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Abstract
The sigma form of the Painlevé VI (PVI) equation contains four arbitrary
parameters and generically the solutions can be said to be genuinely ‘nonlinear’
because they do not satisfy linear differential equations of finite order.
However, when there are certain restrictions on the four parameters, there exist
one-parameter families of solutions which do satisfy (Fuchsian) differential
equations of finite order. We study this phenomenon of Fuchsian solutions
to the Painlevé equation with a focus on the particular PVI equation which
is satisfied by the diagonal correlation function C(N,N) of the Ising model.
We obtain Fuchsian equations of order N + 1 for C(N,N) and show that the
equation for C(N,N) is equivalent to the Nth symmetric power of the equation
for the elliptic integral E. We show that these Fuchsian equations correspond to
rational algebraic curves with an additional Riccati structure and we show that
the Malmquist Hamiltonian p, q variables are rational functions in complete
elliptic integrals. Fuchsian equations for off-diagonal correlations C(N,M) are
given which extend our considerations to discrete generalizations of Painlevé.

PACS numbers: 02.30.Hq, 02.30.Gp, 02.30.−f, 02.40.Re, 05.50.+q, 05.10.−a,
04.20.Jb
Mathematics Subject Classification: 33E17, 33E05, 33Cxx, 33Dxx, 14Exx,
14Hxx, 34M55, 47E05, 34Lxx, 34Mxx, 14Kxx

1. Introduction

The correlation functions of the Ising model were first calculated by Kaufman and Onsager [1]
in terms of determinants whose elements are certain hypergeometric functions. For this reason,
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it follows from a theorem on holonomic functions [2] that they must satisfy linear ordinary
differential equations. However, these correlations also have a remarkable connection with
nonlinear equations as well. The first such result was the expression as T → Tc of the
scaled correlation function in terms of a Painlevé III (PIII) function by Wu, McCoy, Tracy
and Barouch [3] in 1976. Subsequently, in 1980 it was shown for arbitrary fixed T by Jimbo
and Miwa [4] that the diagonal correlation C(N,N) is given in terms of a PVI function and
by McCoy, Wu [5] and Perk [6] that the correlation at a general position C(M,N) and its
‘dual’ C∗(M,N) satisfy some remarkable quadratic identities or double recursions which are
discrete generalizations of the Painlevé ODEs.

The Painlevé representation of the correlation functions is by now well known but,
curiously enough, almost nothing is known about the corresponding linear equations beyond
the fact that the diagonal correlation function C(1, 1) is a particular case of the hypergeometric
function. In this paper, we will study these linear equations for the Ising correlation functions
and the much more general question of when solutions of the PVI equation will satisfy Fuchsian
differential equations.

The most general four-parameter-dependent sigma form of Painlevé VI can be written as
[7, 8]

ζ ′(t (t − 1)ζ ′′)2 + (2ζ ′(tζ ′ − ζ ) − ζ ′2 − v1v2v3v4)
2 = (

ζ ′ + v2
1

)(
ζ ′ + v2

2

)(
ζ ′ + v2

3

)(
ζ ′ + v2

4

)
(1)

with

ζ = t (t − 1)
d ln τ

dt
+ K1t + K2, (2)

where

K1 = v1v2 − v1v3 − v2v3 (3)

and

K2 = − 1
2 (v1v2 − v1v3 − v1v4 − v2v3 − v2v4 + v3v4). (4)

This is a second-order nonlinear equation which allows branch points only at the three
points t = 0, 1,∞ and locally near these singularities the function τ has, following Jimbo’s
expansions [9], an expansion of the form

τ = xpj

∞∑
k=−∞

xk2+kα

∞∑
n=0

η−k · aj (n, k;α) · xn, (5)

where x is the local variable at t = 0, 1,∞, and two boundary conditions for the
second-order PVI equation specified by α and η will in general be different at the three
singularities. The coefficients aj (n, k;α) depend on the value of j = 0, 1,∞ and satisfy
aj (n,−k, α) = aj (n, k,−α) and we note that

p0 = {α2 − (v1 + v2 − v3 − v4)
2}/4, (6)

p1 = {α2 − (v1 + v2 − v3 + v4)
2}/4, (7)

p∞ = α2/4 + K1. (8)

Comparison of (5) with the well-known expansion of Jimbo [9] reveals that many of the
coefficients in Jimbo’s expansion vanish identically. Several aj (n, k, α) are explicitly given
in section 2.1.

In general, the local expansion (5) has an infinite number of confluent singularities which
indicates that it cannot satisfy a linear differential equation. Therefore, even though the most
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general solution of the PVI equation cannot satisfy a linear equation, the specific boundary
conditions which specify the solution to be the physical diagonal correlation function of the
Ising model will allow a Fuchsian equation of order generically greater than 2 to be satisfied.

In this paper, we study this phenomenon of the existence of boundary conditions for which
solutions of certain PVI equations satisfy Fuchsian differential equations6. There are several
ways in which this phenomenon may occur. One way is that conditions can be found on the
four parameters vk and on α such that the general local expansions at t = 0, 1,∞ degenerate
by having the coefficients aj (n, k;α) all vanish if k is sufficiently large. This will give a
one-parameter family of solutions which has only a finite number of confluent singularities.
We study this mechanism in detail in section 2.1. However, there may also exist one-parameter
families which cannot be obtained from the two-parameter families (5) by specialization. An
example of this is given in section 2.4.

For concreteness, we will consider in detail the specific PVI equation for the diagonal
Ising correlation obtained by Jimbo and Miwa [4]:

(t (t − 1)σ ′′)2 = N2 · ((t − 1)σ ′ − σ)2 − 4σ ′((t − 1)σ ′ − σ − 1/4)(tσ ′ − σ) (9)

which is obtained from (1) by setting

v1 = v4 = N/2, v2 = (1 − N)/2, v3 = (1 + N)/2, (10)

σ = ζ + N2t/4 − 1/8. (11)

The diagonal CN = C(N,N) is related to σ for T > Tc by

σ(t) = t (t − 1) · d

dt
log(CN) − 1/4, with t = (sinh(2Jv/kT ) · sinh(2Jh/kT ))2 < 1,

(12)

where CN � tN/2 when t → 0, and for T < Tc by

σ(t) = t (t − 1) · d

dt
log(CN) − t/4, with t = (sinh(2Jv/kT ) · sinh(2Jh/kT ))−2 < 1,

(13)

where CN � 1 when t → 0, and where the variable Jv (Jh) is the Ising model vertical
(horizontal) coupling constant. The detailed specification of the behaviour of σ(t) near
t = 0 needed to uniquely specify CN as the diagonal Ising correlation function is sketched in
section 2.4 (see for instance equation (53)). Do note that since all the calculations of this paper
are systematically checked with high-temperature expansions when available, we introduce
a variable t which is the inverse of that of Jimbo and Miwa [4]. For integer N, equation (9)
is in the class of so-called ‘classical’ equations [8] which are known to generate Toeplitz
determinants whose elements are hypergeometric functions [7, 8, 11]. We present the Fuchsian
equations satisfied by CN for small values of N in section 2. These equations have remarkable
structure and in section 2.2 we show that the associated (N +1)-order differential operators are
homomorphic to the Nth symmetric power of the second-order differential operator associated
with the elliptic integral E. In section 3, we present an algebraic formulation of the Fuchsian
equations for C(N,N) by studying the Riccati formulation of solutions to PVI for N = 1, 2
which are related to differential structures on certain rational curves. In section 4, we extend
our considerations to the discrete generalization of Painlevé VI, namely a quadratic double

6 For a warm-up on Painlevé VI, sigma form of Painlevé VI, and on the question of the holonomic solutions inside
Painlevé VI, we recommend two magnificent papers in French, one by Garnier [10] and the other one by Okamoto
[7] (see also in English [11]).
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recursion on the two-point correlation functions C(N,M) together with their dual C∗(N,M).
We will show that these structures can be generalized, mutatis mutandis, to C(N,M)s.
C(N,M)s are also solutions of Fuchsian linear ODEs, with a quadratic increasing order.
The associated differential operators are now homomorphic to direct sums of Nth symmetric
power of the second-order differential operator associated with the complete elliptic integral
E. C(N,M)s are actually sums of several homogeneous polynomials in the complete elliptic
integrals E and K . This is a consequence of various remarkable simplifications in the
‘discrete Painlevé’ double recursions, like the fact that algebraic or rational expressions become
polynomials by remarkable factorizations and by the occurrence of perfect squares. Combining
these various results together, one has some quite curious and fascinating alchemical wedding
between complete elliptic integrals, rational curves and discrete generalizations of Painlevé
VI (and Hirota–Bäcklund transformations). The confrontation between the nonlinear Painlevé
world and the linear Fuchsian world (Painlevé versus Fuchs) yields the emergence of quite
interesting structures not only of differential nature but also of algebraic geometry nature.
We finally see in section 5 that, in the case of C(N,N) holonomic solutions, the p and
q Malmquist’s variables corresponding to the Hamiltonian structure of the sigma form of
Painlevé VI are remarkably rational expressions of E and K , and even rational expressions of
E/K . We have the same result for the σ and σ ′ variables. These last results are in complete
agreement with the previously mentioned results, namely the rational character of the algebraic
curves corresponding to the existence of holonomic solutions C(N,N)s for the sigma form
of Painlevé VI and the existence of simple Riccati equations for the uniformizing parameter.

The number of new exact results we have obtained being quite large and the explicit
formulae for some of these results being quite cumbersome, we will just sketch here these
new exact results, giving the simplest formulae. More exhaustive formulae will be given in
forthcoming publications.

2. Solutions of sigma form of Painlevé VI and Fuchsian linear ODEs

We consider, from now on, the isotropic square Ising model and the high-temperature regime,
i.e. t = s4 where s = sinh(2J/kT ). The introduction of these two variables, t and s, may
look a bit redundant: the variable t is well suited to write our results on diagonal correlations
functions, while the variable s is clearly better suited for non-diagonal correlations. The results
for the low-temperature regime are similar. The diagonal two-point correlation functions of
the square Ising model C(N,N) and its dual C∗(N,N) can be calculated from Toeplitz
determinants [1, 12, 13]:

C(N,N) = det(ai−j ), 1 � i, j � N, (14)

C∗(N,N) = (−1)N det(ai−j−1), 1 � i, j � N, (15)

where ans read in terms of 2F1 hypergeometric function:

an = − (−1/2)n+1

(n + 1)!
tn/2+1/2 · 2F1(1/2, n + 1/2; n + 2; t), n � −1,

an = − (1/2)−n−1

(−n − 1)!
t−n/2−1/2 · 2F1(−1/2,−n − 1/2;−n; t), n � −1,

(16)

where (α)n is the usual Pochhammer symbol.
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The diagonal two-point correlation functions of the square Ising model C(N,N) and
C∗(N,N) being given by the Toeplitz determinant (14) whose entries are solutions of linear
second-order differential equations, they are necessarily solutions of a linear differential
equation, with order N ! · 2N as an upper bound for generic entries of the determinant.

Since the diagonal two-point correlation functions of the square Ising model C(N,N)

are given by the determinants (14), it is straightforward to obtain a sufficiently large number
of series coefficients and to get the linear differential equations satisfied by these series
[14–16]. Denoting by Dt the derivative with respect to the variable t , the first linear differential
operators LNN corresponding to C(N,N) are

L11 = D2
t +

1

t
· Dt +

1

4

1

(t − 1)t2
, (17)

L22 = D3
t + 2

(t − 2)

(t − 1)t
· D2

t − 1

(t − 1)t2
· Dt − 1

2

t + 2

t3(t − 1)2
, (18)

L33 = D4
t + 2

(t − 5)

(t − 1)t
· D3

t +
1

2

(41 − 11t − 2t2)

t2(t − 1)2
· D2

t

+
1

2

(2t2 + 2t − 5)

t3(t − 1)2
· Dt +

9

16

15 + 13t + 4t2

(t − 1)3t4
, (19)

L44 = Dt5 − 20

t (t − 1)
· Dt4 +

(113 + 7t − 2t2)

(t − 1)2t2
· Dt3 − 1

2

(322 + 95t − 9t2 − 16t3)

(t − 1)3t3
· Dt2

+
(97 + 40t − 10t2 − 12t3)

(t − 1)3t4
· Dt − 4

32 + 33t + 20t2 + 5t3

(t − 1)4t5
, (20)

L55 = Dt6 − 5
(t + 7)

t (t − 1)
· Dt5 +

1

4

(52t2 + 483t + 1617)

(t − 1)2t2
· Dt4

− 1

2

(4t3 + 370t2 + 1707t + 3503)

(−1 + t)3t3
· Dt3

− 1

16

(1552t4 − 1016t3 − 13 191t2 − 29 618t − 29 855)

t4(t − 1)4
· Dt2

+
5

16

(720t4 + 640t3 − 2175t2 − 6912t − 8801)

(t − 1)4t5
· Dt

+
25

64

784t4 + 3428t3 + 6921t2 + 8650t + 7865

(t − 1)5t6
, (21)

L66 = D7
t − 14

(4 + t)

(t − 1)t
· D6

t + 14
(81 + 39t + 7t2)

t2(t − 1)2
· D5

t

− N4

(t − 1)3t3
· D4

t +
N3

t4(t − 1)4
· D3

t +
N2

(t − 1)5t5
· D2

t

− 1

4

N1

t6(t − 1)5
· Dt − 9

2

N0

(t − 1)6t7
, (22)

where

N4 = 10 162 + 7059t + 2411t2 + 376t3,

N3 = 37 973 + 35 162t + 17 893t2 + 5116t3 + 500t4,

N2 = −28 706 − 55 327t − 46 180t2 − 21 437t3 − 3358t4 + 1736t5, (23)

N1 = −390 548 − 402 496t − 240 997t2 − 63 239t3 + 24 152t4 + 25 088t5,

N0 = 23 814 + 26 839t + 24 583t2 + 16 599t3 + 7345t4 + 1620t5.
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These operators are of order N + 1 and are irreducible. We further note that, in contrast to
the Fuchsian equations for the n-particle contributions χ(n)s of the susceptibility of the Ising
model [14–17], the Fuchsian differential equations satisfied by C(N,N)s have no apparent
singularities. The linear differential operators, L∗

NN , for C∗(N,N)s are obtained by the
change t into 1/t in the previous differential operators.

These Fuchsian differential equations (17)–(22) for C(N,N)s have the following general
form:

N+1∑
i=2

t i(t − 1)i−1P
(N)
i (t) · Di

t + t (t − 1)P
(N)
1 (t) · Dt + P

(N)
0 (t) = 0, (24)

where P
(N)
i (t) is a polynomial in t of degree N + 1 − i for i = 2, . . . , N + 1 and P

(N)
1 (t) and

P
(N)
0 (t) are of degree N − 1.

The only singular points of (24) are the three regular singular points t = 0,∞, 1. From
the indicial equation of the differential equations for the first LNN s, we infer the remarkably
simple expressions of the critical exponents ρ(1), ρ(∞) and ρ(0) at, respectively, the regular
singular points t = 1, t = ∞ and t = 0:

ρ(1)
n = (n − 1)2, (25)

ρ(∞)
n = 5

8
+

3

4
N +

1

4
n2 − 1

4
(2N + 3) · n − (−1)n

4
n +

(−1)n

8
(2N + 3),

ρ(0)
n = −1

8
+

3

4
N +

1

4
(n + 1)(n + 2) − 1

2
(N + 3) · n +

(−1)n

4
(n + 1) − (−1)n

8
(2N + 5),

(26)

where n = 1, 2, . . . , N + 1.

2.1. Local solutions at t = 0, 1,∞
It is of interest to compare the local expansion (5) of the PVI equation with the exponents of
the Fuchsian equations7. For concreteness, we concentrate on t = 1− which corresponds to
T = T +

c in the Ising model. We have the following coefficients in (5) valid for 0 < α < 1:

a1(0, 0;α) = 1, (27)

a1(0,−1;α) = a1(0, 1;−α) = 1

16α2(1 − α)2
(α − v1 − v2 − v3 + v4)(α − v1 − v2

+ v3 − v4)(α − v1 + v2 − v3 − v4)(α + v1 − v2 − v3 − v4), (28)

a1(1, 0;α) = −α2

8
+

1

2
(−v1v2 + v1v3 + v1v4 + v2v3 + v2v4 − v3v4)

+
1

8α2
(v1 + v2 + v3 − v4)(v1 + v2 − v3 + v4)

× (v1 − v2 + v3 + v4)(v1 − v2 − v3 − v4), (29)

a1(0,−2;α) = a1(0, 2;−α) = a1(0,−1;α)2

265(α − 1)2(α − 2)4(α − 3)2

× [(α − 2)2 − (v1 + v2 + v3 − v4)
2][(α − 2)2 − (v1 + v2 − v3 + v4)

2]

× [(α − 2)2 − (v1 − v2 + v3 + v4)
2][(α − 2)2 − (−v1 + v2 + v3 + v4)

2]. (30)
7 Recall that, for the Ising case and for T > Tc, τ = t1/4CN (resp. τ = CN for T < Tc).
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For the Ising case (10), this reduces to

p1 = α2/4, (31)

a1(0,−1;α) = a1(0, 1;−α) = α − 2N

16α
, a1(1, 0;α) = (1 − α2)

8
, (32)

a1(0,−2;α) = a1(0, 2;−α) = a1(0,−1;α)2 · ((α − 2)2 − (2N)2)

256(α − 2)2
. (33)

When used in (5) these expressions will reproduce the N + 1 exponents of LNN at t = 1
where, in the limit α → 0, the terms in (5) with xk2±kα become (t − 1)k

2
lnk(t − 1). We see

from (33) that, when α = 0, a1(n,±2; 0) = 0 for N = 1 which is consistent with the fact that
C(1, 1) satisfies a second-order linear differential equation. We have carried the expansion to
order (t − 1)12. In particular, we have obtained the coefficient of (t − 1)9 ln3 |t − 1| and have
verified that it vanishes for N = 1, 2 and have obtained all terms in the expansion of C(N,N)

given in [18].
More generally, the condition that there exists a value of α such that aj (n, k;α) = 0 for

all k sufficiently large is a condition necessary for τ function of the PVI equation to satisfy a
linear differential equation of finite order and the series

∞∑
n=0

aj (n, k;α) · xk2+kα+pj +n (34)

will be solutions to the Fuchsian equation. For example, one condition for a second-order
Fuchsian equation is a1(0, 1;α) = 0, a1(0,−2;α) = 0, which are satisfied if, respectively,

α = −v1 − v2 + v3 − v4, α − 2 = −v1 + v2 − v3 − v4, (35)

implying v2 − v3 = −1, which is the restriction Forrester and Witte [8] needed for a solution
of PVI to satisfy a hypergeometric equation. This condition implies that the τ functions are
determinants of hypergeometric functions. We thus see that, at order xp+4+(1−α), the local
expansion provides a necessary condition for the reduction of a one-parameter family of
solutions to PVI to a solution of a second-order linear differential equation. By examining
the vanishing of a(0, k;α) for higher values of k, necessary conditions for the existence of
one-parameter families satisfying higher order linear differential equations will be obtained.
Similar necessary conditions can be obtained from the local expansions at t = 0,∞.

2.2. The Fuchsian differential operators as Nth symmetric power

The most profound and surprising structure of the solutions of PVI which satisfy Fuchsian
equations is, however, not seen in these local expansions and, thus, it is important to observe
that the operators LNN given in (17)–(22) for C(N,N) have the remarkable property that they
are equivalent8 to the N th symmetric power9 of L11:

AN · LNN = SymN(L11) · RN. (36)

The first AN and RN intertwinners read for N = 2:

A2 = t2D2
t +

1

4

(31t − 23)t

t − 1
· Dt +

3

4

15t − 7

t − 1
, (37)

8 For the equivalence of differential operators see e.g. [19–21].
9 For the definition of the symmetric power of differential operators see e.g. [21–23].
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R2 = t2 · D2
t +

3

4
t · Dt − 1

4

3t − 5

t − 1
. (38)

We have calculated exactly these intertwinners up to N = 6 but the expressions are too large
to be given here. As a consequence of this property (36), the differential Galois group of LNN

is not a SL(N + 1, C) group as we could expect at first sight, but an SL(2, C) group in the
symmetric power representation. We expect that this property extends much more generally
to other solutions of the general four-parameter PVI which satisfy Fuchsian equations.

Another consequence of (36) is that the solutions of this order N + 1 differential operator
LNN are actually homogeneous polynomials of degree N in the two solutions of L11, see
[21–23].

Let us now introduce the two elliptic integrals

K = 2F1(1/2, 1/2; 1; s4), E = 2F1(1/2,−1/2; 1; s4) (39)

and the second-order linear differential operator for E (Ds denotes the derivative with respect
to s):

LE = D2
s +

Ds

s
− 4

s2

s4 − 1
. (40)

This operator actually identifies with L∗
11.

One can easily show that the second-order linear differential operator L11 (associated with
C(1, 1) and written in the variable s) and the second-order linear differential operator LE are
equivalent: (

s4 − 1

s
· Ds + 6s2

)
· L11 = LE ·

(
s4 − 1

s
· Ds − 2/s2

)
. (41)

More generally, one can show in the s variable that the LNN ’s are actually equivalent to the
L∗

NN ’s. Since K can be simply expressed in terms of E and its first derivative, CN,N s are thus
solutions of an operator which is homomorphic to SymN(LE):

ÃN · LNN = SymN(LE) · R̃N (42)

or

LNN · BN = SN · SymN(LE), (43)

where the intertwinners BN and SN (or ÃN and R̃N ) are linear differential operators of order N .
In fact, beyond C(N,N), relations (36), (42), (43) relate all solutions of LNN to SymN(LE).
From (43) one can easily deduce that the diagonal two-point correlation functions C(N,N)

can be deduced as the action of a linear differential operator of order N on the N th power of
the complete elliptic E:

C(N,N) = BN(EN). (44)

The expressions of the intertwinners BN can also be retrieved from the determinental
expressions of C(N,N) and the relations between the hypergeometric functions an, an−1 (see
(14), (16)) and its derivative. This gives a general method to obtain the differential operators
LN,N .

2.3. C(N,N)s as a homogeneous polynomial of the complete elliptic integrals E and K

The property (36) or (43) can be illustrated by considering the specific solution C(N,N) of the
(N + 1)-order differential equations LNN . The matrix elements an of the Toeplitz determinant
representation may all be expressed as linear combinations of the elliptic integrals E and K
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and, thus, C(N,N) will be given as polynomials in these functions and this is in agreement
with the previous relation (44). For low orders, these polynomials have been presented by
Ghosh and Shrock [24]. For example,

C(2, 2) = 1

3s4
· (3(s4 − 1)2·K2 + 8(s4 − 1) · EK − (s4 − 5) · E2),

C(3, 3) = 4

135s10
· P3(E,K),

where

P3(E,K) = (33s4 − 1)(s4 − 1)3 · K3 + 3(s8 + 48s4 − 1)(s4 − 1)2 · EK2

− 3(s4 − 1)(s12 + 3s8 − 69s4 + 1) · E2K − (1 + 21s8 − 96s4 + 10s12) · E3.

(45)

We note that these expressions are, respectively, quadratic and cubic homogeneous polynomials
in E and K . We have obtained similar expressions for all C(N,N) and C∗(N,N) for
N = 4, 5, 6, . . . , 21, and relation (44) gives similar relations for any values of N. They are
a homogeneous polynomial of degree N in the complete elliptic integrals10 E and K , with
simple rational coefficients (a polynomial in s with integer coefficients divided by some power
of s). From a physics viewpoint, one should note that the particular rational coefficients
one gets in front of the monomials Ek · KN−k are far from being arbitrary as a general
formula such as (44) could suggest. These coefficients are such that, for instance, the linear
differential equation for C(N,N)s has no apparent singularities. Furthermore, the contribution
associated with the various monomials Ek ·KN−k clearly has poles (s−10 or s−4 in the previous
example (45)). These coefficients are also ‘fine-tuned’ in such a way that, for instance,
these various poles cancel together, in order to give an expression with a well-defined high-
temperature series expansion (series at s = 0). We have many other remarkable properties
corresponding to the behaviour of C(N,N)s near s = 1 or s = ∞.

2.4. Non-trivial disentangling of solutions of linear Fuchsian ODEs near t = 0

Let us make here a comment on the existence of surprisingly simple hypergeometric solutions
of the N -dependent sigma form (9) of Painlevé VI. Consider the second-order differential
operator

Lh = D2
t +

(
1

t
+

1

2(t − 1)

)
· Dt − 1

4

N2

t2
+

1

16(t − 1)2
(46)

which has regular singularities at t = 0, t = 1 and t = ∞ with, respectively, the critical
exponents (±N/2), (1/4, 1/4) and (1/4 ± N/2).

It can be verified that any linear combination of the two solutions of (46) satisfies the
N -dependent sigma form (9) of the Painlevé VI equation for arbitrary N , not necessarily an
integer. For instance, when N is not an integer, one has the following two solutions of (9):

σ = t (t − 1)
d ln τ

dt
− 1

4
, where τ = f+ + λ · f−, (47)

where f± are the two independent solutions of (46):

f± = t±N/2 · (1 − t)1/4 · 2F1([1/2, 1/2 ± N ], [1 ± N ], t). (48)

10 This result can also be found in equations (2.16)–(2.19) of [25], which also show very explicitly that C(N, N) is
a homogeneous polynomial of E and K of degree N for all N (something that is already, albeit less explicit, in the
appendix of [12]).
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When the parameter N is an integer (and only in this case), that is to say in the Ising case we
are interested in, the second-order differential operator Lh is, after conjugation by (1 − s4)1/4

(or in the t variable conjugation by (1 − t)1/4 tN/2), equivalent to LE ; when N is an integer,
one solution is given above in terms of a hypergeometric function analytic at t = 0, and the
other one has a logarithmic singularity at t = 0 (and similarly for t = 1 and t = ∞).

At first sight, the existence of such ‘additional’ solutions should not be seen as a surprise:
we certainly expect the solutions of the N -dependent sigma form of Painlevé VI that are also,
at the same time, solutions of a linear (Fuchsian) ODE to be a quite complicated ‘stratified’
space. However, let us focus on the series expansion at t = 0 of the analytic solution of (46),
which simply reads

hN = 1

4N

	(2N + 1)

	(N + 1)2
· f+

= c0(N) · tN/2 + c1(N) · tN/2+1 + c2(N) · tN/2+2 + · · · . (49)

The coefficients ck(N) in the series expansion of (49) read

ck(N) = 1

4N

	(2N + 1)

	(N + 1)2

(−1/4)k

k!
3F2([1/2, 1/2 + N,−k], [1 + N, 5/4 − k], 1). (50)

Let us now consider the series expansion of the diagonal correlation functions C(N,N):

C(N,N) = d0(N) · tN/2 + d1(N) · tN/2+1 + d2(N) · tN/2+2 + · · · , (51)

where d0(N), d1(N) and d2(N) read, respectively,

	(2N + 1)

	(N + 1)	(N + 1)

1

4N
,

	(2N + 1)

	(N + 1)	(N + 2)

N

4N+1
, · · · . (52)

One has the following result, that may look quite surprising at first sight: the coefficients ck(N)

of solution (49) and the coefficients dk(N) of the diagonal two-point correlation functions
C(N,N), solution of the order N + 1 Fuchsian ODE, are identical up to k = 3N/2 + 1:

C(N,N) − hN = 1

16

(
(1/2)N · ((3/2)N)2

	(N + 2)	(N + 3)2

)
· t3N/2+2 + · · · . (53)

The coefficient in (53) in front of t3N/2+2 can be seen as the initial condition defining11 C(N,N).
Seeking for conditions allowing solutions of the sigma form of Painlevé VI to be also (the log-
derivative of) solutions of linear Fuchsian differential equations, this difficulty to disentangle,
near t = 0, a solution of a second-order differential equation and a solution of linear Fuchsian
differential equations of arbitrary N + 1 order seems to indicate that series analysis such as (5)
may not be the easiest approach to take into account such subtle12 fine-tuning: we need a less
analytical and more ‘global’ algebraic approach.

3. Algebraic viewpoint of the Fuchsian differential equations

The existence of C(N,N) as solutions common to the sigma form of the Painlevé VI equation
and to linear Fuchsian differential equations can be addressed in an effective algebraic geometry
approach of differential equations as introduced explicitly by Ritt [27, 28]. This approach
amounts, when working with various linear and nonlinear differential equations, to introducing

11 For T < Tc, one has C(N, N) − (1 − t)1/4 = 1/4 · ((1/2)N (3/2)N )/((N + 1)!)2 · tN+1 + · · ·, the coefficient in
front of tN+1 corresponding to the initial condition defining C(N, N) in the low-temperature regime [26].
12 Cauchy’s theorem does not apply to PVI at t = 0 or t = 1. As a consequence, even with given boundary conditions
(a large set of first terms in the series), there can be ‘branching’ in the series computation. These subtle ‘branching’
series calculations will be addressed elsewhere.
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as many variables as the number of derivatives of the function we study. The analysis of the
compatibility between these various linear and nonlinear differential equations will correspond
to considering an algebraic variety given by various polynomial relations on these variables.
These relations can be studied from the algebraic viewpoint (parametrization when the genus
is 0 or 1, birational transformations13, singularity analysis, blow-up, etc). The very last step,
recalling that the various introduced variables are not independent but can be deduced from
each other by successive derivation, provides further constraints. In other words, a set of
differential equations is seen as an algebraic variety plus some differential structure on top
of it.

Let us show how this algebraic viewpoint of differential equations works in our (subtle)
compatibility problem of the sigma form of Painlevé VI and the Fuchsian linear ODEs
of arbitrary order N + 1. The correlation function C(1, 1) satisfies a second-order linear
differential equation which can be written in a Riccati form in terms of σ(t) and σ ′(t). More
generally, the (N + 1)-order Fuchsian linear ODE satisfied by C(N,N)s can be written in a
‘generalized Riccati form [29, 30]’ in terms of σ(t), σ ′(t) and its successive derivatives σ (n)(t)

up to n = N (where σ(t) is deduced from C(N,N) by the logarithmic derivative relation
(12)). Similarly, the sigma form of Painlevé VI equation (9) is not seen as a nonlinear ODE,
but as a polynomial relation between the three variables σ(t), σ ′(t) and σ ′′(t).

Introducing the variables S0 = σ(t), S1 = σ ′(t), S2 = σ ′′(t), etc, the third-order Fuchsian
linear ODE for C(2, 2) yields a ‘generalized Riccati form’ which is a polynomial relation
between S0, S1 and S2:

64t2(t − 1)2S2 − 16t (8t + 5)(t − 1) · S1 + 192t (t − 1)S0S1 + 64S3
0 − 16(16t + 1)S2

0

+ 4(32t2 + 16t − 21)S0 + 45 = 0. (54)

The elimination of the variable S2 between this ‘generalized Riccati form’ and (9) seen as
a polynomial relation between the three variables S0, S1 and S2 yields an algebraic relation
between S0 = σ(t) and S1 = σ ′(t) which reads

(4S0 − 3)
(
64S3

0 − 16(16t + 1)S2
0 + 4(64t2 − 16t − 21) · S0 + 45

)
− 32t (4S0 − 3)(t − 1)(8t − 1 − 4S0) · S1 + 256t2(t − 1)2S2

1 = 0, (55)

which is compatible with (54) and (9). This can be checked by eliminating S2 between the
derivative of (55) and (54) or (9) to get again (55) or directly by plugging a series expansion
or an exact expression of C(2, 2) in (55).

Seen as a relation between S0 and S1 (the variable t is considered as a simple parameter),
the algebraic curve (55) is actually a rational curve. It can thus be parametrized in terms of
two rational functions:

S0 = 3

4

A2 · u2 + A1 · u + A0

B2 · u2 + B1 · u + B0
,

S1 = 3

t
· (α1 · u + α0) · (C3 · u3 + C2 · u2 + C1 · u + C0)

(B2 · u2 + B1 · u + B0)2
,

(56)

13 At this step, it is worth recalling that Bäcklund transformations are actually birational transformations in ‘some’
variables.
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where
α1 = −6t − 3 + 8t2, α0 = 4 · (1 − 2t),

A0 = −176 + 48t − 320t2 + 256t3,

A1 = 120 + 184t − 144t2 + 768t3 − 512t4,

A2 = 9 − 57t + 24t2 + 76t3 − 448t4 + 256t5,

B0 = 192t2 − 272t − 112, B1 = −8(3t + 1)(16t2 − 26t − 3),

B2 = 45 + 51t − 168t2 − 260t3 + 192t4,

C0 = 1088 + 384t + 2624t2 + 1280t3 − 1536t4,

C1 = −1296 − 2816t + 688t2 − 7776t3 − 3840t4 + 4608t5,

C2 = 108 + 1848t + 636t2 − 3328t3 + 8304t4 + 4416t5 − 4608t6,

C3 = +189 + 36t − 1323t2 + 210t3 + 2460t4 − 2792t5 − 1856t6 + 1536t7.

(57)

In the spirit of the ‘algebraic viewpoint of differential equations’ [27, 28], having
performed the algebraic geometry calculations we had in mind, we now recall that there
is some differential structure on this rational curve by imposing that the variable S1 is actually
the derivative with respect to t of the variable S0:

S1 = dS0

dt
= ∂S0

∂u
· du

dt
+

∂S0

∂t
, (58)

yielding, after some quite nice simplifications, that du
dt

is not a rational expression of u, as one
could expect at first sight, but a quadratic polynomial in u, which gives a simple Riccati form:

16t (t − 1)(6t2 − 5t − 9) · du

dt
= (63 − 135t − 120t2 − 140t3 + 192t4) · u2

+ 8(15 + 51t + 46t2 − 60t3) · u − 272 − 112t + 192t2 (59)

that can easily be associated with a linear second-order differential equation bearing on some
function F :

v = 1

F
· dF

dt
= − 1

16

192t4 − 140t3 − 120t2 − 135t + 63

t (−1 + t)(6t2 − 5t − 9)
· u. (60)

Similar calculations can be performed for N = 3; the generalized Riccati form for the
Fuchsian linear ODE of order 4 is now a polynomial relation of the form

S3 = P(S0, S1, S2; t), (61)

where P is a polynomial of the three variables S0, S1 and S2, the coefficients being rational
function (with integer coefficients) in the variable t seen as a parameter. In order to combine14

this generalized Riccati form (61) with (9) for N = 3, we need, in order to perform eliminations
of variables (ideal of polynomials), to rewrite (9), the sigma form of Painlevé VI taken for
N = 3 as a relation between σ, σ ′ and σ ′′ and σ (3) as well. This is easily obtained by
performing the derivative of (9) with respect to t , thus getting a polynomial relation between
σ, σ ′ and σ ′′ and σ (3). Considering this last polynomial relation and the generalized Riccati
form (61), we can easily eliminate S3 = σ (3), getting a new polynomial relation on S0, S1 and
S2. We can, now, eliminate S2 between this new polynomial relation and (9) for N = 3 which
is also a polynomial relation on S0, S1 and S2, in order to get, finally, a polynomial relation on
S0 = σ and S1 = σ ′ only. This final relation reads

4096t3(t − 1)3 · S3
1 + 256t2(t − 1)2Q2 · S2

1 − 16t (t − 1)Q1 · S1

− (
45 − 8(2t + 7)S0 + 16S2

0

) · Q0 = 0, (62)

14 Or, in mathematical wording, to calculate the ideal of these two differential equations.
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where

Q2 = 48S2
0 − 8(22t + 13) · S0 + 55 + 448t + 64t2,

Q1 = −768S4
0 + 256(22t + 13)S3

0 − 32(376t2 + 584t + 125)S2
0

+ 16(384t3 + 1984t2 + 766t + 25)S0 + 1125 + 2880t − 25 920t2, (63)

Q0 = 1575 + 16(576t3 − 110t − 145 − 96t2)S0

− 32(56t − 9 + 264t2)S2
0 + 256(10t + 3)S3

0 − 256S4
0 .

Similar calculations (of ideal of differential equations seen as ideal of polynomials), can
be performed, mutatis mutandis, for N = 4, 5 and 6. These eliminations yield polynomial
relations in t, S0 = σ and S1 = σ ′ of the form

i=N∑
i=0

t i(t − 1)iPi(S0, t) · Si
1 = 0, (64)

where Pi(S0, t)s are polynomials in t and S0 = σ , of degree 2i in S0. Again, these relations
(64) seen as algebraic curves in S0 and S1 (t being seen as a parameter) are rational curves.
From the previous remark that C(N,N)s are homogeneous polynomials of E and K , one can
easily deduce that S0 = σ and S1 = σ ′ are rational expressions of the ratio r = E/K (or
E′/E).

Now, similarly to the previous calculations, recalling that the variable S1 is the derivative
with respect to t of the variable S0, one also finds Riccati equations similar to (59) for the
uniformizing parameter u:

du

dt
= β2(t) · u2 + β1(t) · u + β0(t), (65)

where β0(t), β1(t) and β2(t) are quite simple rational expressions of t , the Riccati
equation (65) having only t = 0, t = 1 and t = ∞ as regular singularities. The calculations
are too large to be given here and will be detailed in a forthcoming publication.

Note that, in such a ‘global’ Riccati algebraic approach, one has to be careful because of
the existence of many singular15 solutions of (9) corresponding to algebraic τ functions:

σ = t (t − 1) · d

dt
log(τ ) − 1/4

τ = tα · (1 − t)β, (4β − 1)2N2 + 16β(4α + 1)(α + β) = 0,

(66)

like, for instance, (α, β) being (−N/2,−1/4 · N/(N − 1)), (−1/8 · (4N2 + 1), N2) or
(−1/4, 1/4), and especially (N/2,−1/4 ·N/(N +1)) which corresponds to a series expansion
with leading order similar to (49).

4. Generalization to non-diagonal correlation functions C(N , M )

Most of the results, previously displayed, can be generalized to the non-diagonal correlation
functions C(N,M) of the square Ising model. C(N,M)s are also given by determinants (see
[12]) whose entries are holonomic quantities solutions of linear differential equations of order
3. C(N,M)s are thus holonomic solutions of linear differential equations. At first sight, the
growth of the order of the corresponding differential operators should also be exponential in
N and M .

We found that the order of these linear differential operators is, again, not growing
exponentially with N and M but has a quadratic growth order and depends on the parity of

15 We use here the terminology of singular solutions of differential equations [27, 28].
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M − N . For all the Fuchsian linear differential operators we have obtained (N and M � 6),
the order can be reproduced by

q = 1
8 · (M + N + 2) · (4 + (3 − (−1)M−N) · |M − N |). (67)

These linear differential operators LNM are too large to be given explicitly here. Let us just
give one of them, namely the linear differential operator L12, corresponding to the simplest
non-diagonal (and non-horizontal or vertical like C(0, N) or C(N, 0)) two-point correlation
function. The linear differential operator L12 reads

L12 = D5
s +

5(2s2 + 3)D4
s

s(1 + s2)
+

q3 · D3
s

s2(1 + s)2(1 − s)2(1 + s2)2
+

q2 · D2
s

s3(1 + s)3(1 − s)3(1 + s2)3

+
q1 · Ds

s4(1 + s)3(1 − s)3(1 + s2)4
+

q0

s5(1 + s)3(1 − s)3(1 + s2)5
, (68)

where the polynomials qi read

q3 = 13s8 + 30s6 − 78s4 − 50s2 + 53,

q2 = 5s12 − 7s10 + 34s8 − 128s6 − 65s4 − 97s2 + 2,

q1 = −5s14 + 2s12 − 67s10 − 118s8 − 816s6 + 157s4 − 76s2 − 101,

q0 = −192s10 + 1840s8 − 453s6 + 127s4 − 15s2 − 27.

(69)

Let us comment on the remarkable simplifications we encountered when computing
C(N,M)s from the quadratic double recursions (discrete generalizations of Painlevé
equations) they satisfy [18] together with C∗(N,M)s. From the expressions of C(N,N)s
as a homogeneous polynomial in E and K , and the expressions of C(0, 1), we can obtain
C(N,M) and C∗(N,M), step by step using this quadratic double recursion [18]. At first
sight, these C(N,M)s should be given as rational expressions of E and K and, in some cases,
as roots of quadratic polynomials with polynomial expressions in E and K . Remarkably, as a
consequence of factorizations and simplifications in the numerator and denominator of these
rational expressions, and the occurrence of a perfect square in the case of roots of quadratic
polynomials, C(N,M)s are actually always given by polynomial expressions in E and K ,
that are no longer homogeneous polynomials, but sums of homogeneous polynomials16, as the
following example shows17:

C(1, 3) = 1

3s6
· (P1 + P3), (70)

P1 = 2(s4 − 1)(s2 + 1)s2 · K − s2(s2 + 1)(s4 + 3s2 − 2) · E,

P3 = (6s2 − 1 + 11s4) · E3 + (s4 − 1)(7s4 + 12s2 − 3) · KE2

+ (s4 − 1)(s2 + 3)(s4 + 2s2 − 1)(s2 − 1) · EK2 + (s4 − 1)2(s2 − 1)2 · K3.

The two linear and cubic components P1/3s6 and P3/3s6 are, respectively, solutions of the

16 This result can also be found in equations (3.22)–(3.35) of [31], which first show that C(N−1, N) is a homogeneous
polynomial of E,K and the complete elliptic integral of the third kind �1 in the anisotropic case. Together with
information from Montroll, Potts and Ward [12] (note e.g. equation (A.19)) this means that the same statement holds
for C(N − k, N) for k = 2, . . . , N . Reduction of �1 in the isotropic case then shows that C(N − k, N) is an
inhomogeneous polynomial of E and K.
17 Our results on the expressions of C(N, M)s are in agreement with those given, for N and M � 4, in [32, 33].
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two linear differential operators:

L1 = D2
s − (3s4 − 7s2 + 14)

s(s2 + 1)(s2 − 2)
· Ds + 4

11s4 − 9s2 + 4

s2(s2 + 1)2(s2 − 2)(−1 + s2)
,

L3 = D4
s − 2 · A3

(s2 − 1)s · N
· D3

s +
A2

s2(s4 − 1)2 · N
· D2

s (71)

+
A1

s3(s4 − 1)2 · N
· Ds +

A0

s4(s4 − 1)3 · N
,

N = s12 + 5s10 + 14s8 + 54s6 + 49s4 + 13s2 − 1,

A3 = 3s14 + 15s12 + 44s10 + 98s8 + 383s6 + 415s4 + 133s2 − 11,

A2 = 19s20 + 121s18 + 248s16 − 408s14 − 974s12 + 2546s10

+ 9597s8 + 11 440s6 + 6521s4 + 1277s2 − 147, (72)

A1 = −27s20 − 161s18 + 240s16 + 5576s14 + 17 854s12 + 28 590s10

+ 30 491s8 + 19 360s6 + 8799s4 + 1931s2 − 333,

A0 = −1792s20 − 13 136s18 − 37 568s16 − 52 256s14 − 48 848s12

− 32 576s10 − 20 720s8 − 1568s6 + 1600s4 − 688s2 + 192,

which are homomorphic to the first and third symmetric powers of the linear differential
operator LE :

L3 equiv. Sym3(LE), that is L3 · Q3 = W3 · Sym3(LE),

L1 equiv. LE, that is L1 · Q1 = W1 · LE,
(73)

where Q3 and W3 (resp. Q1 and W1) are linear differential operators of order 3 (resp. 1). The
order 6 linear differential operator corresponding to C(1, 3), that is the LCLM of L1 and L3,
is homomorphic to the LCLM of LE and Sym3(LE):

L1 ⊕ L3 equiv. LE ⊕ Sym3(LE). (74)

Also note that for the horizontal, or vertical, correlations (N = 0 or M = 0) one also has
a homogeneous polynomial of E and K of degree 0. Let us consider for instance the simple
correlation C(0, 1):

C(0, 1) = 1/2

√
1 + s2

s
+ 1/2

(s − 1)(s + 1)
√

1 + s2

s
· K. (75)

The first term (of degree 0 in E and K) is solution of an order 1 linear differential operator l0,
whereas the second term is solution of an order 2 linear differential operator l1:

l0 = Ds +
1

s(1 + s2)
,

l1 = Ds2 +
(s2 − 3)Ds

s(s2 − 1)
+

2s6 + 9s4 + 4s2 + 1

(1 + s2)2s2(s2 − 1)2
.

(76)

Up to a conjugation by (1 + s2)1/2, the order 2 linear differential operator l1 is an operator
homomorphic to LE :

(1 + s2)−1/2 · l1 · (1 + s2)1/2 = Ds2 +
(−4s2 + 3s4 − 3)

(1 + s2)s(s2 − 1)
· Ds +

s6 − s4 + 7s2 + 1

(s2 − 1)2(1 + s2)s2
(77)

with (1 + s2)−1/2 · l1 · (1 + s2)1/2 equiv. LE . One actually finds that C(0, 1) is solution of
the third-order operator direct sum of l0 and l1 and is thus equivalent (up to conjugation by
(1 + s2)1/2) to the direct sum of l0 and LE .
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From the fact that C(N,M)s are actually always given by polynomial expressions sums
of homogeneous polynomials in E and K , one easily deduces that the corresponding linear
differential operators LNM are homomorphic to direct sums of symmetric products of the
second-order linear differential operator (40), yielding generalizations of (36):

LNM equiv. ⊕m Symm(LE), (78)

where for N − M odd, m is running as N,N + 1, N + 2, . . . ,M and for N − M even, as
N,N + 2, N + 4, . . . ,M , and where Symm(LE) = l0 when m = 0.

This structure is a consequence of the fact that C(N,M)s are given by polynomial
expressions in E and K , instead of the rational or algebraic expressions in E and K

which one could expect at first sight from the discrete Painlevé double recursions. This
corresponds to quite remarkable identities and simplifications (factorizations, occurrence of
perfect squares). From a less nonlinear and more ‘Fuchsian’ linear viewpoint, an explanation
is the following. The non-diagonal C(N,M)s are determinants of holonomic functions, hence
they are holonomic themselves. On the other hand, they are rational (or even algebraic
expressions in E and K). Now, because the Galois group of LE is SL(2, C), results from
[21, 34] show that expressions in E and K which are holonomic will have to be polynomial.

Again, one can check that all these linear differential operators LNM are Fuchsian
differential operators with only three regular singular points t = 0, t = 1, t = ∞. This is a
straight consequence of the fact that these LNMs can be built as linear differential operators
having polynomial solutions in E and K and, thus, they inherited the three regular singular
points t = 0, t = 1, t = ∞ from the complete elliptic integrals E and K , and from the fact
that the coefficients of the monomials Ei · Kj are extremely simple rational expressions with
no singularity except poles at s = 0 (polynomial in s divided by powers of s).

The results we got on the non-diagonal correlation functions C(N,M) are too numerous,
and require too much space, to be given here (even if the final result is remarkably simple and
elegant). However, one sees the emergence of quite fascinating structures relating an infinite
set of Fuchsian linear differential operators depending on two integers N and M (LNMs), with
some quadratic double recursions that are nothing but discrete generalizations of Painlevé,
these structures being themselves closely linked with complete elliptic integrals.

5. Bäcklund transformation and Malmquist Hamiltonian structure

Let us recall that since the work of Malmquist [35] it has been known that the Painlevé VI
equation can be obtained from Hamilton equations

p′ = dp

dt
= −∂H

∂q
, q ′ = dq

dt
= ∂H

∂p
(79)

with

t (t − 1) · H = q(q − 1)(q − t)p2 − Q(q) · p + (n3 − n1)(n3 − n2)(q − t), (80)

where

Q(q) = (n3 + n4)(q − 1)(q − t) + (n3 − n4)q(q − t) − (n1 + n2)(q − 1)q.

With this structure, it follows that p is a rational function of t, q and q ′. The Hamiltonian
is the t-logarithmic derivative of the function τ(t). The correlation functions C(N,N) being
solutions of the sigma form of Painlevé VI, one may find how the expressions of the two
variables p and q (for which the Bäcklund transformations are birational) in the restricted
case n1 = N/2, n2 = (1 − N)/2, n3 = (1 + N)/2 and n4 = N/2 appear in terms of the
elliptic integrals K and E. Considering the diagonal correlation function C(2, 2) taken as
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τ(t) = t1/4C(2, 2), one might expect, at first sight, to obtain the variables p and q as algebraic
expressions in terms of E and K (and t). Remarkably, one obtains the surprising result that
the two variables p and q are actually rational expressions18 of E and K . For N = 2, one
thus gets two solutions, the simplest one being

p = − ((t + 1)E + (t − 1)K)N(1)
p · N(2)

p

2t (2E + (t − 1)K)D
(1)
p D

(2)
p

, q = − t (2E + (t − 1)K) · Nq

((t + 1)E + (t − 1)K)N
(1)
p

, (81)

N(1)
p = −(9t − 1)(t − 1)2 · K2 − 2(17t − 1)(t − 1) · EK + (1 + t2 − 34t) · E2,

N(2)
p = −(t − 1)K2 − 2EK + E2,

D(1)
p = −3K2(t − 1)2 − 8(t − 1)EK + (−5 + t)E2, (82)

D(2)
p = −K2(t − 1)2 + 2(t − 1)2EK + (5t − 1)E2,

Nq = −(3t − 11)(t − 1)2 · K2 + 2(t − 1)(3t2 − t + 14) · EK + (17t2 − 2t + 17) · E2.

One notes the homogeneous occurrence, in terms of degree, of E and K in these relations.
The variables p and q have the rational parametrization of an algebraic curve. Obviously, the
uniformization parameter similar to that introduced in section 3 can be chosen as the ratio
u = E/K (or E′/E) of the two elliptic integrals. One can then deduce that the parameter
u is a solution of a Riccati differential equation. These results generalize straightforwardly
to all p, q associated with C(N,N)s leading, remarkably, to rational functions of E and K

and yielding rational parametrization for the corresponding algebraic curves between p and
q. We have the same results in the variables σ and σ ′. The expressions of the Bäcklund
transformation corresponding to changing N into N + 1 in terms of the variables p, q will be
analysed elsewhere.

6. Conclusion

The phenomenon of the existence of a one-parameter family of solutions to the Painlevé VI
equation has been presented in this paper by the study of the specific PVI equation which
is satisfied by C(N,N), the diagonal correlation function of the Ising model. However, the
existence of such linear equations is a much larger phenomenon and certainly holds for all
PVI equations where the difference of any two of the parameters vj is an integer because, in
that case, there is a class of solutions which can be written as finite-dimensional determinants
whose elements are hypergeometric functions.

Even though the existence of these Fuchsian differential equations follows from the
general theorem on holonomic functions, the specific form and properties of these equations
are tedious to obtain. However, the expressions obtained for small N (via series computations)
have been sufficient to guess the structure that is proved in sections 2 and 3. Moreover, using
these initial computations, it has been possible to make a remarkably simple conjecture for
the exponents which is in complete agreement with the local expansion of the Painlevé VI
equation at its singular points and this conjecture puts restrictions on the coefficients in the
differential equations.

In this paper, we have obtained the Fuchsian equations by starting with the PVI equation.
However, the question can be reversed and we can ask what are the conditions on the Fuchsian
equations which will lead to PVI equations. For second-order Fuchsian equations, it would be
sufficient to require that the exponents at the singularities agree with the exponents allowed

18 Formulae expressing p and q as ratios of tau functions can be found in equations (5.42), (5.43) of [36].
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by the local expansions of PVI. But for higher order equations the exponents do not fully
specify the Fuchsian equation. The extra parameters which need to be specified are referred
to as accessory parameters and only very specific accessory parameters will lead to Fuchsian
solutions of PVI. The needed restrictions on these parameters are not known.

The more general version of this is the question of determining whether or not a specific set
of solutions to a Fuchsian equation will also satisfy some nonlinear equation (not necessarily
PVI). This is in some sense the original question asked by Jimbo and Miwa [4] and this is
particularly important because, for C(N,N), the nonlinear PVI is much simpler than the linear
equations LN,N . It was found in [14–17] that the three- and four-particle contributions to the
susceptibility of the Ising model, χ , satisfy Fuchsian equations whose structure appears rather
complicated and the question may be asked whether these functions, or their sum χ , can also
satisfy a nonlinear equation which might be simpler in appearance.

Finally, we remark that perhaps the most interesting discovery in this paper is that the
operator LNN is equivalent to the Nth symmetric power of the operator LE . This property
extends to the operator Lh (which is isomorphic to LE up to a conjugation). One might
wonder whether all solutions of the sigma form of Painlevé VI that are also solutions of linear
differential equations would be produced from symmetric powers of LE by intertwinners.
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