

I and of this 2nd order operator, yielding the result that the LCLM
of PT and PI is of 10th order as seen in appendix B. Conversely, the calculations of
appendix B provide a means to deduce the relationship of equation (19).

Similarly, from the LCLM of PI and PP in appendix B, one can find the following
algebraic relationship

+ = - +
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Using the two relationships(19) and (20), we can deduce the following relationship
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While the LCLMs of the operators L8
T, L 8

I , L8
P provide a proof of the above relationships, we

still have not found a direct combinatorial derivation or interpretation of relationships
(20)–(23).

Note that by eliminating P xd dS between (19)–(23) and thereby eliminating all square
roots, we find the following very simple relationship among PT, PI, PP

⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠+ + - =

-
P

x
P

x
P

x

x4
1

2 1 4
. 24P T I

3
· · ( )

Again, we have not yet found a combinatorial explanation of (24).

4. Results

The solutions to all three generating functions can be most simply expressed in terms of the
solutions in equation (18), which are the seven first order solutions of
L12

TIP= L L LLCLM , ,8
T

8
I

8
P( ), plus solutions of =M N N N6 3 2 1· · . We here focus on the

solutions of the linear differential operator L8
I, since the solutions of the other two generating

functions are easily related to the solution of L8
I by relationships(19) and (20).

The generating function for imperfect staircase polygons is given as the sum of algebraic
and transcendental functions

= +P P P
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where the algebraic part Palg
I is actually a series with integer coefficients
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= - - - - - - - + ¼x x x x x x x11 34 70 265 1020 3920 15 060 57 915 , 273 4 5 6 7 8 ( )

and where the transcendental part Ptrans
I
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28
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I 3 4 5 6 7 8

( )

is a solution of N N N3 2 1· · and can be decomposed as the linear combination
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of the two regular solutions Sol2 and Sol3
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corresponding to the series expansions with integer coefficients
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2 3 4 5 6 7 ( )

The series Sol2, Sol3 are the unique series, up to an overall factor, multiplying the largest
logarithmic power of the formal solutions of N N2 1· and N N N3 2 1· · , respectively, as seen
in equation (C.1) of appendix C.

It is remarkable to observe that the linear combination of rational coefficients from
P1 60 alg

I( ) , 19 120 Sol2( ) and 3 120 Sol3( ) actually gives the integer series corresponding to
PI. As will be seen below, N2 and N3 are of a quite different nature, so that it is rather
surprising that a solution of N N N3 2 1· · is precisely able to compensate the P 60alg

I series in
order to generate the integer series of PI.

4.1. Exact N2 solution

The second order linear differential operator N2 has the following solution as a F2 1 hyper-
geometric function with a rational cubic pullback, which can be found, for example, using the
program hypergeomdeg3 described in [32]
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This solution can also be expressed as the following sum of two contiguous F2 1

hypergeometric functions
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⎡
⎣⎢

⎛
⎝⎜

⎡
⎣⎢

⎤
⎦⎥

⎞
⎠⎟

⎛
⎝⎜

⎡
⎣⎢

⎤
⎦⎥

⎞
⎠⎟

⎤
⎦⎥

=
- -

+ +
-

+ + + - -
-

N
x x

x x x F
x

x

x x x x F
x

x

Sol
1

1 1 4
45 44

1

3
,

2

3
, 2 ,

27

1

1 7 1 3 13
1

3
,

2

3
, 1 ,

27

1
.

38

2 2 3 2
3 4

2 1

3

3

2 2
2 1

3

3

( )
( ) · ( )

· ( ) · [ ]
( )

( ) · ( ) · [ ]
( )

( )

As a sum of two contiguous F2 1 hypergeometric functions, we can wonder whether a
different contiguous basis exists for NSol 2( ) which gives smaller algebraic pre-factors. We
have made use of the Maple procedure contiguous2f1.mpl developed by Vidūnas [33], but we
have been unable to find a simpler contiguous basis.

While the form of the pullback in (37) does not reveal the physical singularity at
=x 1 4, the standard hypergeometric identity

⎜ ⎟⎛
⎝

⎞
⎠= - -

-
-F a b c z z F a c b c

z

z
, , , 1 , , ,

1
, 39a

2 1 2 1([ ] [ ] )) ( ) · [ ] [ ] ( )

changes the pullback to

=
- -

= -
- + +

z
x

x

z

z

x

x x x

27

1 1

27

1 4 1 7
, 40

3

3

3

2( )
⟶

( )( )
( )

from which we see that the physical singularity is mapped to = ¥z and where we also see
the appearance of the unphysical singularities at the roots of polynomial + +x x1 7 2, which
were already observed in [8].

4.2. Exact N3 solution

The solution to the operator N3 is much more involved and the path to discovering its solution is
not obvious. The discovery of the solution starts with seeing that the exterior square of N3 has a
rational solution, which means that this 3rd order operator is homomorphic to the symmetric
square of a second order operator. Constructing N3¯ by conjugating N3 by the square root of this
rational function, we used the ‘conic program’ described in [34] and available at [35] in order to
find a second order linear differential operatorV2̄, such that its symmetric square is, not equal, but
homomorphic to N3¯ . This second order linear differential operator V2̄ reads

= +
- + +

-
- + +

V D
p

x x x p
D

q

x x x x p

1 4 1 4 1 4

2
1 4 1 4 1 4

, 41

x x2
2 36

2
33

36
2

33

¯
( )( )( ) ·

·

·
· ( ) ( )( ) ·

( )

where the polynomials p33, p36 and q36 are given in appendix A. The quite large degree 33
polynomial p33 corresponds to apparent singularities. To go further it is crucial to get rid of
p33 and to find a 2nd order linear differential operator homomorphic to V2̄ with none of these
apparent singularities. This corresponds to the so-called desingularization of a Fuchsian linear
differential operator. Note that in general it is not easy to get rid of the apparent singularities
without introducing new ones. We are not interested in such a ‘partial’ desingularization, but
in a ‘complete’ desingularization, which is, in general, not always possible without increasing
the order. One looks for an operator equivalence that keeps the exponents of the new linear
differential operator at the true singularities in a fairly narrow range: to ‘minimize’ the number
of apparent singularities one needs to ‘maximize’ the sum of all the exponents at all the true
regular singularities5. In this particular case, we have been able to find such a 2nd order

5 The technical details on how to implement these briefly sketched ideas will be found in a forthcoming paper [36].
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Fuchsian linear differential operator V2, homomorphic to V2̄, with no apparent singularities6.
This much simpler second order operator V2 reads

- + +
= - + +

+ + - - + +
+ + + - +

x x x x V

x x x x D

x x x x x x D

x x x x

1 4 1 4 1 4

1 4 1 4 1 4

192 24 1 1 4 1 4 1 4

16128 3280 532 16 1. 42

x

x

2 2 2 2 2
2

2 2 2 2 2 2

4 2 2

8 6 4 2

( ) · ( ) · ( ) · ·
( ) · ( ) · ( ) · ·

( ) · ( ) · ( ) · ( ) · ·
( )

These two operators, V2̄ and V2, are homomorphic with first order intertwinners

= =V A B V C V V D, , 432 1 1 2 1 2 2 1· · ¯ · ¯ · ( )
where7 the first order intertwiners A1, B1, C1, D1 are of the form

=
- + +

-A
x x x x

p
p D q

1 4 1 4 1 4
2 , 44x1

2

33
15 14

· ( )( )( ) · ( ˜ · · ˜ ) ( )

⎛
⎝⎜

⎞
⎠⎟= - + + +B

p
p x x x x D

p

p

1
1 4 1 4 1 4 , 45x1

33
15

2 52

33

· ˜ · ( )( )( ) · ·
˜

( )

⎜ ⎟⎛
⎝

⎞
⎠= - +C p D

U

x

p

p

d ln 1

d
, 46x1 15

47

33

˜ · ( ) ˜
( )

⎜ ⎟⎛
⎝

⎞
⎠= - +D p D

x U

x
p

d ln

d
2 . 47x1 15 14˜ · ( · ) · ˜ ( )

where U denotes the algebraic function - +x x1 16 1 42 2( ) ( ) , and where the polynomials
p14˜ , q14˜ , p15˜ , p47˜ and p52˜ are polynomials with integer coefficients of degree 14, 14, 15, 47 and
52 respectively. Note that p14˜ or q14˜ do not correspond to derivatives of p15˜ . Therefore the first
order intertwiners A1 and D1 are not Fuchsian operators, since one does not have a
logarithmic derivative. Along this line it is obvious that B1 and C1 are also not Fuchsian
operators: these four order-one intertwiners, corresponding to the homomorphisms the two
Fuchsian order-two operators, V2̄ and V2 , are not themselves Fuchsian.

The 2nd order operator V2 being homorphic to V2̄, and the 3rd order operator N3 being
homorphic to the symmetric square ofV2̄, one finds straightforwardly that the 3rd order operator
N3 is homomorphic to the symmetric square of the (much simpler) 2nd order operator V2

=N T W VSym , 483 2 2 2
2· · ( ) ( )

where the intertwinner T2 is a 2nd order operator of the form

=
- + +

+
- + + - -

+
- + + - + + +

T
p

x x x x p
D

p

x x x x x x p
D

p

x x x x x x x x p

4

3 1 4 1 7

4

3 1 4 1 7 1 12 64

16

3 1 4 1 7 1 24 16 1536 4096
,

49

x

x

2
10

3 2 2
6

2

14
4 2 2 2 4

6

18
5 2 2 2 4 6 8

6

· ( ) ( ) ·
·

· ( ) ( )( ) ·
·

· ( ) ( )( ) ·
( )

with polynomial coefficients pj(x) of order j defined in appendix A.

6 This much simpler second order operator can be obtained from van Hoeij’s program reduceorder available
here [37].
7 Note that the 3rd order operators V A2 1· and C V1 2· in (43) still have p33 (and another polynomial p15˜ , see below)
as apparent singularities.
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The relevant solution of V2 is given by

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎡
⎣⎢

⎤
⎦⎥

⎞
⎠⎟

=

=
- -

+ - +

V x U

x U
x U

x
F

x

x U

Sol ,

13 28 12

1 20

1

8
,

3

8
, 1 ,

4096

1 4
,

50

2

2

2 2

1 4

2 1

10

2 4

( ) ( )

· ·
( )

· [ ]
( )

( )

⎜ ⎟⎛
⎝

⎞
⎠= - -x U xHeun

1

4
,

1

16
,

3

8
,

5

8
, 1,

1

2
, 4 , 512· · ( )

= - - - - - -

- - - + 

x x x x x
x

x

x x x

5
95

2

655

2

27 365

8

305 131

8

7365 195

16
92 787 415

16

9671 421 805

128

129 164 164 935

128
, 52

3 5 7 9
11

13

15 17 19 ( )

with

= + - +U x x1 16 1 4 . 532 2( ) ( ) ( )

Finding the solution of V2 in (50) as a F2 1 hypergeometric function with an algebraic
pullback is highly non-trivial. It can be found, for example, using the new Maple procedure
hypergeometricsols written by Erdal Imamoglu and available at [38]. The result found from
the program contains a different algebraic pre-factor as well as a different algebraic pullback,
which can then be simplified to the form (50) found above8.

One can of course imagine that considering the other branch of the square root in (53)
gives an alternate expression. This is actually the case, changing U into-U gives, in fact, the
same solution up to a - -5 1 2 factor, in the following alternative form

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎡
⎣⎢

⎤
⎦⎥

⎞
⎠⎟

=- -

=
- +

+ - -

-V x U

x U
x U

x
F

x

x U

Sol 5 ,

13 28 12

5 1 20

1

8
,

3

8
, 1 ,

4096

1 4
.

54

2
1 2

2

2 2 2

1 4

2 1

10

2 4

( ) · ( )

· ·
· ( )

· [ ]
( )

( )

Note that the two pullbacked hypergeometric functions in (50) and (54) are actually two
different series with integer coefficients

⎛
⎝⎜

⎡
⎣⎢

⎤
⎦⎥

⎞
⎠⎟- +
= + + +

+ + + + + 

F
x

x U
x x x

x x x x

1

8
,

3

8
, 1 ,

4096

1 4
1 12 240 4200

67 200 1040 700 15 830 388 238 737 720 , 55

2 1

10

2 4
10 12 14

16 18 20 22

[ ]
( )

( )

while

⎛
⎝⎜

⎡
⎣⎢

⎤
⎦⎥

⎞
⎠⎟- -
= + - +

- + - + -
+ - + + 

F
x

x U
x x x

x x x x x
x x x

1

8
,

3

8
, 1 ,

4096

1 4
1 12 12 744

2700 115 140 782 520 24 418 920 238 316 940
6113 609 700 74 768 429 700 1698 621 342 600 56

2 1

10

2 4
2 4 6

8 10 12 14 16

18 20 22

[ ]
( )

( )

The series solution (52) is not a series with integer coefficients but it is globally bounded [43]
so that it can be recast into a series with integer coefficients by changing x x2 . In fact, the
square of the series solution (52) is a series with integer coefficients, since the square of the
algebraic pre-factor is a series with integer coefficients.

8 Similarly, the solution of N2 in (34) can be found in an alternative form through the hypergeometricsols program.
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The solution of N3 is straightforwardly found by applying the second order intertwinner
operator T2 to the square of the solution of V2

=N T VSol Sol . 573 2 2
2( ) ( ( ) ) ( )

Using the Clausen identity [39]

⎛
⎝⎜

⎡
⎣⎢

⎤
⎦⎥

⎞
⎠⎟

⎛
⎝⎜

⎡
⎣⎢

⎤
⎦⎥

⎞
⎠⎟=F z F z

1

8
,

3

8
, 1 ,

1

4
,

1

2
,

3

4
, 1, 1 , , 582 1

2

3 2[ ] [ ] ( )

one can rewrite the quadratic expression (57) of the F2 1 in (50) in terms of the pullbacked F3 2

and its derivatives

⎛
⎝⎜

⎡
⎣⎢

⎤
⎦⎥

⎞
⎠⎟- +

F
x

x U

1

4
,

1

2
,

3

4
, 1, 1 ,

4096

1 4
. 593 2

10

2 4
[ ]

( )
( )

We further note that using the following hypergeometric identity

⎜ ⎟
⎛
⎝⎜

⎡
⎣⎢

⎤
⎦⎥

⎞
⎠⎟

⎛
⎝

⎞
⎠

⎛
⎝⎜

⎡
⎣⎢

⎤
⎦⎥

⎞
⎠⎟

-
-

=
-

F
z z

z

z
F z

1

8
,

3

8
, 1 ,

16 1

2

2

2

1

2
,

1

2
, 1 , , 602 1

2

4

1 2

2 1[ ] · ( )
( )

· [ ] ( )

it is possible to transform the F2 1 hypergeometric function in NSol 3( ) to the complete elliptic
integrals of the first and second kinds K(z), E(z).

In appendix D we consider the problem of integrating NSol 3( ) back through N N2 1· in
order to find Sol3 of (31).

4.3. Singularity analysis

The nearest singularity on the positive real axis for the generating functions is at =x 1 4. It
was already known from [8, 9]) that the singularity at =x 1 4 has a square root divergence
as well as a logarithmic singularity. The square root divergence has contributions from both
the algebraic and transcendental parts of the generating function solution in (25). From the
Heun function form of Sol3 in (51) we can see clearly that Sol3 only contributes corrections to
the square root singularity of the algebraic part. Therefore, the sole contribution to the
logarithmic singularity at =x 1 4 comes from the hypergeometric solution Sol2 in (34) with
(40), which also contributes to the square root singularity.

Note that the singularities at + =x1 4 0, + =x1 4 02 , + + =x x1 7 02 , analyzed in
[8, 9]) only emerge from the transcendental part of the solution in (25).

5. Modular forms and hypergeometric identities

5.1. The solutions of N2 as modular forms

The solution (34) of N2 in terms of (37) can actually be seen to be associated with a
modular form.
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Let us consider the modular curve

+ +
+ - + + + + +

- - + + + - =

61

C D C D C D

C D C CD D C D C CD D

C CD D C D

10 077 696 377 9136

472 392 87 19 683 440

59 049 87 59 049 19 683 0,

3 3 2 2

2 2 2 2

2 2

( )

· · · ( )
· · ( ) · ( ) · ( )

· ( ) · ( )

which is a genus-zero curve with the simple rational parameterization

⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟=

-
=

-
+

C
x

x
D

x

x

3

1
,

1 4

1 5
, 62

3 3

( )

such that

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟=

-
+

=
-
+

D x C
x

x
C x D

x

x

1 4

4 11
,

1 4

4 11
. 63( ) ( ) ( )

Along this line, introducing N2
p as the - +x x1 4 4 11( ) ( ) pullback of the linear differential

operator N2, one sees that the symmetric square of N2
p and of N2 are actually homomorphic.

With C and D given by (62), and thus related by the modular curve (61), one has the
following non-trivial identity on the same F2 1 hypergeometric function with the two different
pullbacks - D1 and C

⎛
⎝⎜

⎡
⎣⎢

⎤
⎦⎥

⎞
⎠⎟

⎛
⎝⎜

⎡
⎣⎢

⎤
⎦⎥

⎞
⎠⎟- =

+
-

F D
x

x
F C

1

3
,

2

3
, 1 , 1

1 5

1

1

3
,

2

3
, 1 , , 642 1 2 1[ ] · [ ] ( )

namely

⎛
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⎡
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⎤
⎦⎥

⎞
⎠⎟

⎛
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⎡
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⎞
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=
+
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F
x x x

x

x

x
F

x

x

1

3
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2

3
, 1 ,

27 1 7

1 5

1 5

1

1

3
,

2

3
, 1 ,

27

1
.2 1

2

3 2 1

3

3
[ ] · ( )

( )
· [ ]

( )

This relation is (after the change of variable  -x x x3 1( ), nothing but Ramanujan’s
Cubic transformation (see corolory 2.4 page 97 of [40] and (2.23) in [41])

⎛
⎝⎜

⎡
⎣⎢

⎤
⎦⎥

⎞
⎠⎟

⎛
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x F x F
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x
1 2
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3
,
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3
, 1 ,

1

3
,

2

3
, 1 , 1

1

1 2
. 652 1

3
2 1

3

( ) · [ ] [ ] ( )

This relation is also, up to a simple change of variables, the relation on page 44, table 18,
fifth line in Maier’s paper [42]

⎛
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⎤
⎦⎥

⎞
⎠⎟

⎛
⎝⎜

⎡
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F
x x x
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3
,

2

3
, 1 ,

9 27

3

3
3

9

1

3
,

2

3
, 1 ,

9
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2 1

2

3

2 1

3

3
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( )

· · [ ]
( )

( )

Such non-trivial identities on the same F2 1 hypergeometric function with the two different
pullbacks related by a modular curve, show the emergence of a modular form (see Maier’s
paper [42]).

5.2. The solutions of N3 as modular forms

The solution of N3 is given in terms of the solution of V2 given in either the form (50) or (54),
through (57). The fact that the same solution series (52) can be expressed in two different
ways, (50) or (54), corresponds to a quite non-trivial identity, namely
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 = - --x U x U, 5 , , 671 2( ) · ( ) ( )
between the same hypergeometric function but with two different algebraic pullbacks. Such
non-trivial identity actually corresponds to a modular form (a covariance with respect to the
isogenies associated with the modular curve [43, 48]).

These two algebraic pullbacks

=
- - - +

A
x

x U
B

x

x U

4096

1 4
,
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1 4
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2 4

10
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are related by the genus-zero modular curve
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This genus-zero modular curve can be seen as corresponding to the elimination of the x
variable between the two ‘auxilliary equations’ (see (70) in [43])

+ + - - + -
+ =

x A x x x x x A

x

1 20 256 224 400 50 20 1

65536 0, 70
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12
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These two auxiliary equations are actually, and surprisingly, genus-one curves rather than
genus zero: this is a consequence of the fact that the exact expression of the two algebraic
pullbacks in (70) and (71) requires a square root, namely U. On the other hand, the modular
curve (69) that one would expect to be a genus-one curve is in fact a genus-zero curve.

We note that the pullback of the F z1 8, 3 8 , 1 ,2 1([ ] [ ] ) hypergeometric function in the
solution of N3 can be rewritten as

⎛
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which can be rewritten in an alternative way which is linear in U
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From this rewriting of the pullback, it is tempting to see the singularity + =x1 20 02 of the
pullback as a singularity of the function. This is not the case, as can be seen in appendix E.

5.2.1. Another parametrization. If one recalls the definition of the square root variable U in
(53) and the previous expressions for the pullback A, in (72), one remarks that all these
expressions are, in fact, functions of =X x2. The definition (53) of U corresponds to a
rational curve - - + =U X X1 16 1 4 02 ( )( ) , which can be parametrized as follows

=
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+
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yielding the following rational parametrization of A and B for the genus-zero modular curve
(69)
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Performing the change of variable = +t u24 , one has the alternative parametrization
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Rewriting the solution of N3 in terms of the F3 2 hypergeometric function (59) amounts to
considering the following F3 2 identity
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which corresponds, using the Clausen identity (58), to the F2 1 identity
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5.2.2. Infinite order symmetry on a Heun function. The occurrence of modular forms
corresponds to identities like (67) or (78), relating the same F2 1 hypergeometric function with two
different pullbacks, which are related by a modular curve (69). These infinite order symmetries of
the F2 1 hypergeometric functions corresponds to isogenies [43, 48] of the elliptic curves which
amount to multiplying or dividing the ratio of the two periods of an elliptic curve by an integer N.

The solution of VSol 2( ), expressed in terms of a F2 1 hypergeometric function (50), can
also be expressed as a simple Heun function (51). One can thus expect an infinite order
symmetry identity on this Heun function. The identity reads
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where X and Y are related by a genus-one curve =P X Y, 0( ) given in appendix F, and X1( )
and  X2( ) are two algebraic expressions also given in appendix F. If the expression of the
solution of VSol 2( ) in terms of Heun function looks (artificially) simpler, the representation of
the infinite order isogeny symmetries is more involved, since we do not have a rational
parametrization of =P X Y, 0( ) .

5.3. N2 versus N3

We can attempt to find a relationship between the F2 1 hypergeometric functions appearing in
the solutions of N2 and N3 (via V2). In order to achieve that goal let us rather try to reduce both
their corresponding F2 1 hypergeometric functions with a pullback, F r x1 3, 2 3 , 1 ,2 1([ ] [ ] ( ))
and F s x1 8, 3 8 , 1 ,2 1([ ] [ ] ( )), to a standard [42] F t x1 12, 5 12 , 1 ,2 1([ ] [ ] ( )) form. This
can indeed be done, according to the two identities below
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Using the first identity (80) on the F2 1 hypergeometric function (37), occurring in the
solution (34) of the second order operator N2 yields
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where the pullback 2 reads

 =
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Similarly, using the second identity (82) on the solution VSol 2( ) given by (50) occurring in the
solution of the 3rd order operator N3 yields a rewriting of VSol 2( ) in terms of a pullbacked
hypergeometric function F 1 12, 5 12 , 1 ,2 1 3([ ] [ ] ).

The elimination of x between these two pullbacks 2 and 3 yields an involved poly-
nomial relation   =P , 02 3( ) , where the polynomial P is the sum of 1665 monomials of
degree 36 in 2 and 48 in 3. In other words, the solutions of NSol 2( ) and NSol 3( ) and their
corresponding modular forms are far from being simply related.
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6. Towards generalizations of the results

There are several ways in which the results of this paper could be extended. From [28], it is
known that the anisotropic perimeter generating functions for three-choice and imperfect
staircase polygons have a simple structure. Since for all known closed-form solutions it has
been shown [4] that the anisotropic perimeter generating functions are simple extensions of
their isotropic counterparts, one could expect that the anisotropic versions of the generating
functions in this paper could be simple extensions of the hypergeometric functions appearing
in the solutions. It may be that only the arguments (pullbacks) of the F2 1 hypergeometric
functions become two-variable rational or algebraic functions. Another plausible extension
would be generalizations to two-variable hypergeometric functions, such as Appell or Horn
functions [44].

A second generalization of the results would be to consider the area-perimeter gen-
erating function. All known results for area-perimeter generating functions involve q-series
[4]. In [8, 9] conjectured forms for the area-perimeter generating functions are proposed for
three-choice and imperfect staircase polygons, and one-punctured staircase polygons,
respectively. The conjectures involve q-Bessel functions with algebraic pre-factors. Alter-
natively, based on the hypergeometric results above, it is reasonable to propose the appear-
ance of q-hypergeometric functions, also called basic hypergeometric functions [45]. We note
that they have already appeared in the SAP area generating function of prudent polygons
in [46].

Finally, it is possible to consider the effect of increasing the number of punctures for
punctured staircase polygons. In [11], the effect of increasing the number of punctures was
considered: it was found that as the number of punctures increases, the perimeter generating
function critical exponent increases by 3/2 per puncture, while the area generating function
critical exponent increases by 1 per puncture. In both cases, the critical point was found to be
unchanged by a finite number of punctures. However, in [47], it was found that once the
number of punctures is allowed to be unbounded, the perimeter generating function has a zero
radius of convergence. Considering our F2 1 hypergeometric function representation of the
one-punctured perimeter generating function, a simple scenario that could explain these
properties, would be that going from one to n punctures, the F2 1 hypergeometric functions are
of the form +F a n b c x3 2, , ,2 1([ ] [ ] ( )). Under this scenario, for finite n, there is a critical
exponent increase of 3 2 per puncture, while the critical point remains unchanged, and as

 ¥n , corresponding to an unbounded number of punctures, the hypergeometric function
will become a confluent hypergeometric function with the critical point mapping to the
confluent irregular singularity at infinity, whose series will have zero radius of convergence,
in agreement with what was found in [47].

7. Conclusions

We have demonstrated for the first time a non-algebraic, D-finite perimeter generating
function for SAPs, given in terms of F2 1 hypergeometric functions, and we have provided
simple relationships between the generating functions of three-choice, imperfect, and one-
punctured staircase polygons. We have expressed the generating functions as a sum of
algebraic and transcendental parts, each of which is a series in integer coefficients up to an
overall factor of 1 60. We have been able to fully analyze the solutions of their 8th order
linear differential operators since they, up to the semi-direct product, reduce to a 3rd order, a
2nd order, and first order operators. We have found that the 2nd order operator has modular
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form solutions which can be rewritten as a F2 1 hypergeometric function with two possible
pullbacks. Similarly we have found that the 3rd order operator is homomorphic to the
symmetric square of an 2nd order operator which also has solutions in terms of another
modular form which, again, can be expressed as a F2 1 hypergeometric function with two
possible pullbacks. In that case, these two pullbacks are related by a genus-zero modular
curve. These two modular forms are not simply related, as can be seen when one rewrites
them in terms of a common F x1 12, 5 12 , 1 ,2 1([ ] [ ] ( )) hypergeometric functions for
respective  x( ) pullbacks. All these exact results for the three perimeter generating functions
illustrate, one more time [43, 48], the emergence in enumerative combinatorics and lattice
statistical mechanics of (quite non-trivial) modular forms. The emergence of modular forms is
often a consequence of the fact that the functions one considers in enumerative combinatorics
and lattice statistical mechanics, can also be written as n-fold integrals and are, in fact,
diagonal of rational functions [43, 49]. One can reasonably conjecture that the generating
functions analyzed here are actually diagonal of rational functions.
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Appendix A. Operator polynomial definitions
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Appendix B. LCLMs of the 8th order operators of PT, P I, PP

The LCLM of the operators L8
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Note that as a consequence of the direct sum structure, L10
TI has very simple algebraic

solutions which can be written in the following form for arbitrary constants Aj

J. Phys. A: Math. Theor. 49 (2016) 214002 M Assis et al

22



+ + +
-

+
+
-

A A x A x A
x

x
A

x

x1 4

9 26

1 4
, B.30 1 2

2
3 4

2
· · · · ( ) ( )

The LCLM of the operators L8
T and L8

P produces a 10th order operator of the following
form
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where the ri are rational numbers with large integer numerators and denominators. Therefore
any linear combination of solutions(B.5) of L j

1
( ) together with the - x1 4( ) solution of N1 is

a solution of L10
TP.

The LCLM of the linear differential operators L8
I and L8

P produces a 10th order linear
differential operator of the following form

= =

= Å Å Å Å

L L L L L L L L L N

L L N L L L L

LCLM ,

. B.6
8
I

8
P

10
IP

3
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1
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1
16

2
3

1
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1
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1

3
4

2
4

1 1
19

1
20

1
21

1
22

( ) · · · · · ·
[ · (( · ) )] ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

The three first order operators L1
20( )–L1

22( ) have the following solutions

-
- -

+ +
x

x

x

x
s s x s x

9 34

1 4
,

1 4
, , B.7

2

0 1 2
2( ) ( )

where the sj are very large integers. The solution of L1
19( ) is of the form

+ + +
-

r r x r x r x

x1 4
, B.80 1 2

2
3

3
( )

where the rj are quite large integers.
As a consequence, any linear combination of solutions of the form

- + + +
-

-

+
-
-

+
-

A x A x A
x x

x

A
x

x
A

x

x

1 4 1 2
1 9

1 4

9 34

1 4 1 4
. B.9

0 1
2

2

2

3 4

2

· ( ) · ( ) · · ( )
( )

· ( ) · ( )

are solutions of L10
IP, where we have simplified two of the solutions by appropriate linear

combinations of the solutions of L1
19( ) and L1

22( ).
Finally, the LCLM of the three linear differential operators L8

T, L8
I, and L8

P produces a
12th order operator of the following form

= =

= Å Å Å Å Å Å

L L L L L L L L L L D

L L L L L L L L L

LCLM , ,

, B.10
x8

T
8
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8
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which has the following seven first order operator solutions

+
-

+ - + -

+
-

+ - + -

A
A

x
A x A x

A

x
A x A x

1 4
1 4 1 4

1 4
1 4 1 4 . B.11

0
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2 3
2

4
5 6

3 2

( )
· ( ) · ( )

· · ( ) ( )

Appendix C. Formal power series

The formal solutions of the 8th order linear operator annihilating PT have the following form
at x=0

å å å

å å å

å å å

= - = =
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where both cn
4( ) and cn

6( ) are integers sequences. Note that only cn
5( ) starts at = -n 1, and also

note the factor of 2 in the second term in S8. The series cn
6( ) is determined uniquely from the

xln2( ) terms, and likewise, the series cn
4( ) is determined uniquely as the series multiplying the

logarithm in the logarithmic solution of the operator N N2 1· .

C.1. Series at infinity

Around = =y x1 0, the series solutions of L8
T

å å
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Appendix D. Integrating N3 back through N2 � N1

Introducing the wronskian of N2

=
- - + - + -

-
W N

x x x x x x

x x

2 6 60 230 660 2913 6874

1 4
, D.12

2 3 4 5 6

3 4
( )

· ( )
( )

and recalling the solution of N1, = -N xSol 1 41( ) , as well as the solutions NSol 2( ) in (34) or
(38) of N2 and the solution NSol 3( ) of N3, the solution Sol3 of (31) entering into Ptrans

I can be
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written as

⎛
⎝⎜

⎛
⎝⎜

⎛
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2
2

2 3

2

( ) · ( )
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· (

·
( )

· ( ) · ( )
( )
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Appendix E. Apparent singularities in SolðN3Þ

Let us try to understand in the solutions (50) and (54) the denominator of the pullbacks,
- -x U1 4 2( ) and - +x U1 4 2( ), as well as the two expressions of the numerator of the

pre-factors, namely - -x U13 28 122( ) and - +x U13 28 122( ).
If one performs the resultant of these expressions with the definition of U2, namely

- - - =x x U1 12 64 02 4 2( ) , one gets respectively +x x4 1 202 2· ( ) and
+ x25 1 20 2 2· ( ) . Therefore, let us consider the values of x such that + =x1 20 02 . At

these points one sees that - x1 4 2 is equal to +6 5, that = U 6 5, and that
- x13 28 122( ) is equal to +6 5.
Typically, in the neighborhood of + =x1 20 02 , namely for +x i 2 51 2( · ) , we

have

 + - + + x i1 20 80 160 5 , E.12 2 2 1 2 3( ) · ( )

 - - - + + x U i13 28 12
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9
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162
5 , E.22 2 1 2 3( ) · · ( )
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, E.32 4 4( ) · ( )


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1 4
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2 4
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so that the expression
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· ·
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behaves, up to a complex constant, like

⎜ ⎟

⎛
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⎡
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which is analytic.
Therefore + x1 20 2 corresponds to an apparent singularity which is nevertheless

necessary to write the modular form as a F2 1 hypergeometric function.
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Likewise, if one looks at - A1( ), where A is given in (68), it can be recast as

- + - + + + + -

´ - + - + + -

-x U x x U x x x

x x U x x x

4 1 4 2 1 2 1 32 24 10 1

2 1 2 1 32 24 10 1 .

E.7

2 4 5 4 2

5 4 2

· ( ) · [( ) ( ) · ]
[( ) ( ) · ]

( )

The elimination of U in the two factors in the numerator yield, besides =x 0,

+ + - = - + + =x x x x x x16 12 8 1 0, 16 12 8 1 0. E.83 2 3 2 ( )

Through a similar procedure as above, the roots of (E.8) can also be shown to be apparent
singularities.

Appendix F. Infinite order symmetry on the Heun function (51)

Let us denote =X x2. Let us consider the genus-one algebraic curve

  
 

 

+ +
+ + + +
+ + + + +
+ + + + +
+ + +
- + -
+ + + + + +
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X Y X XY Y
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XY X Y XY
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X Y XY Y
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One can write Y in (F.1) as a series expansion in X, namely

= + + + + +
+ + + +
+ +
+ +
+
+ +
+ +
+ +
+
+
+
+

Y X X X X X X
X X X X

X X
X X
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We have the following identity on the pullbacks
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from which one deduces from (50), the following infinite order automorphism identity on a
Heun function

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠





- -

= - -

X X

Y Y

Heun
1

4
,

1

16
,

3

8
,

5

8
, 1,

1

2
, 4

Heun
1

4
,

1

16
,

3

8
,

5

8
, 1,

1

2
, 4 , F.4

1

2

( ) ·

( ) · ( )

where

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥





=
+ - -

- + - - - +

=
+ - -

- + - + - +

X
X X X

X X X X X

Y
Y Y Y

Y Y Y Y Y

1 20 1 12 64

1 16 1 4 13 28 12 1 16 1 4
,

25 1 20 1 12 64

1 16 1 4 13 28 12 1 16 1 4
.

1

2 2

2 2

1 4

2

2 2

2 2

1 4

( ) ( ) · ( )
( ) · ( ) · [ ( ) ( ) ]

( ) · ( ) · ( )
( ) · ( ) · [ ( ) ( ) ]

References

[1] Polygons, Polyominoes and Polycubes Guttmann A J (ed) 2009 (Lecture Notes in Physics vol 775)
(Dodrecht: Springer Science + Business Media)

[2] Garoni T M, Guttmann A J, Jensen I and Dethridge J C 2009 Prudent walks and polygons J. Phys.
A: Math. Theor. 42 095205

[3] Delest M, Dubernard J P and Dutuor I 1995 Parallelogram polyominoes and corners J. Symb.
Comput. 20 503–15

J. Phys. A: Math. Theor. 49 (2016) 214002 M Assis et al

27

http://dx.doi.org/10.1088/1751-8113/42/9/095205
http://dx.doi.org/10.1006/jsco.1995.1062
http://dx.doi.org/10.1006/jsco.1995.1062
http://dx.doi.org/10.1006/jsco.1995.1062


[4] Rechnitzer A D 2000 Some problems in the counting of lattice animals, polyominoes, polygons
and walks PhD Thesis University of Melbourne, School of Mathematics and Statistics,
Melbourne, Australia

[5] Rechnitzer A 2006 Haruspicy 2: the anisotropic generating function of self-avoiding polygons is
not D-finite J. Comb. Theory A 113 520–46

[6] Guttmann A J, Prellberg T and Owczarek A L 1993 On the symmetry classes of planar self-
avoiding walks J. Phys. A: Math. Gen. 26 6615

[7] Bousquet-Mélou M, Guttmann A J, Orrick W P and Rechnitzer A 1999 Inversion relations,
reciprocity and polyominoes Ann. Comb. 3 223–49

[8] Guttmann A J and Jensen I 2006 The perimeter generating function of punctured staircase
polygons J. Phys. A: Math. Gen. 39 3871

[9] Guttmann A J and Jensen I 2006 Fuchsian differential equation for the perimeter generating
function of three-choice polygons Séminaire Lotharingien Combinatoire 54 B54c

[10] Guttmann A J 2009 Why are so many problems unsolved? Polygons, Polyominoes and Polycubes
(Lecture Notes in Physics vol 775) ed A J Guttman (Netherlands: Springer) pp 79–91

[11] Guttmann A J, Jensen I, Wong L H and Enting I G 2000 Punctured polygons and polyominoes on
the square lattice J. Phys. A: Math. Gen. 33 1735

[12] Delest M P and Fédou J M 1993 Enumeration of skew ferrers diagrams Discrete Math. 112 65–79
[13] Delest M P and Fédou J M 1990 Counting polyominoes using attribute grammars Attribute

Grammars and their Applications (Lecture Notes in Computer Science vol 461) ed
P Deransart and M Jourdan (Berlin: Springer) pp 46–60

[14] Chen W Y C, Dou D Q J and Zhang T Y J 2011 On three and four vicious walkers J. Stat. Plan.
Inference 141 94–101

[15] Levine J 1959 Note on the number of pairs of non-intersecting routes Scr. Math. 24 335–8
[16] Pólya G 1969 On the number of certain lattice polygons J. Comb. Theory 6 102–5
[17] Delest M-P and Viennot G 1984 Algebraic languages and polyominoes enumeration Theor.

Comput. Sci. 34 169–206
[18] Lin K Y, Ma S K, Kao C H and Chiu S H 1987 Number of anisotropic spiral self-avoiding loops

J. Phys. A: Math. Gen. 20 1881
[19] Delest M P, Gouyou-Beauchamps D and Vauquelin B 1987 Enumeration of parallelogram

polyominoes with given bond and site perimeter Graphs Comb. 3 325–39
[20] Klarner D A and Rivest R L 1974 Asymptotic bounds for the number of convex n-ominoes

Discrete Math. 8 31–40
[21] Gessel I 1980 A noncommutative generalization and q-analog of the lagrange inversion formula

Trans. Am. Math. Soc. 257 455–82
[22] Bousquet-Mélou M and Viennot X G 1992 Empilements de segments et q-énumération de

polyominos convexes dirigés J. Comb. Theory A 60 196–224
[23] Brak R and Guttmann A J 1990 Exact solution of the staircase and row-convex polygon perimeter

and area generating function J. Phys. A: Math. Gen. 23 4581
[24] Bousquet-Mélou M 1996 A method for the enumeration of various classes of column-convex

polygons Discrete Math. 154 1–25
[25] Richard C 2006 Staircase polygons: moments of diagonal lengths and column heights J. Phys.:

Conf. Ser. 42 239
[26] Manna S S 1984 Critical behaviour of anisotropic spiral self avoiding walks J. Phys. A: Math.

Gen. 17 L899
[27] Conway A, Guttmann A J and Delest M 1997 The number of three-choice polygons Math.

Comput. Modelling 26 51–8
[28] Rechnitzer A 2003 Haruspicy and anisotropic generating functions Adv. Appl. Math. 30 228–57
[29] Guttmann A J, Rechnitzer A and Orrick W 1998 unpublished personal notes
[30] Jensen I and Rechnitzer A 2008 The exact perimeter generating function for a model of punctured

staircase polygons J. Phys. A: Math. Theor. 41 215002
[31] van der Put M and Singer M F 2003 Galois Theory of Linear Differential Equations (Grundlehren

der mathematischen Wissenschaften vol 328) (Berlin: Springer)
[32] Kunwar V J and van Hoeij M 2013 Second order differential equations with hypergeometric

solutions of degree three Proc. 38th Int. Symp. on Symbolic and Algebraic Computation, ISSAC
’13 (New York: ACM) pp 235–42

[33] Vidūnas R 2002 contiguous2f1.mpl version 3.25, available at http://users.uoa.gr/~rvidunas/
publications.html

J. Phys. A: Math. Theor. 49 (2016) 214002 M Assis et al

28

http://dx.doi.org/10.1016/j.jcta.2005.04.010
http://dx.doi.org/10.1016/j.jcta.2005.04.010
http://dx.doi.org/10.1016/j.jcta.2005.04.010
http://dx.doi.org/10.1088/0305-4470/26/23/012
http://dx.doi.org/10.1007/BF01608785
http://dx.doi.org/10.1007/BF01608785
http://dx.doi.org/10.1007/BF01608785
http://dx.doi.org/10.1088/0305-4470/39/15/002
http://dx.doi.org/10.1088/0305-4470/33/9/303
http://dx.doi.org/10.1016/0012-365X(93)90224-H
http://dx.doi.org/10.1016/0012-365X(93)90224-H
http://dx.doi.org/10.1016/0012-365X(93)90224-H
http://dx.doi.org/10.1016/j.jspi.2010.05.032
http://dx.doi.org/10.1016/j.jspi.2010.05.032
http://dx.doi.org/10.1016/j.jspi.2010.05.032
http://dx.doi.org/10.1016/S0021-9800(69)80113-4
http://dx.doi.org/10.1016/S0021-9800(69)80113-4
http://dx.doi.org/10.1016/S0021-9800(69)80113-4
http://dx.doi.org/10.1016/0304-3975(84)90116-6
http://dx.doi.org/10.1016/0304-3975(84)90116-6
http://dx.doi.org/10.1016/0304-3975(84)90116-6
http://dx.doi.org/10.1088/0305-4470/20/7/032
http://dx.doi.org/10.1007/BF01788555
http://dx.doi.org/10.1007/BF01788555
http://dx.doi.org/10.1007/BF01788555
http://dx.doi.org/10.1016/0012-365X(74)90107-1
http://dx.doi.org/10.1016/0012-365X(74)90107-1
http://dx.doi.org/10.1016/0012-365X(74)90107-1
http://dx.doi.org/10.1016/0097-3165(92)90004-E
http://dx.doi.org/10.1016/0097-3165(92)90004-E
http://dx.doi.org/10.1016/0097-3165(92)90004-E
http://dx.doi.org/10.1088/0305-4470/23/20/019
http://dx.doi.org/10.1016/0012-365X(95)00003-F
http://dx.doi.org/10.1016/0012-365X(95)00003-F
http://dx.doi.org/10.1016/0012-365X(95)00003-F
http://dx.doi.org/10.1088/1742-6596/42/1/022
http://dx.doi.org/10.1088/0305-4470/17/16/008
http://dx.doi.org/10.1016/S0895-7177(97)00199-4
http://dx.doi.org/10.1016/S0895-7177(97)00199-4
http://dx.doi.org/10.1016/S0895-7177(97)00199-4
http://dx.doi.org/10.1016/S0196-8858(02)00534-1
http://dx.doi.org/10.1016/S0196-8858(02)00534-1
http://dx.doi.org/10.1016/S0196-8858(02)00534-1
http://dx.doi.org/10.1088/1751-8113/41/21/215002
http://users.uoa.gr/~rvidunas/publications.html
http://users.uoa.gr/~rvidunas/publications.html


[34] van Hoeij M and Cremona J 2006 Solving conics over function fields J. Théorie Nombres
Bordeaux 18 595–606

[35] van Hoeij M conic program available at http://math.fsu.edu/~hoeij/files/ConicProgram
[36] van Hoeij M and Imamoglu E 2016 in preparation
[37] van Hoeij M reduceorder program available at http://math.fsu.edu/~hoeij/files/ReduceOrder
[38] Imamoglu E 2015 hypergeometricsols is available at http://math.fsu.edu/~eimamogl/

hypergeometricsols/
[39] Hardy G H 1999 Ramanujan Twelve Lectures on Subjects Suggested by His Life and Work 3rd edn

(New York: Chelsea)
[40] Berndt B C 1998 Ramanujan’s Notebooks, Part V (New York: Springer)
[41] Berndt B C Flowers which we cannot yet see growing in Ramanujan’s garden of hypergeometric

series, elliptic functions and qʼs Special Functions 2000: Current Perspective and Future
Directions vol 7, ed J Bustoz, M E H Ismail and S K Suslov (Netherlands: Springer)

[42] Maier R S 2009 On rationally parametrized modular equations J. Ramanujan Math. Soc. 24 1–73
[43] Bostan A, Boukraa S, Christol G, Hassani S and Maillard J-M 2013 Ising n-fold integrals as

diagonals of rational functions and integrality of series expansions J. Phys. A: Math. Theor. 46
185202

[44] Bateman H 1953 Higher Transcendental Functions (Bateman Manuscript Project vol 1) (New
York: McGraw-Hill)

[45] Gasper G and Rahman M 1990 Basic Hypergeometric Series (Cambridge: Cambridge University
Press)

[46] Beaton N R, Flajolet P and Guttmann A J 2011 The enumeration of prudent polygons by area and
its unusual asymptotics J. Comb. Theory A 118 2261–90

[47] Guttmann A J, Jensen I and Owczarek A L 2001 Polygonal polyominoes on the square lattice
J. Phys. A: Math. Gen. 34 3721

[48] Assis M, Boukraa S, Hassani S, van Hoeij M, Maillard J-M and McCoy B M 2012 Diagonal Ising
susceptibility: elliptic integrals, modular forms and Calabi–Yau equations J. Phys. A: Math.
Theor. 45 075205

[49] Bostan A, Boukraa S, Maillard J-M and Weil J-A 2015 Diagonals of rational functions and
selected differential Galois groups J. Phys. A : Math. Theor. 48 504001 (special issue collection
dedicated to R J Baxter)

J. Phys. A: Math. Theor. 49 (2016) 214002 M Assis et al

29

http://dx.doi.org/10.5802/jtnb.560
http://dx.doi.org/10.5802/jtnb.560
http://dx.doi.org/10.5802/jtnb.560
http://www.math.fsu.edu/~hoeij/files/ConicProgram
http://www.math.fsu.edu/~hoeij/files/ReduceOrder
http://www.math.fsu.edu/~eimamogl/hypergeometricsols/
http://www.math.fsu.edu/~eimamogl/hypergeometricsols/
http://dx.doi.org/10.1088/1751-8113/46/18/185202
http://dx.doi.org/10.1088/1751-8113/46/18/185202
http://dx.doi.org/10.1016/j.jcta.2011.05.004
http://dx.doi.org/10.1016/j.jcta.2011.05.004
http://dx.doi.org/10.1016/j.jcta.2011.05.004
http://dx.doi.org/10.1088/0305-4470/34/18/302
http://dx.doi.org/10.1088/1751-8113/45/7/075205
http://dx.doi.org/10.1088/1751-8113/48/50/504001

	1. Introduction
	2. Known results
	2.1. Staircase polygons
	2.2. Three-choice and imperfect staircase polygons
	2.3. Punctured staircase polygons

	3. Differential operator structures
	3.1. Equivalence of generating functions

	4. Results
	4.1. Exact N2 solution
	4.2. Exact N3 solution
	4.3. Singularity analysis

	5. Modular forms and hypergeometric identities
	5.1. The solutions of N2 as modular forms
	5.2. The solutions of N3 as modular forms
	5.2.1. Another parametrization
	5.2.2. Infinite order symmetry on a Heun function

	5.3. N2 versus N3

	6. Towards generalizations of the results
	7. Conclusions
	Acknowledgments
	Appendix A.
	Appendix B.
	Appendix C.
	C.1. Series at infinity

	Appendix D.
	Appendix E.
	Appendix F.
	References



