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We will try to sketch Professor F. Y. Wu's contributions in lattice statistical mechanics,
solid stae physics, graph theory, enumerative combinatorics and so many other domains of
physics and mathematics. We will recdl F. Y. Wu's most important and well-known classic
results, and we will also sketch his most recent research dedicated to the connections of |attice
statistical mechanical models with deep problems in pure mathematics. Since it is hard to
provide an exhaustive list of al his contributions, to give some representation of F. Y. Wu's
“mental connectivity”, we will concentrate on the interrelations between the various results
he has obtained in so many different domains of physics and mathematics. Along the way
we will also try to understand Wu’'s motivations and his favorite concepts, tools and idess.

PACS. 05.50.+q — L atice theory and statistics; Ising problems.

I. Introduction

The publish-or-perish period of science could soon be seen as a golden age: our brave new
world now celebrates the triumph of Enron’s financid and accounting credtivity. Sadly scienceis
now aso, increasngly, conddered from an accountant’s viewpoint. In this respect, if one takes
this “modern” point of view, Professor F. Y. WU's contribution! is dearly a very good return on
investment: he has given more than 270 taks in meetings or conferences, published over 200
papers and monographs in refereed journals, and had many sudents He has also published in, or
is the editor? of, many books [21, 31, 71, 122, 138, 157, 171, 178, 179, 196].

Professor Wu was trained in theoretical condensed matter physics [3, 4, 19, 20, 27, 35,
108], but he is now seen as a mathematical physicist who is a leading expert in mathemdtica
modeding of phase trangtion phenomena occurring in complex sysems WU's research indudes

! Professor F. Y. Wu is presently the Matthews University Distinguished Professor a Northeastern University.
He is a fellow of the American Physcal Society and a permanent member of the Chinese Physical Society (Tai pel).
His research has been supported by the National Science Foundation since 1968, a rare accomplishment by itself in
an environment of declining research support in the U.S, and he currently serves as the edtor of three professonal
journds: the Physica A, Internationa Journa of Maodern Physcs B and the Modern Physics Letters B.

2 For instance, Ref. [180] contains the proceedings of the conference on “Exactly Soluble Models in Statistical
Mechanics Higorical Perspectives and Current Status’, held a Northeasern Univerdty in March 1996 — the first
ever internationa conference to deal exclusively with thistopic. The proceedings reflect the broad range of interest in
exactly soluble models as well as the diverse fields in physics and mathemati cs that they connect.
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both theoretical studies and practical applications®. Among his recent researches he has studied
connections of staistical mechanical modds with deep problems in pure mathematics. This
includes the generation of knot and link invariants from soluble modds of statistical mechanics
and the udy of the long-standing unsolved mathematicd problem of multidimensional partitions
of integers in number theory using a Potts mode approach.

Professor WU’ s contributions to lattice statistical mechanics have been mostly in the area of
exactly solvable latice modds. While integrable models have continued to occupy a prominent
place in his work (such as the exact solution of two- and three-dimensiond pin modds and
interacting dimer sysems), his work has ranged over a wide variety of problemsinduding exact
latice datidics in two and three dimensions, graph theory and combinatorics, to mention jus a
few. His work in many-body theory [3, 4, 7, 8, 15, 22, 28, 36, 66], especialy those on liquid
hdium [2, 3, 6, 25, 26], has also been influentid for many years

F. Y. Wu joined the faculty of Northeasemn University to work with Elliott Lieb in 1967,
and in 1968 they published a joint paper* on the ground sate of the Hubbard modd [11] which
has since become a dassc. The Baxter-Wu model [45, 49] is dso, dearly, an important milestone
in the higory of integrable lattice models.

F Y. Wu has published severd very important reviews of latice statistical mechanics.
Fird, Lieb and Wu wrote a monograph in 1970 on vertex modds which became the fundamenta
reference in the fidd for decades [31]. WuU's 1982 review on the Potts model is another dassic
[89]. At more than one hundred citations per year ever since it was published, it is one of the
most cited papers in physics. In 1992 F. Y. Wu published yet another extremely well-received
review on knot theory and its connection with latice statigicad mechanics [154]. In addition, in
1981, F Y. Wu and Z. R. Yang published a series of expository pgpers on criticd phenomena
written in Chinese [84] - [88]. Thisreview is well-known to Chinese researchers.

I-1. The choice of presentation: a challenge in enumerative combinatorics

An intriguing aspect of lattice sttistics is that seemingly totdly different problems are
sometimes related to each other, and that the solution of one problem can often lead to solving
other outganding unsolved problems At first sight, most of the work of F. Y. Wu could be sad
to corregpond to exact results in lattice statistical mechanics, but because of the relaions between
seemingly totally different problems it can equivalently be seen, and sometimes be explicitly pre-
sented, as exact results in various domans of mathematical physics or mathematics sometimes
exact results in graph theory, SOmetimes in enumerative combinatorics, SOMetimes in knot theory,
ometimes in number theory, ec. WU's “intdlectual wak” goes from vertex models to circle
theorems or duality relaions, from dimersto Isng modds and back, from percolations or animd
problems to Potts moddss, from Potts modds to the Whitney-Tutte Polynomials, to polychromatic

3 He has considered, for instance, the modeling of physica adsorption and applied it to describe processes used in
chemica and environmental engineering [148, 175]. He has even published one experimentd paper on slow neutron
detectors[5].

4 This paper has become prominent in the theory of high-T. superconductors. P. W. Anderson even attributed to
this paper as “predicting’ the existence of quarks in his Physics Today (October, 1997) article on the centennia of the
discovery of € ectrons.

5 There was once a study published in 1984 (E. Garfield, Current Comments 48, 3 (1984)) on citations in physics
for theyear of 1982. It reports that in 1982, the year this Potts review was published, it was the fifth most-cited paper
among papers published in all of physcs.
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polynomials or to knot theory, from results, or conjectures, on criticd manifolds® to Yang-Baxter
integrability, perhaps on the way revisiting duality or Lee-Yang zeros, etc., etc. The simple listing
of Professor Wu's results and contributions, and the inter-relaions between these reaults and the
asociaed coneepts and toals, is by itsdf a challenge in enumerative combinatorics.

Actually it is impossible to describe WU's contributions /inearly, in a sequence of sections
in a review paper like this, or even with a website-like “#ree organization” of paragraphs. F
Y. WU's contributions really correspond to a quite large “graph” of concepts results, tools and
modds, with many “intdlectual loops’. The only possble “linear” and exhaustive descri ption of
WU’ s contributions is his list of publications.

We have therefore chosen to give his exhaustive list of publications at the end of this paper. No
other references are given.

We have chosen to keep the notation F.Y. Wu used in his publications?, and not to normalize
them, so that the reader who wants to see more and goes back to the cited publications will
immediately be able to recover the equations and notations

Obviously, we will not try to provide an exhaudive description of Wu’s contributions but,
rather, to provide some considered well-stited specific “morceaux choiSs®”, comments on some
of his results, some hints of the kind of concepts he likes to work with, and try to explain why his
results are important, fruitful and simulating for anyone who works in lattice statisticd mechanics
or in mathematica physics

II. Even before vertex models: the exact solution of the Hubbard model

Elliott H. Lieb and F. Y. Wu published in 1968 a joint pgper on the ground date of
the Hubbard model [11] which has snce become a dasdc, and served as a cornerstone in the
theory of high-7; superconductors An important question there corresponds to the pin-charge
decoupling, which isexact and explicit in one-dimensional models: isthe spin-charge decoupling a
characterigic of one dimension? Isit possible that some “trace’ of spin-charge decouplingremans
for quantum two-dimensional modds which are supposedly rdated to high-7;. superconductors?

Let us decribe briefly the classic Lieb-Wu solution of the Hubbard modd. One assumes
that the dectrons can hop between the Wannier states of neighboring l&tti ce sites and that eech site
is cgpable of accommodating two eectrons of oppodte spins with an interaction energy U > 0.
The corresponding Hamiltonian reads:

H= TZ Z CZUCJU+UZ Ciy Cit cw Cil,

<ij> o

5 The criticd manifolds deduced or conjectured by F. Y. Wu are mostly agebraic varieties and not simple
dfferentl able or analyticd manifolds.

" The price paid is for ingtance, that the spin edge Boltzmann weights will sometimes be denoted 1, e
eXs, e ora,b,¢c,d, or 21, x2, x3, x4, and the vertex Boltzmann weights w1, wa, - -- or a, b, ¢,d,a’, b, ¢, d’. This
corresponds to the spectrum of notations used in the lattice statistica mechanics Iiterature. These different notations
were often introduced when one faced |arge polynomial expressions and the e*: or e~#”i notations for Boltzmann
wel ghts would be painful.

8 | apologize, in advance, for the fact that these “morceaux choisis’ are obvioudy biased by my personal taste for
effective birationa a gebraic geometry in latti ce statistical mechanics

K2
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where c}:, and ¢;, are the creation and annihilation operators for an dectron of spin o in the
Wannier state a the i-th lattice Ste and the first sum istaken over nearest neighbor sites. Denoting
flx1,22, - ,xar; M4t - - 2N ) the amplitude of the wavefunction for which the down spins
are located a dtes xy, o, - ,x), and the up pins are located a Stes xp; ., -+, zy. The
egenvaue equation Hy = Ex) leads to:

N
_Z Z f(mlax%'” 7xi+37"' 7‘rN)
i=1 s—+1 (1)
+U26(xi_$j)f(x1,x2,"' yon) = E f(xy,29, - ,xN),
1<J

where f(x1, z2,-- -,z ) isantisymmetric inthefirst M and thelast N — M vari ables (separatdy).
Let p, (resp. p_) denote the chemica potential of adding (rep. removing) one eectron. In the
half-filled band one has u+ = U — p—, and the cdculation of x— can be done in dosed form
with the result:

o > J1(w) - dw
po =2 4A w-(1+exp(wU/2))’ 2

where J; isthe Bessd function. It can be established from (2) and py =U — p— that gy > p—
for U > 0. In other words, the ground state for a haf-filled band is insulaiing for any nonzero
U, and conducting for U = 0. Equivalently, there is no Mott trangtion for nonzero U, i.e., the
ground state isandytic in U on the red axis except & the origin.

III. Vertex models

The distinction between vertex models and spin models is traditiond in lattice statidica
mechanics, but thereare* bridges’ between these two sets of lattice models[78]. Roughly speaking
one can say that F. Y. Wu first obtained results on vertex modds [13, 14] (five-vertex models [9,
10], free-fermion vertex modes [50], dimer mode's seen as vertex modds, ...) and then obtained
results on gpin models (Ising mode with second-neighbor Interactions [12], the Baxter-Wu model
[45, 49], Potts modd, ...), introducing more and more graph theoretica gpproaches, up to looping
the loop with knot theory, which is, in fact, dosdy rdated to vertex models and to Potts modeld
As far as vertex models are concerned, we will first sketch the goproach given in his monograph
with Lieb (section (111-1)), in a second step we will sketch his free-fermion results (section (I11-
2-1)) dosdy followed by his dimer results (section (111-3)), and, then, we will discuss some
miscdlaneous results he obtained on five-, sx- and eight-vertex models (section (111-4)).

II1-1. Two-dimensional ferroelectric models

Bliott Lieb and F. Y. Wu wrote a monograph on vertex models in 1970, entitled “ Two-
dimendond Ferroelectric Modds’, which became afundamentd reference in thefield for decades
[31]. This monograph gives the best introduction to the sixteen-vertex modd, which is a funda
mental modd in lattice statigica mechanics. Unfortunately it is not known well enough, even to
many specialigs of latice models that it containsthe most general eght-vertex modd, most of the
(Yang-Baxter) integrable vertex modds (the symmetric eight-vertex modd, various free-fermion
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modes, the asymmetric free-fermion model, the asymmetric and symmetric six-vertex modd, the
five-vertex modes, three-coloring of square maps, and others) and also fundamentd non-integrable
modes such as, for instance, the Ising model in a magnetic fidd. In particular the monogreph
mentions explicitly the week-graph dudity (see section (V) bdow) on the sixteen-vertex modd
(see page 457 of [31]):

1
R . *
wl_Z'E:wﬂ We =

8 16
(-5
=1 1=9
4 8

wy=14- (Zwl - Zwi + (w10 + wig + wig + wig)
=5

i=1 i=

NG

©)

—(wy + w11 +wi3 + w15)w1;> you

The 154 pages of this monograph arestill, by today’ s standard, an extremey va uable document for
any specidist of latice modds. Beyond the taxonomy of ferro and ferridectric modds (ice modd,
KDP [9, 18], modified KDP [41], F modd [13], modified F modd [38, 75, 80], F model with
a daggered fidd, ...), this monograph remans extremely modern and valuable from a technicad
viewpoint.

Among the exactly soluble modds (the bread-and-butter of F. Y. Wu) was one that, for
a long time, was a “deeper’, namdy, Bethe's 1931 solution of the ground state energy and
dementary exctaions of the one-dimensiona quantum-mechanica spin-% Heisenberg modd of
antiferromagnetism. We will see bdow a large sat of results from the Lieb-Wu monogrgph on
vertex models, in particular the Sx-vertex model.

The monograph gives an extremdy lucid exposition of the Bethe ansatz for the Sx-vertex
modd. The Betheansatz is analyzed and explained in the most general framework (with horizonta
and verticd fields) and it is a mug-read anyone who wants to work serioudy on the coordinate
Bethe ansatz. It is certainly much more interesting and deeper than so many subsequent papers
that haverevisted, & nauseum, the Bethe ansatz of the symmetric six-vertex modd, re-styling this
smple Bethe ansatz with a conformal resp. quantum group, resp. knot theory, res. ... framework.
The andysis of the conditions for the transfer matrix 7' of the mos generd sixteen-vertex mode
to have a non-trivial “linear operator” (1D quantum Hamiltonian) that commutes’ with 7' (pages
367 to 373) are probably one of the first pages any sudent who wants to study integrable lattice
modds should read.

The monograph makes crysta cear the fact tha the Bethe ansaz is relaed to the conserva
tion of a certain charge. This can be seen from the fact that most of the analyss (from page 374
to page 444) rdies on the use (page 363 equation (81)) of the variabley =1 —2n/N, which in
Foin language is the average z-component of the in per verticd bond, namdy, y =< S, > /N
for a square lattice of size N x M, where n denotes the number of down arows and N the
number of vertica bonds in a row.

We use the same notation as in Lieb-Wu. In particular, let us introduce the horizonta and
vertical fields H and V, respectively. The partition function per sitein the thermodynamic limit is:

9 Which is the most obvious manifestation of the Yang-Baxter integrability.
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o1
dim e In(A) = max [2(y) + V-], (4)

where A denotes the larges eigenvalue of the transfer matrix. The monograph details a large set
of dtudions. Let us condder here the regime

A= (w1w2 + w3wyq — w5w6)/2 w1 wawswy < —1, (5)

and introduce the variable

1 A
el = :F:Ze , 6 A  where
€ n
R o I T e
" W3w4 ' wiwo '

When A < —1, 2(y) reads

b
oy) = K> +max(0, —K1) + i - /_ : R(a) - C(a) - da,

Where Cla) = ln(cosh(2>\ —0) — cos(a)),

cosh(fp) — cos(a)

and the (normalized) densty!? R(«) satisfies the Bethe-ansatz integral equation with the kernd
K(a):

sin +b
R(a) = Cosh()\)h—();)os(a) | K(a —pB)-R(B)dp (6)
with: o K(a—B) = sinh(2))

cosh(2)\) — cos(a — )

The integral equation (6) is nothing but the well-known Yang-Yang Bethe ansatz integra equation
on the density p(q):

+Q do(p, _ (1 —
1=2m-p(p) —/ %p@ -dg with: Q= -y
—-Q 1% 2
The range b of the new variable « in the integrd relation (6) can be deduced from the
definition of the dendty R(«):

+b +Q

m(1=y) = [ R(@)da= /Q pla) - da.
When y = 0, theintegrd attainsits maximum range and one can solve (6) by usngaFourier series
of a Fourier trandform. One thus gets R(«) as a simple dn dliptic function. Not surprisingly one
can also calculate all the derivatives of z(y) a y = 0. One can thus expand z(y) namely, write
2(y) = 2(0) — 2/(0) -y 42" (0) - 42 /6 +- - - . Tofirst order in y one obtains 2/(0) = —Z(\ — ),
where the function = is relaed to the Jacobian elliptic function nd:

10 One has R(a) - da = 2mp(p) - dp.
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o (AT 02 6 (1) e - sinh(ng)
E(¢) =In (cosh(()\— ¢)/2)> 9 _7; n - cosh(n)) ‘

The function Z(¢) dso satisfies the nice involutive functiond relations!!:

E(¢) = —E(=¢), EA+9)=E(A-9), E(4A+9)=E(e).

Let us consider the thermodynamic properties of the model when H = 0 and V' # 0. From (4)
one sees that the thermodynamic properties depend on the optima choice of y given by:

Z(y) =-V.

When lowering the temperature the slope of z(y) corresponding to the trangtion sticks at
y ~ 0, and one thus has (see page 425 of [31]) an antiferrod ectric transition occurring at 7..(V)
given by:

V=EM\-6). (7

This gives a beautiful example of a transcendental critical manifold which reduces, in some
domain of the parameters (low temperatures), to a transcendental equation (7) and not to an
algebraic one, as one is used to seeing in exactly solvable modds. One thus has a transcendental
critical manifold for avertex modd for which one can actudly write down the exact Bethe ansatz
(see equation (6)). Writing a dosed smple formula for the solution is not possible, but one can
certainly find numerica solutions on a computer. Should we say that the modd is exactly solvable
but not “computable’? We will revisit these questions of the dgebraicity of the criticad manifold
veraus integrability in other sections of this paper with other criticd manifold conjectures, or
reaults, of F. Y. Wu (see for instance sections (VI-3), (IV-1) bdow). For those who have a
“naive’ point of view on the character of criticd manifolds!'?, example (7) shows that a mode
having a Bethe ansatz can have a transcendental criticd manifold.

The Lieb-Wu review provides wonderful pieces of analytical work (and ysis in one complex
vaiable seefor ingdance pages 410-411 and the andysis of the analytic structure of the F modd or
the temperature Riemann gructure for the free energy of the F model). One finds a fedtivd of one
complex variable analyticd tools (the Maclaurin formula, tools for the evaduations of asymptotic
behaviors path integration, etc.).

Many more results can be found in the monograph (the three-color problem, the hard square
moded, the F modd on the triangular lattice, three coloring of the edges of the hexagond lattice
..). Let us mention, in particular, the Sx-vertex modd with site-dependent weights (which can
be consdered as the first exampl e of a Z-invariant modd). Let usintroduce w;(I,J) wherej =1,

11 |n agreement with the inversion relations on the model.

12 With, for ingance, a prgudice of dgebraicity of the criticd manifolds of “solvable’” modds all examples
known in the literature are polynomia expressions in well-suited variables e®¢. These include, for ingtance, the critical
varigties of the anisotropic Isng, or Potts models on square, and triangular lattices, or the criticd varigties of the
Baxter mode. For non-integrable models the common wisdom is, probably, that criticd manifdds are dways anaytic,
o may bedifferentiable, and the adgebraicity of the critical manifolds is ruled out by the non-integrability. Thisisdso
anaive point of view: see (36) in section (VI-1).
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-+ ,6, are the six possble Boltzmann factors of the vertex in row I and column J, and let us
require that the agebrac invariant A be independent of 1, J:

wi(l,J)wo(I,J) +ws(l,J)ws(I,J) —ws(I,J)ws(I, J) -
2 (w (I, Nwo (I, J)ws(I, J)wy(I, J))/2 .

Up to a multiplicative factor 7 ;, a(rationd) parametrization of these invariance conditions (8)
is

A —

wi(I,J) =1 —t-pry)-or B,

1
ILJ)y=(1-t- . ,
wa(I, J) = ( PI,J) o161 o
ws(1,J) = (pry — 1) - 2L a1, T) = (pry —t) - OB,
Br,J ar,g

1 1

ws(I, J) = (;—t) prgns we(lJ) = (1—1%)- T
Baxter's Z-invariance condition for integrability requires that the pr ;'s are actually products
of a (gectral) parameter depending on the row and another parameter depending on the column:
pr,g = pr-oy. Wewill seein section (7) when sketching the correspondence between the standard
scdar Potts modd and a staggered asymmetric Sx-vertex modd, that these product conditions,
pr,g = prog, atually correspond in the case of the checkerboard Potts modd to criticality,
or to tge vanishing conditions of a staggering field H,, from a Lee-Yang zeros viewpoint:
|z| = estas = 1.

Provided that the p; 7 = pr- o integrability conditions are satisfied, the partition function,
with parametrization (9), can be expressed as a multiplicative dosed formula:

—QHH Vws (L, J)we(I,J) F(pmq)-F( 1 >’

11—t pI0 g
I=11=1
> 1 — dm-1, (10

where F(Z) = m

m=1

III-2. Vertex models: free fermions

Ancther classic work of F. Y. Wu is his 1970 paper with C. Fan in which they coined
the term the free-fermion model [16]. This work was laer extended to its checkerboard version
during one of WU’ s vidts to Taiwan [50, 52]. In the followi ng we shall arrange the homogeneous
vertex weights in a matrix R, whose size and form vary according to the number of edge states
and the coordination number of the lattice. Typicd examples we will consider are the 2D square
and triangular latices shown below:

7N\
j k

2D quare 2D triangular
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II1-2-1. Free-fermion asymmetric eight-vertex model
C. Fan and F. Y. Wu obtained many free-fermion results [ 12, 16]. The free energy of the
mog generd free-fermion mode on a square lattice evauaed by Fan and Wu reads:

1 2
f= 1 2/ d9d¢ln<2a+2bcos€+20c:os¢+2dcos(9—¢)+26 Cos(9+¢)>,
7™ Jo
where:
1
azg.(w%+w§+w§+wz), b=wiws —wsws,
C=WlWws —wWaws, d=w3ws —wrws, e =w3ws — wswe,

provided that the free fermion condition:
wiw2 + w3ws = wswe + Wrws (11)

is satisfied.

Le usrevisit someof ther reaults from an inversion relaion viewpoint. Renaming the vertex
weightsasa = w1, d = wo, b =ws, b/ =wy, ¢ = ws, ¢/ = wg, d = wr, d = wg, the matrix R of
the eght-vertex model is then:

a 00 d
0 b c 0

B=1 19 ¢ p 0 (12)
d 00 d

A matrix of the form (12) can be brought, by a amilarity transformation, to a block-diagond
form:

o Rl 0 . o a d/ - b (,J
R (B 0) i m= (40 w2
If oneintroduces §; = aa’ —dd and 69 = bV — cc, the determinants of the two blocks, then the

(homogeneous) matrix inverse I (nandy R — det(R) - R~1!) reads:

(a,a’,d,d’) — (CL/ : 52, a'(SQ, —d‘62,—d/'(52) ( )
13
b Y,c,d) — (V-6 b-61,—c- b1, —C ).

It is straghtforward to see that the free-fermion condition (11) is §; = —d, which has the
effect of /inearizing the inversion (13) into an involution given by:

a<a, b=V, (d,d)—=(=d,d), b+ -V, (¢,d)—(c)

The group generated by the two inverson relations of the model is then redized by permutations
of the entries mixing with sign changes, and its orbits are thus finite. The finiteness condition of
the group is a common feature of dl free-fermion modds.
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II1-2-2. Free-fermion for the 32-vertex model on a triangular lattice
We next condder the freefermion conditions of J. E. Sacco and F. Y. Wu [53] for the
32-vertex modd on a triangular lattice. Usng the same notation as in [53], we have:

[ fo 0 0 fi3s 0 fis fiz O
0 fs fes 0 fie 0 0 fas
0 fss fos 0 fis 0 0 fa

R— fs6 0 0 fiu O foq faa O

; 14
0 fau faa 0 fia 0 0 fs (19
fis 0 0 fis 0 fos f3s O
fis 0 0 fie 0 fes fss O
L 0 fi2 fiz 0 f 0 0 fo
By permuting rows and columns, this matrix can be brought into the block diagond form:
/R 0 .
R= ( 0 R ), with: (15)
fo fis fiz fos fia fza foa foe
Ry — fie f fas fis ’ _ | fis e fos fas | (16)

fis fos f3e  fie 2 fis [ fos fas
[f56 fu faa f14J [f23 fiz fi3 foJ

The inverse I, written polynomialy (homogeneous métrix inverse), is now a transformation of
degree 7. If one introduces the two determinants, Ay = det(R;) and Ay = det(Rz2), then each
term in the expresson of I(R) isa product of a degree three minor, taken within a block, times
the determinant of the other block. Thisinverse I dearly singles out one of the three directions of
the triangular latice. These three invol utions do not commute and generate a quite large infinite
discrete group I'iang (Se @90 section (1V-1) beow).

The free-fermion conditions of Sacco and Wu [53] read:

Jofijki= Fijfa — fin S + fa ik Vi, g, kl=1,...,6
fofo= fizfi2 — fisfis+ fiafia — fisfis + fie fe,

which we denote by V. What is remarkable is that, not only is the rationd variety V globdly

invariant under I'iriang, but again the realization of this (genericdly very large infinite discrete

group) I'iriang ON this variety becomes finite. This comes about from the degeneration of I into a
mixture of sign changes and permutetions of the entries, as in the preceding subsection.

(17)

Remark. The ordinary matrix product of three matrices (14) solutions of (17), is another
solution! In other words, if R., Rg, Ry €V, then R, - Rg- Ry € V, while R, - Rg ¢ V. This
was dso the case for involutions of (11) in the case of the square lattice, but the mechanism is
more subtle here as the conditions (17) imply A; = As.
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II1-3. Dimers and spanning trees

Before Fan and Wu's free-fermion vertex models the Onsager solution of thetwo-dimensona
Ising modd was dealy the first free-fermion model ever solved. There were also severd ap-
proaches to the two-dimensiona Ising model that did not use the trander matrix formalism; the
mogt interesting one is perhaps the magpping of the problem onto a dimer-covering problem on a
dightly more complicated lattice. The dimer problem was first solved by Temperley-Fisher and
Kastdeyn. Kasteeyn found out how to treat the most general planar graph.

The dimer problem has alife of its own and has generated snce many followup works, not
only in staistical mechanics, but dso in combinatorid theory. In this regard, Wu has provided a
large number of new results [37, 173, 184, 194, 207, 205], including applicaions to condensed
metter physcs as well as in pure combinatorid andysis. In addition, Wu has obtained new results
onthespanning tree problem [198, 200], a problem intimately rel ated to the dimer problemthrough
a bijection due to Temperley. In the following we shal describe some of the contributions in this
aea.

III-3-1. Revisiting dimers: the honeycomb lattice

The dimer model on the honeycomb latice was fird solved by Kastdeyn, but he never
published the solution, except for hinting at the exigence of a trandtion. This deficiency was
made up by Wu in a 1968 paper [10] in which he presented details of the andysis for the
honeycomb lattice, and gpplied the results to describe the physics of a modified KDP modd.

II1-3-2. Revisiting dimers: Interacting dimers in 2 and 3 dimensions

Almost 30 years fter the publication of the solution for the dimers on the honeycomb lettice
[20], Wu and his co-workers made two important extensons of the earlier Kastdeyn solution. In
the first, H. Y. Huang, F. Y. Wu, H. Kunz, and D. Kim [173] considered the case where the
dimers have neares-neighbor interaction. This model turns out to be identical to the most generd
five-vertex mode, a degenerae case of the sx-vertex model which requires a special Bethe ansatz
analyss. The resulting phase diagram of this five-vertex modd is very complicated and the
analyss extremely lengthy.

In the second work H. Y. Huang, V. Popkov and F. Y. Wu [177, 184] introduced, and
slved, a three-dimensiond modd consisting of layered honeycomb dimer lattices as described
in the preceding subsection, but with a specific layer-layer interaction. Again, the phase diagram
is very complicated. It is noted that this modd is the only solvable three-dimensond ldtice
modd with physical Boltzmann weights (the Baxter solution of the 3D Zamolodchikov modd
has negative weights). However, the layered dimer modd, while having strictly postive weights,
describes dimer configuraions in which the dimers are confined in planes As a consequence the
critical behavior is essentidly two-dimensional.

II1-3-3. Revisiting dimers: a continuous-line model

F. Y. Wuand H. Y. Huang [158] have further used a dimer mapping to solve a continuous:
line lattice modd in three and higher dimensions. They have dso gpplied it to modd a type-ll
superconductor [160. In three dimensons, the modd is a gpecial case of an O(n) model on a
finite L1 x Lo x L3 cubic lattice with periodic boundary conditions with the partition function:

Z(n) = Z nt. 2°

closed polygons
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where the summation is taken over all closed non-intersecting polygonal configuretions, [ is the
number of polygons, and b is the number of edges of each configuration. They considered the
n = —1 specid case, which they showed to be in one-to-one correspondence with adimer problem
whose partition function can be evaluaed as a Pfaffian. The rexult for afinite lettice is:

- I

n1=1no=1ng=1

1+ Z 2 - e2mi/Ni| |

In the thermodynamic limit, this leads to the per-gte free energy:

27 27

2 3
d91 d02 dfs In 1+Z 2 - e2mi/Ni|

The phase diagram is rich and quite non-trivial.

However, it must be said that this exactly soluble three-dimensiond O(—1) mode describes
line configurations running only in a preferred direction and, secondly,'® the Boltzmann weights
can be negative.

III-3-4. Revisiting dimers: nonorientable surfaces

More recently W. T. Lu and F. Y. Wu initiated sudies on dimers and Isng models on
nonorientable urfaces [194, 203, 205]. For dimers on an M x N net, embedded on non-
orientable surfaces, they solved both the Mobius grip and the Klein bottle problems for dl sizes
M and N and obtained the dimer generating function Zy, v as

S mre(0-0- T1 [Tt 000 o))

where Re denotes the real pat, z, and z;, ae the dimer weghts in the vertical and horizontd
directions, respectively, and X,,, is given for the Mobius strip and the Klein bottle respectively

2 mn & 2m — 1w
Xm = cos(M n 1), Xm = cos(—M >

In paper [205] they also obtaned an extension of the Stanley-Propp reciprocity theorem for
dimers'4. Inspired by this work, there is now much activity in this area There is dso very
much current interes in finite-size corrections and conformd field theories on more complicated
aurfaces (higher genus pretzds, ...).

III-3-5. Dimers on a square lattice with a boundary defect
In avery recent paper [207], fittingly dedi cated to the 70th birthday of Michad Fisher, who
firg solved the dimer problem for the square lattice, W. J Tzeng and F. Y. Wu obtained the dimer

13 But we are used to this after R. J. Baxter’s solution of the 3D Zamolodchikov model.
14 A subject matter of pertinent interest to mathematicians.
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generating function for the sguare |attice with one corner (or some other boundary ste) of the
lattice missing. In this work they made use of a bijection between the dimer and spanning tree
configurations due to Temperley (and extended by Wu in his unpublished 1976 lecture notes as
wdl as wdl as more recently by Kenyon, Propp and Wilson). They also carried out afinite-5ze
analyses which lead to alogarithmic correction term in the large-size expansion for the vacancy
problem with free boundary conditions They found a central charge ¢ = —2 for the vacancy
problem, to be compared with ¢ = —1 when there is no vacancy. This central charge c = —2 is
in contradiction with the prediction of a naive conformal field theory.

III-3-6. Spanning trees

As mentioned above, the problem of spanning trees in graph theory is intimatdy related
to the dimer problem, and it is not surprisng that Wu found his way to spanning tress. In
1977 he published a paper [62] on the counting of spanning trees on two-dimensional latices
usng the equivalence with a Potts modd. Very recently he refined the tools by using a result
in algebraic grgph theory, which he and W. J Tzeng rederived using dementary means. Tzeng
and Wu enumerated spanning trees for general d-dimensiond lattices as wdl as non-orientable
aurfaces [198]. Applying these results to general grgphs and regular lattices R Shrock and F. Y.
Wu [200] published alengthy paper in which they established new theorems on spanning trees as
wdl as enumerating spanning trees for a large number of regular lattices in the thermodynamic
limit.

III-4. Miscellaneous results on vertex models
In this section we describe an arbitrary choice of miscdlaneous results obtained by F. Y.
Wu on vertex modds.

III-4.1. Boundary conditions

The six-vertex model is known to be a boundary condition dependent modd. However H.
J Brascamp, H. Kunz and F. Y. Wu [43] established, for the first time, that, a sufficiently low
temperatures or sufficiently high fields, the 9 x-vertex models with either periodic or free boundary
conditions are equivaent.

II1-4-2. The eight-vertex model in a field

A simple result dueto F. Y. Wu [105] is that a very general staggered eight-vertex mode
in the Ising language (as introduced by Kadanoff and Wegner and by F. Y. Wu [78]) with the
goecial Yang-Lee magnetic fidd inkT'/2, is equivalent to Baxter's synmetric eight-vertex mode
and hence is soluble. This result is remarkable, Snce the general eight-vertex mode without this
field is not known to be soluble

II1-4-3. The eight-vertex model on the honeycomb lattice

F. Y. Wu has dways been keen in providing results for the honeycomb lattice [48, 130].
One intereding result is that he has established the exact equivalence of the eight-vertex modd on
the honeycomb lattice with an Ising mode in a nonzero magnetic fidd [48, 130]. The equivalence
aso leads to exact andysis of the Blume-Emery-Griffiths modd for the honeycomb lattice (for
details see section (IV-3) bdow).

In pursuit of applicaions of these results, P. Pant and J. H. Barry and Wu [181, 182] obtained
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exact reqults for a model of a ternary polymer mixture which is equivdent to an eght-vertex
model. A mode ternary polymer mixture was considered with bi- and tri-functiona monomers
and a solvent placed on the stes of a honeycomb lattice Using the equivaence with an eght-
vertex model which further maps the problem into an 1Sng modd in a nonzero megnetic fidd, an
exact andysis of the modd was carried out. The phase boundary of the three-phase equilibrium
polymerization regime was determined exactly.

Comment. Thesekinds of results are particularly interesting when one redizes that concepts
and structures corresponding to the Yang-Baxter integrability do not exist a first sight. This leads
to the natural question: how to construct a Yang-Baxter relation for the honeycomb lattice?

I11-4-4. Exact critical line of a vertex model in 3 dimensions

Wu [46] has introduced a vertex modd in three dimensions with red vertex weights and
determined its exact first-order phase transition line by mapping it to an Ising model in afidd. It
dso exhibits a criticd point. Thisisone of the very few lattice statigicd modes for which exact
results can be deduced in higher-than-two dimensions.

IV. Spin models: Ising models and other models

We will condder in this section F. Y. WU's results on spin models, mostly Ising modds.
Due to its importance the Potts modds will be treated separately in section (7).

The distinction between vertex models and spin modes (more generally Interaction Round
a Face (IRF) models) is an important one in lattice statisticd mechanics. However Wu showed
in paper [78] an equivdence between an Isng modd with a vertex modd. Similarly in paper
[114] Wu and K. Y. Lin studied the Isng modd on the Union Jack lattice, showing it to be a
free-fermion model. Many of the free-fermion results on the vertex modds in sections (111-2-1)
and (I11-3) can also be re-gyled as free-fermion 1Sng modds.

As far as the Union Jack lattice is concerned Wu has aso obtained the spontaneous mag-
netization of the three-spin ISng modd [51]. Itis, in fact, obtained in terms of the magnetic and
ferrodectric orderings of the eight-vertex modd, or, equivalently, the spontaneous magnetization
and polarizaion of the eight-vertex modd. It was found that the two sublattices possess different
criticad exponents

An important deveopment in the history of lattice models is the analyss of the phase
diagram of the Ashkin-Teler modd on the square lattice by F. Y. Wu and K. Y. Lin [47]. The
Ashkin-Teler modd is another example of spin models for which the traditiond diginction of
latice stetistical mechanics between spin and vertex modes is irrdevant. The Ashkin-Tdler
model can be seen as two Ising modds coupled together with four-spin interactions Performing a
dual transformation on one of the two Ising models and interpreting the result as a vertex model,
one finds that the Ashkin-Tdler modd is equivalent to a staggered & ght-vertex modd [29], thus
exhibiting two phase transitions.

WuU's andysis of spin modelswas not redricted to two dimensions. For instance, Barry and
Wu have obtained exact results for a four-gpin-interaction Isng mode on the three-dimensond
pyrochlore lattice [128], and Wu has dso obtained vari ous results for spin modds on the Bethe
lattice and Cayley trees [54, 56].

Wu also performed real-space renormalization Sudies for Ising models [129], but, not
aurprigngly, using some duality ideas, namdy, the duality-decimation transformation of T. W.
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Burkhardt. Wu had previoudy gpplied the duality-decimation transformation in order to solvethe
two-dimensiond Ising model with nearest-neighbor, next-nearest-neighbor and four-spin interac-
tions in a pure imaginary fidd [105] (see section I11-4.2). In paper [129] Burkhardt's method,
which combines a bond-moving and duality-decimation transformation, is modified, in order to
preserve the free energy in the renormdization transformation.

IV-1. Generalized transmissivities for spin models

We will see beow that a large number of F Y. WU’ s work correspond to graph expansions
(see section (VII-1)). For spin models with edge interactions this requires the introduction of
certain “transmissvity” variables. Thermal transmissivities are introduced when considering high-
temperature expand ons of an edge-interaction spin mode or performing renormdization analyses
They are a0 the natural variables to use in the decimation of spinsin a Smple multiplicative
way.

Introduce the edge Boltzmann weight W (K, Ko, -+ Ky;a,b), where K, Ka, -- - K, de-
note a set of coupling constants describing the modd, and a and b are two nearest-neighbor spin
gdates which can take on ¢ vaues. Let us assume that the decimation procedure yi eds a Boltzmann
weight of the same form:

S WK, Ko, -+ Knya,b) - WK}, K}, -+ Kpsbc) = X W(K], K}, KlJa,c). (18)
b

Alternatively, one can build a ¢ x ¢ Boltzmann matrix W withenties W, ; = W (K1, Ko, - - - Ky;
i,7). Interms of such matrices relation (18) becomes W- W' = W”. The decimation procedures,
and also the high-temperature expansions in such modds, are greatly smplified by introducing a
“trangmissivity” function t,,, such that the matrix rdation W - W/ = W” becomes one or more
multiplicetive relations of the form:

ta(W) . ta(Wl) = ta(W”)7 a=1,---,r.

The simplest example is the trangmissivity variable for the ¢ Sate gandard scalar Potts
modd, for which one has t = (eX — 1)/(eX + ¢ —1). Thisis the natura expansion vaiable
for the high-temperature series of the model (see also the f; ;'s in (45) and (46) introduced in
sction (VI1-1) below). For the Ising modd this reduces to the tanh(K) variable FE Y. Wu
et al. [147] underlined the fact that two quite different Stuaions must be congdered. If the
family of Boltzmann matrices W is a set of commuting matrices, then they can be diagonalized
smultaneously and thetransmissvity variables arenothing but al the possbleratios of eigenvalues
of the Boltzmann matrices W. If, alternatively, the Boltzmann matrices W do not commute, then
one must perform a simultaneous block-diagonalization of this family of Boltzmann matrices,
and, therefore, some of the t,,’s will be block matrices from which one can extract functions ¢,,
satifying ¢o(W”) = ¢o(W) - ¢ (W'). One obvious choice for ¢, is the (ratio of) determinants
of these blocks A number of non-trivid non-commuting tranami ssivities are given in [147].

IV-2. Three-spin interactions: the Baxter-Wu model

Another important work in the history of exact solutions of lattice gatistics is the Baxter-Wu
modd, which is an Ising modd on the triangular lattice with three-spin interactions. This modd
was solved exectly by R. J. Baxter and F. Y. Wu in 1973 [45, 49].
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The three spins surrounding every triangular face interact with a three-body interaction of
drength —J, so that the Hamiltonian reads:

H=-J. ZUinUk:- (19
Baxter and Wu found tha the per-site partition function Z has a remarkably smple expression:

Z = /6yt with: t = sinh(2 |J|/kT), (20)
and where y is the solution of the agebraic equation:

(y—12 1 +3y)(1+t3) -t =201 —t)*- 4. (21

The partition function has a singular part which behaves as |t — 1|%/3.

Some interesting dudity properties of the Baxter-Wu modd are very dearly detaled in
[45], and used to convert the Baxter-Wu model into a coloring problem. This provides a very
heuristic example showing tha dudity is not ecific to edge-interaction sin models, but can
aso be introduced with many-body interactions. In the following we briefly describe how the
Baxter-Wu modd is transformed into a coloring problem.

Firg we introduce a Zo-Fourier transform with function g(A, ) which enables us to simply
write the KramersWannier duality for this three-pin modd (A and p are Ising spins) &s:

g\ p)=+1 it A=+41,
gp)=p ifi A=-1

Note tha this function is symmetric in A and u, namdy, g(A\, ) = +1 when p = +1 and
g(A p) = Awhen pp = —1.

Returning to the Baxter-Wu model, each pin o; of the triangular lattice beongs to Sx
triangles around vertex i, which form a hexagon with the sin o; & the center. L& us now
congder the close-packing of such hexagons. The spins o; now form a (triangular) sublattice of
the initid triangular lattice.

Consider next the spins o;, and denote the edge connecting nearest-neighboring spins, oy
and oy, sitting on the hexagon surrounding o;, by < kl >. Let us introduce Ising edge varigbles
A, corresponding to the six edges < kl > of the hexagon: A, = o}, -0, r = 1,---6. Thelocd
Boltzmann weight of a hexagona cell around a spin o; can be written as:

WheX:%-<1+ ﬁ)xr)-exp<K-ai-26:)\r>, 23
r=1 r=1

where the factor (1 + [ \.) takes into account the fact that the ISng edge variables A, are not
independent, but are constrained by the condition [ A, = 1. As usud this condition, associated
with every hexagon, can be written by introducing adummy variable p; aso associated with every
hexagon:

6 6
S IO m) =1+
r=1

pi=t1lr=1

(22)
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enabling us to rewrite (23) as:

6 6
Whex = Z Hg(/\r,lﬁi) - exp (K' o - ZAT).
1

/l/li:tl r=1 r=

The partition function of the Baxter-Wu modd is now seen as a summation over dl the (initid)
ins o; and the (dummy) spins w; of atriangular sublattice, and the edge Isng spins A,. Let us
focus on one \,.. The edge »r =< kl > bdongs to a hexagon around pin ¢; and a neighboring
hexagon around another spin, say, ;. Theedge Ising spin . thus occurs in the Boltzmann factors
with a factor of

Wi, = ef @t A g\ i) - g, 15)-
Summing over the edge Ising spin A, in the partition function and using relations (22), one thus
obtains a factor:
wig = Y Wi, = O iy e Kloitos) (24)
Ar=%1

between two spins o; and o ; onthesublattice. This can beinterpreted as the edgeweight associated
with a coloring problem, and the Baxter-Wu modd is transformed into a coloring problem.

IV-3. The Blume-Emery-Griffiths model

The Blume-Emery-Griffiths (BEG) modd isamodd that F. Y. Wu and his coworkers quite
naturally considered [106, 116, 136, 148], snce it reduces to an Isng model on the honeycomb
lattice on a specid manifold [106, 116].

The BEG modd is defined by the Hamil tonian:

—B-H=—J- > SiSj—K-> S}, -A> S—H-) S5, (25)
<i,j> <> i i
where the spins are classcad sin-1 spins taking on the vaues S; = 0, £+1.In the high-temperature
expansion the nearest-neighbor Boltzmann factor assumes the form

exp(J 5; Sj + K S7 S7) =1+ (eX sinh J)S;S; + (" cosh J — 1) 57 2. (26)
It follows then in the subgpace K = — In(cosh J), one has the Smple rdaion
exp(JS;S; + KS7S7) =1+ 8; S; tanh(J),
and the partition function of the BEG model assumes the simpler form:
Zppg= Y. ] (1+ SiS;tanhJ) [[exp(—AS? + HS;).
S, =0,+1 <i,j> i

Expanding the products over neighboring pairs, representing eech term by a graph and making
use of the identities

S osree ™ opn)  with p(2) =272,

5, 20,41 (27)
p(0) =2e 2 +1, p(1) =0,
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one finds that one has eght possible configurations a each vertex of the honeycomb lattice,
corresponding to the following Boltzmann weights of an (isotropic) eight-vertex modd:

a =1+ 2" cosh(H), b= 2y/tanh(J)e ™ sinh(H),
¢ =2tanh(J)e ®cosh(H), d= 2(tanh(J))?/2¢~2 sinh(H).

With these notations one deduces the identity of the partition function of the BEG modd (25)
with the eight-vertex model on a honeycomb | attice (see dso sections (V-1) and (V-3) below):

ZBEG = Zsy(a,b,c,d).

Performing awesk-graph dudity transformation on this eight-vertex mode (see sction (V) bdow)
associated with the 2 x 2 (gauge) matrix [48]:

1 1 y
9129223' y 1)
one finds that the partition function of the eight-vertex modd Zs, (a, b, c,d) remans invari ant
under a weak-graph dudity transformetion [7, 116]:

a=(a+3yb+3Pc+12d)/(1+ 122 - Zsyla,b,c,d) = Zg,(a,b,¢ d). (28)

The four parameters a, b,c,d or a,b,é,d can be seen, as far as the caculation of the partition
function is concerned, as four homogeneous parameters. Taking into account an irrdevant overdl
factor and the irrdevant gauge variable y from the wesk-graph symmetry (28), one sees tha
the partition function of the eight-vertex modd Zg, (a, b, ¢, d) basically depends on two varigbles
instead of four. Not surprisingly, Wu found that Zg,(a,b, c,d) is equivalent to the partition
function of an Ising modd with nearest-neighbor interactions K7 and a magnetic fied L:

ZIsing(L,K]): Z H eXp(K[O'iCTj) HeXp(LO'Z')

o <>

(29)

N
- 3/2
(0, 5,6.d) <2 cosh(L) c~osh (KI)> ’

a

where N is the number of l&ttice sites. The explicit expressions of K7 and L in terms of the BEG
parameters are complicated. But for H =0, onehas L = 0 and

tanh(Ky) =

A -tanh(J),

using which one determines the critical line K7 = 1/\/?_> in the J > 0 regime. The spontaneous
meagnetization of the BEG modéd for J > 0 and the phase boundary of the J < 0 BEG model can
be similarly determined [116].

The proof of the equivdence of the honeycomb eight-vertex modd with an Isng modd in
a fidd, as outlined in the above, is quite tedious. However, a more direct derivation has snce
been given by Wu [130].
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The eight-vertex modd on the honeycomb lattice can dso be seen to be rdaed to a lattice-
gas grand partition function K29 (2, J, .J3) on the Kagomé lattice [126] (see aso section (VI-3)
below), where —J is the neares-neighbor interaction, —.J3 the triplet interactions existing anong
three sites surrounding a triangular face of the latice, and z denotes the fugacity. Then one has
the equivaence:

2K99( 2, J, J3) = Zsy(a,b, ¢, d)

(30)
a=1, b=z, c=z-¢, d=2%2.¢Jth
From (29) and (30), F. Y. Wu and X. N. Wu were able to obtain results for the liquid and vapor
densities, showing that an observed anomdous critical behavior occursin the lattice gas only when
there are nonzero triplet interactions [126]. This andysis has been extended to a latice gas on
the 3-12 lattice by J L. Ting, S. C. Lin and F. Y. Wu [140].

Wu'’s tricks for the honeycomb BEG mode are not limited to the weak-graph transformation
for the eight-vertex modd. Using asyzygy analyss of the invariants under the O(3) trandformation
L. H. Gwa and F. Y. Wu have obtained an expression for the criticd variety of the honeycomb
BEG modd to an extremdy high degree of accuracy [ 148] (see section (V-4) below).

IV-4. Other spin results: disorder points

Let usfindly describe, anong many results obtained by F. Y. Wu on spin modd's, one result
concerning disorder points Disorder solutions are parti cularly Smple solutions corresponding to
some “dimensond reduction” of the mode, which provide smple exact results for modes which
are gengrically quite involved. While this yields severe condraints on the phase diagrams, the
sries expangon, and the andyticity properties of the modd, it does lead to exact solutions of
models which are otherwise nonintegrable.

For example, using a decimation gpproach, Wu [100] has deduced the disorder solution
for the triangular Ising model in a nonzero magnetic field. Wu and K. Y. Lin [120] have used a
checkerboard Ising lattice to illugrate that there may exist more than one disorder point in agiven
gin sygem. Along the same vein, N. C. Chao and Wu [101] have explored the vdidity of the
decimation approach by consdering the disorder solutions of a general checkerboard 1sng modd
inafidd.

V. Weak-graph dualities and Hilbert’s syzygies

In a pionearing paper F. Y. Wu and Y. K. Wang [58] introduced a duality transormation
for a generd gpin mode which can have chiral interactions. This is the first time that a chird
$in model was explicitly considered. In terms of R matrices such as (12) these transformations
are the tensor product of two amilarities:

R —  g®g-Rglog! (31)
where g1 and g, are two ¢ x ¢ marices R isagq? x ¢ matrix (¢ = 2 for the sixteen-vertex modd ).

This symmetry group is an sl(q) x sl(q) symmetry group. The high- and low-temperature dudity
(3) givenin section (I11-1) for the sixteen-vertex model isaparticular case of such transformetions,
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corresponding to g; and g» being two involutions:

N
g1 =92 = \/5 -1 .
This duality rdaion [58, 131] is now wel-known for vertex models It correspondsto symmetries
of the modd and can be used, as will be seen in the next two subsections, to find good vari ablesto

expressthecriticd manifolds of alattice model, and, hopefully, to determine their exact expressons
when dgebrac.

V-1. Hilbert’s syzygies, gauge-like dualities and critical manifolds

Le us give some hints as to how the gauge-like dualities enable us to deduce reaults on
criticd manifolds or varieties. The main ideaisto construct algebraic invariants under these gauge
transformations.

Hilbert has shown that dl invariants of a linear trandormation are algebraic and can be
expressed in terms of a set of homogeneous polynomids, the syzygies. Considering the g xteen-
vertex modd, the transformation is O(2) and the fundamentd invariants corresponding to the O(2)
group have been condructed by J. H. H. Perk, F. Y. Wu and X. N. Wu in [131]. Likewise for 3-
date vertex modds the transformation is O(3) and the associated invariants have been constructed
by L. H. Gwaand F. Y. Wu [146] (see section (V-4) beow).

V-2. Hilbert’s syzygies and the square lattice Ising model in a magnetic field

With an algebraic prgudice for criticd manifolds, it is very tempting to conjecture dosed
dgebraic formulafor critical manifolds that will reproduce known exact results in various limits.
For ingance, dosad-form expressions for the critical line of the square lattice antiferromagnetic
Ising model in a magnetic fidd were proposed'® by Muller-Hartmann and Zittartz. However, it
has been shown that the expression is numericdly incorrect.

X. N. Wu and F Y. Wu [135] considered the square lattice antiferromagnetic Ising moded
in a magnetic field, which can be seen as a subcase of the sixteen-vertex modd under the O(2)
group. Introducing the variables

a=1, b= h, c=v, d=v%%h, e=1?
with: v = tanh(J/kT), h = tanh(H /kKT),

the five fundamental Hilbert invariants of O(2) read:

L=a+2c+e Ih=(a—6c+e)?+16(b—d)?,

L=(a—e?+40b+d)?  Ir=d’d—be* —3(a—e)(b+d)c,

Iy =(a—6c+e) ((a—e)?—4(b+ d)?) + 4(a — e)(b? — d?),
and the criticd line proposed by Wu and Wu assumes the form

c-Ifco- Bh+es- Il +cy-I5+cs- I3+ co- 1o I3 =0.

15 Thisisjust one example in a very long list of incorrect agebraic conjectures for critical manifolds that one can
find in the literature.
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They then determined the ¢;’s using the various known reaults, incduding a condraint dictated
by the known zero-fidd criticd point, as well as the results of a finite-size andyses which they
caried out. This lead to thevdues c; =1, co = —0.044 338, c3 = 0.362 73, ¢4 = 0.000 4938,
cs = 0.042 779, cg = —0.008 9149. The reulting cdosed form expresson for the critical line
reproduces dl known numerical deta to a high degree of accurecy. For instance, the critica line
yields for a smdl magnetic fidd: 7. ~ Ty - (1 —u - (H/J)?) with u ~ 0.038 022. This is
compared to the presumably exact vaue obtaned by M. Kauffman: « ~ 0.038 0123 259 - - -

V-3. Hilbert’s syzygies and the honeycomb lattice Ising model in a magnetic field
Similar analyses have been caried out for the honeycomb lattice by F. Y. Wu, X. N. Wu
and H. W. J. Blote [132]. For the corresponding honeycomb eight-vertex modd we have

a=1, b = /vh, c=v, d=v32h
with: v = tanh(J/kT), h = tanh(H/kT).

Analogous to (32), we introduce the following Hilbert's syzygies:

P=a? 4 3ac + 3bd + d?, Q=b*—ac+c—bd

Py=2(a* +d*) —6(a® 2+ b? d?) + 12(a® b? + ¢ d?) —5a® 2

+270? ¢ +36(ab + cd)bc 4+ 18abed.
The criticd line proposed by Wu, Wu and Blote now reads [125]:
01-P2+02-P2+03-PQ+04-Q2:0. (32

After an extensive search by mapping with all known exact reaults they proposed the numbers:
c1=1c0=—(4+3V3)/6, cs = —(1—9v3)/8, and c; = —3(3 — v/3)/8.

The initid slope of this critical frontier for smal H is —In(z.) where z. is the criti-
cd fugacdity of the nearest-neighbor excluson gas. Ther expression leads to the value z. ~
7.851 780 04 --- whichisin very good agreement with the value obtained from finite-size andy-
gs, namdy, z, ~ 7.851 725 175(13). The criticd line (32) is probably not the exact one but
certainly a very accurate gpproximation.

Comment. Hilbert's invariant theory amounts to considering /inear gauge-like symmetries
of themodd and the associated invariants. From the inverson reations one has further an infinite
discrete set of birationd non-linear symmetries, that one can couple with these continuous linear
groups. In fact, all the above andyses can be revisted by combining the gauge transformation
with the infinite discrete symmetries generated by the inversion relations of the sixteen- (or simply
eght)-vertex models. This would lead us to consider a unique “superinvariant” which is, in fact,
the modular invariant of the elliptic curves parametrizing the sixteen-vertex modd.

V-4. Hilbert’s syzygies and the honeycomb BEG model

To apply the syzygy consderdion to the BEG model, which is a 3-state gpin modd, one
needsto consder the O(3) gauge transformation and its associ ated invariants, but the construction
of the O(3) invariants isvery complicated. However, the day is saved, Snce there exists a mapping
between O(3) and d(2), and invariants for the later have been worked out by mathemdaticians a
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long time ago. While the mathematics to decipher the old reaults is involved, L. H. Gwa and
F. Y. Wu [146] have succeeded in carrying out such an analyds and deduced tha there are 5
independent invariants for the O(3) group. They next gpplied the andysis to the isotropic BEG
model on the honeycomb laiti ce [148], and found one of the invariants to vanish identically. The
remaning 4 invariants are then used to determine the criticad variety of the BEG modd, as in
the case of the O(2) gauge. The resulting dosed-form expression for the critical variety agrees
extremely wel with numbers obtained from a finite-size analyss, which they also carried out.

VI. Critical manifolds and critical varieties

A problem solver like F. Y. Wu fird triesto find the exact solution of a problem. Hetries to
“dig out” problems that can be solved. However since most of the problems one looks at cannot
be solved exactly, one then tries to sudy modes for which some exact results can be “savaged”.
This could be the criticd manifolds, which are submanifolds along which the modes are Yang-
Baxter integrable. In such cases the critical manifolds are, in fact, criticd varieties. For other
modelsthe criticd manifolds are algebraic varieties without hidden Yang-Baxter i ntegrability [79,
161].

For two-dimensiond lattice modes the situation is more specific. one can have some
“conformal prgudice” that criticd manifolds should be submanifolds where the modd has a
two-dimensional conformd (infinite) symmetry yielding some integrability in the scaling limit.
Therefore, as far as criticd manifolds are concerned, it is crucial to undergand the inter-reation
between 1) algebraicity consequences of Yang-Baxter integrability, 2) conformal integrability con-
sequences of atwo dimendond criticdity, and 3) s f-dudity.

Many criticdity conditions have been obtained, or smply conjectured, in the literature of
lattice modes in statistical mechanics [47, 65, 72-74, 79, 80], and all these conjectures were
algebraic [125]. A straightforward dtuaion corresponds to the case where the model possesses a
duality symmetry (see section (V)) for which itis dways possbleto give alinear representation of
this duality trandormation. One can sometimes find varieties which are globally invari ant under
this symmetry.

Let us, instead, consider the fixed points of the linear duality transformation, which belong
to some dgebrac vaiety (hyperplane). If the algebrai ¢ variety separates the phase diagram into
two disconnected parts and if one assumes that the critical temperature is unique, one can actudly
deduce that this algebraic variety is a criticd variety [79]. Of course if the dgebrac variety is
only globdly invariant (and not invariant point-by-point on the agebraic variety) one cannot draw
any cond uson.

In fact, for most of the time one is not in a situation where a Smple self-dud argument
dlows the determination of the critical points. A good example is the duality transformation
(31) for the sixteen-vertex modd for which self-dud arguments are insufficient. In fact there
exists a“ super-invariant” in this modd after taking into account the gauge (wesk-graph) dudity
symmetries (31) and the inversion relation symmetries!'6. But that is another story.

When the critical varidties are exact, they are almost always related to some integrability
of the model, the algebraicity thus being a consequence of the integrability. A paradigm is the

16 Remarkably this cons deration even extends the si(2) ® sl(2) weak-graph symmetry group to an si(2) ® sl(2) ®
sl(2) ® sl(2) symmetry group.
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gandard scalar Potts modd (see section (V1I-1)) which is integrable at criticdity. However, we
will give below, in the case of the two- and three-site interaction Potts modd [161], an algebraic
vaiety which is the critical condition [125] but is unrelated t0 any simple Yang-Baxter-like
integrability.

Throughout the years F. Y. Wu has obtained numerous results on critical varieties for two-
and three-dimensional spin modd s, and many related conjectures as well. One can only say that
the seeking of criticd manifolds and critical varidiesis a fascinating subject matter by itsdf for
sedaligs like Wu.

VI-1. Inversion relations, duality and critical varieties

The considerations of inversion relations has been shown to be a powerful tool for anayzing
the phase diagram of latice modd s and, particularly, for obtaining critica dgebraic manifolds in
the form of algebraic varieties (see (56) in section (VII-2)).

Let us congder the gandard scalar ¢-state Potts modd on an anisotropic triangular lattice
with nearest-neighbor and three-gpin interactions around up-pointing triangles [79, 161] as shown:

2
LSOO ION OO
ON N OO
NSO\ SN OO
ONONONONS
NSNS O OO

The partition function of the models reads:

Z = E H f190i.0, H 297} H eH300y,0, HeK(s"i"’j‘S"j"’k.

{o;} <i,j> <j,k> <k,l> A

Here the summation is taken over dl spin configurations, the firg three products denote edge
Boltzmann weights and the last product is over dl up-pointing triangles.
A duality trandormation exists for this model [ 79]. We introduce the following notati on:

r=ek, x; = efSi, 1=1,2,3
(33
y=xzx1 x2x3— (x1+ x2 +23) +2.
With the notation (33) the duality
— 2
[Ji‘i —>x;*:1—|—qxzy , y—)y*:q;,
D: A
i z —>x*:x1+x2+$3—2+q2/y, (39
T T2 T3
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and the partition transforms as

Z($1,.’172,l‘3,y): (y/Q)N'Z(wiawzaxgay*)a (35)

where N isthe number of dtes
Onthebasis of this dudity Baxter et al. proposed thet the criticd points are located on the

algebraic variety:
Ty 22 w3 — (1 + 22+ 23) +2—q =0, (36)

which corresponds to the set of fixed points of D. The criticd variety (36) is not only globdly
invariant under (34), it is alo point-by-point invariant, namely, every point on the variety is
invariant. In generd when an dgebraic variety is such that every point of the variety is invari ant
under a dudity symmetry, it is possible to argue, subject to some continuity and uniqueness
arguments, that the variety actudly corresponds to the criticdity variety. This has been done
by Wu and Zia [125] for ¢ > 4 in the ferromagnetic region. It is important to note tha the
criticd variety (36) is not an algebraic variety on which the modd becomes Yang-Baxter (star-
triangle) integrable. This is an interesting example of a model where algebraic criticdity does
not autometi caly imply Yang-Baxter integrability.

Comment. In ditable varidbles the duality trandformations can be seen as a linear trans
formation. There are two globally invariant hyperplanes under D: y = +qg and y = —q. The
(ferromagnetic) criticdity variety (36) corresponds to y = +¢q. The second hyperplane y = —¢q
is not a point-by-point invariant athough it is globally sdf-dual. It is not a locus for criticd or
transition points.

Thisillugrates a fundamental question one frequently encounters when trying to andyze a
latice modd: is the critical manifold an dgebrac variety or atranscendentd manifold? It will
be seen that a first-order trangtion manifold exists for this modd for ¢ = 3, and its algebraic or
transcendentd gatusisfar frombeing clear (see[ 166] and (67) in section (VII-4-3)). The existence
of such a very large (nonlinear) group of (birationa) symmetries provides drastic condraints on
the critical manifold and therefore the phase diagram.

There exist three inversion rdations associaed with the three directions of the triangular
latice for this modd [161]. For instance, the invers on relation which Sngles out direction 1 (see
figure 1) isthe (involutive) rational transformation I:

(xz1 —1)%(21 + q—2)
(xa? +z21(q—3) —q+2)(21 — 1)’
z1(r —1) z,—1 r;—1
rir—1 " x3(xz — 1) z2(xa; — 1))

Il : (.’E,SCl,.’L'Q,.%’E;) — <
(37
2—q—z1+

These three inversion reations generate a group of symmetries which is naturdly represented in
terms of birational transformations in a four dimensiond space. This infinite discrete group of
birational symmetries is generically a very large one (as large as a free group). The algebraic
variety (36) is remarkable from an algebraic geometry viewpoint: it is invariant under this very
large group generated by three involutions (37).

In this framework of a very large group of symmetries of the modd, an amazing situation
aises. the onefor which ¢, the number of gates of the Potts modd, corresponds to Tutte-Beraha
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numbers ¢ =2+ 2 cos(2m /N') where N is an integer. For these sdected numbers of ¢, the group
of birational trandormationsis generated by generators of finite order: it is seen as a Coxeter group
generated by generators and relations between the generators The elements of the group can be
seen as the words one can build from an d phabet of three letters A, B and C' with the constraints
AN+ = 4, BNt = B, ¢Vt = (. Sincethe generators A, B and C' do not commute (nor
does any power of A, B and C) the number of words of length L still grows exponentidly with
L (hyperbalic group). Among these vaues of ¢, two Tutte-Beraha numbers play a specid role
¢ =1and ¢ = 3. For these two vaues the hyperbolic Coxeter group degenerates'” into a group
isomorphic to Z x Z.

For the standard scdar neares-neighbor Potts mode the Tutte-Beraha numbers correspond
to the vdues of ¢ for which the criticd exponents of the modd are rational (see (53) in section

(VII-)).

VI-2. The exact critical frontier of the Potts model on the 3-12 lattice

F. Y. Wu et al. conddered a generd 3-12 | atice with two and three-site interaction on the
triangular cdls [155]. This modd has deven coupling constants and includes the Kagome lattice
asa pedia caxe.

In a gpecial parameter subspace of the modd, condition (38) below, an exact critical frontier
for this Potts modd on a general 3-12 lattice Potts modd was determined. The Kagomé latice
limit is unfortunately not compatible with the required condition (38).

The condition under which they obta ned the exact criticd frontier reads:

2?22 232} —x 11 2o w3 - (11 T2 + T2 73 + 11 T3 — 1)

o1 +x2+ 23 +q—4) - (T122 + 2223 + 1173 +3 — ) (38)
—qzy w3 — (22 + 23+ 23) + > — 69+ 10=0.
Thisisnothing but the condition which correspondsto the star-triangle relation of the Potts model.

Comment. One can show tha condition (38) is actually invariant under the inversion relation
(87) of the previous section (V1-1), and therefore, since (38) is symmetric under the permutations
of K1, K2 and K3, under the three inversions generatiing the very large group of birationd
transformations previously mentioned in section (VI-1). More generally, introducing D;, D, and
Ds:

Di=x1+x2+x3 —xx122003+q—2, D3s=zxx1T2T3— 1 T2 T3,
Do=z1+x+r3+xr10203—1— (azlxg—l—xgxg, —|—:L‘1x3),
one can show tha the algebraic expresson

Dy Dy
D1Ds; —q- D3

isinvariant under the three inversion reations and the large group of birational transformetion they

Il($1,$2,$3,l‘) (39)

17 Up to semi-direct products by finite groups
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generate, the (star-triangle) condition (38) corresponding to Iy (1,22, 23,2) = oo, namdy's
Dy Dy —qD3 =0.

When z =1, or ¢ = 1 or 3, thereare additiond invariants of the three inversions (37). For
instance, for =z = 1, one can build an invariant from a covariant we give bdow (see (57)). For
q = 3, introducing

Ds = x1 w023 - (2323232 — x3xx} — 2daa?d — 23ade + 23+ 23+ 23 - 1),
one finds that the expresson:

D3 . Dy

Io(z1, 22, 23, ) = 35.D5

is invariant under the three inversions (37). One can try to find the manifold corresponding to
the firg order transition (see (VI1-4-3) below) in the form F(I;,I>) = 0. It still remains an
open question whether this variety is dgebraic or transcendental. The x = 1 limit corresponds to
I, = +1. The condition Ix(z1,z2,x3,2) = 1 yidds z; = z2 = x3 = 0.215 816 (to be compared
with 0.226 681 from (57) in section (VI11-2) beow), still different from 0.204 (see (66) in section
(VI11-4-3) bdow), which is beieved to be the location of the first-order transition point.

VI-3. The embarrassing Kagomé critical manifold

At the end of the 80's there was a surge of interest in the Kagomé lattice coming from
the theoretica study of high-T, or strongly interacting fermions in two dimensions (the 2D Hub-
bard modd, resonating vdence bond (RVB), ground state of the Heisenberg model). The two-
dimensond Gutzwiller product RVB ansatz strategy promoted by P. W. Anderson for describing
grongly interacting fermions seemed to fail for regular lattices (square, triangular, ...). Thus,
because of its ground gate entropy and other specific properties, the Kagomé lattice seemed to be
the “last chance’ for the RVB gpproach.

Since one can obtain a critical frontier (38) for the generd 3-12 lattice model, and snce
the 3-12 model includes the Kagome lattice as a spedial case, it is tempting to try to obtain the
critica frontier for the Potts Kagomé lattice.

The Kagomé Potts criticad point was first conjectured by Wu [74] as

WP -6t +22-q) ¥ +3B8-2¢q) -y*—6(¢—1)-(¢—2)y

, (40)
—(g—2)(¢"—4¢+2)=0,

which gives, for ¢ = 2, the correct critica point y* — 69> —3 = 0 and for ¢ = 0 gives (a0

correctly) y = 1. Furthermore, for large ¢, y behaves like , /g, as it should. However in the perco-

lation limit ¢ — 1, it gives apercolation threshold p. for the Kagomélattice of p. = 0.524 43- - -,

which compares to the best numerical estimate!® obtained by R. M. Ziff and P N. Suding, nanely

p. = 0.524 405 3 - - -, with uncertainty in the last quoted digit. Wu’'s conjecture is thus wrong,

18 For z = 1 (no three-spin interaction, D3 = 0), condition (38) factorizes and one recovers the ferromagnetic
critical condition (36) of the g-gate Potts model on an anisotropic triangular lattice.

19 R, M. Ziff and P. N. Suding, Determination of the bond percolation threshold for the Kagomé latice, J. Phys
A 30, 5351 (1997) and cond-mat/9707110.
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but by less than 5-10~°. Some very long high-temperature series of |. Jensen, A. J. Guttmann and
I. G.Enting on the g-state Potts model on the Kagomé lattice further confirm that the conjecture
is wrong for abitrary values of ¢q. Neverthdess the Wu conjecture remans an extraordinary
goproximeation.

Itisabit surprising that no exact result on integrability (along some algebraic subvariety)
or exact expresson for the criticad variety is known for the standard scalar Potts modd on the
Kagome lattice, as generdly one expects that the integrability on one lattice, say the square lattice,
implies integrability for most of the other Eudidian lattices. This is certainly not the case for the
Kagome latice

VII. Potts models

The Potts mode encompasses a very large number of problems in datistical physcs and
latice datidics. The Potts model, which is a generdization of the two-component 1sng mode
to ¢ components for arbitrary ¢, has been the subject matter of intense interest in many fidds
ranging from condensed métter to high-energy physics. It is also relaed to coloring problems in
graph theory.

However, exact rexults for the Potts mode have proven to be extremey dusve. Rigorous
results are limited, and indude essentially only a cdosed-form evauation of its free energy for
q = 2, the Isng model, and critical properties for the square, triangular and honeycomb lattices
[70]. Much less is known about its correlation functions

VII-1. Wu’s review of the Potts model

F. Y. Wu's 1982 review of the Potts modd is very well-known [89] (see dso [99]). It is
an exhaudive expository review of most of the results known about the Potts modd up to 1981,
atime when interest in the model began to mount. It has remained extremdy valuable for anyone
wishing to work on the gandard scdar Potts modd. In particular, it explans the ¢ — 1 limit
of the percolation problem (see also [64]), the ¢ — 1/2 limit of the dilute spin glass problem,
and the ¢ — 0 limit of the res gor network problem; the equivaences with the Whitney-Tutte
polynomial [89] (see section (7.7) and dso [57])) and many other rdated moded s are also detailed.
For instance, the Blume-Cgpd and the Blume-Emery-Griffiths modd (see (25) in (1V-3)) can dso
be seen as a Potts modds. More generally, it is shown that any system of dasscd ¢-state spins,
the Potts modd included, can be formulated as a spin (¢ — 1) /2 system.

However, WU's review was not written in time to incdude discussions of the inversion
functional relations. For the two- and three-dimensional anisotropic ¢-state Potts modds, the
partition functions satisfies, regoectively, the functiond rdations:

Z(efr, ") Z(2— g — e e R = (1 — 1) - (1 - g — ™), (41)
Zcubic(eKl,eKQ,eK3)  Zewbic(2 — q — eKl, e_K2,eK3) = (eKl -1)-(1—q— eKl). (42
There are also permutation symmetries like, in 3 dimensions, Zeupic(eX1, €52, e53) = Zypic(ef3,

ef1 ef2) = 7, i (eF3, eK2, K1), Combining these relaions one generates an infinite set of
discrete symmetries which yiedd a canonical rational parametrizetion of the Potts modd at
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and beyond® T = T, and shows dearly the role played by the Tutte-Beraha numbers. These
infinite sets of discrete symmetriesimpose very severe constraints on the critica manifolds and the
integrability (see sections (6), (VI-1)). An inversion reaion sudy has subsequently been carried
out by F. Y. WU et al. [161].

Graph theory plays a central role in WuU's work on the Potts modd. The Potts partition
function can be written as [89]

Z=26(¢,K) = > _ (e = 1)'¢", 439
G'CG

where K = J/kT, the summation is taken over all subgraphs G' C G, and b and n are, respec-
tively, the number of edges and dusters, including isolated vertices of G'. The duality relation
of the Potts model can be obtained from a graph-theoreticd viewpoint by usng the Euler reation
c+ N =b+n, where c is the number of indgpendent circuits in the subgragph G/, and N is the
tota number of verticesin G. This leads to the dudity relation

ZG(Qv K) = ’U|E‘ : ql_ND “Zp (qa K*)a
where D is the grgph dual to GG, and the dual variable K* is given by:
(e =1)- (" ~1) =q. (44

The generdization of the duality to multisite interactions is dso given in the review.
A consequence of (43) is tha one finds the following connection with the chromatic
polynomial Pg(q) on G by taking the antiferromagnetic zero-temper-ature limit K — —oc:

Za(q, K = —o0) = Pg(q).

The (high- and low-temperature) series expansions are described from a graph-theoretica
viewpoint. For ingance, the high-temperature expansions are written in the (Domb) form:

qg—1
Za(q, K) = q—;—v'(1+fij)7 fij =

;=0 <ij>

v
q+v

-(¢6(03, 95) = 1). (45)

The introduction of these f;; variables comes from the fect that

q—1
Z fij =0, (46)

0;=0

and, consequently, all subgrgphs with vertices of degree 1 give rise to zero contributions The
number of subgragphs that occur in the expangon is therefore greetly reduced.

The location of the critical points of the anisotropic Potts modd on a square, triangular and
honeycomb lattice were given in terms of the variables 2, = (e~ —1)/, /7 (see also (61) below).

20 At T = T, one recovers the well-known rational parametrization of the model (accurring in (52) see bel ow).
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These expressions areinvariably the various special cases of WU's conjecture [89] for the criticd
point of the more general checkerboard lattice, namdy,

Va4 T1+ T2+ T3+ T4 =31 T2 T3 + T1 T2 Ta + T1 T3 T4 + T2 T3 T4

(47)
—l—\/q_- X1 T2 T3 T4.
Using the notation a = eX1, b = X2, ¢ = ef3, d = €4, this critical dgebraic variety (47)
reads:

—(q—1)(q—3)+(a+b+c+d)(2—q) — (ab+ac +bc + ad + bd + cd) + abed = 0.  (48)

The criticd point of a mixed ferromagnetic-antiferromagnetic square Potts modd consdered by
Kinzd, Sdke and Wu [82]:

(ef1—1) - (ef2 +1) = —q, (49)

was dso given. While this expression coincides with the critical point for ¢ = 2, it is incompdtible
with the inverdon relaions (41) for generd ¢, and hence is not a criticd variety. Thisis because
the infinite discrete group of symmetries generated from the inversion relaions of the square Potts
mode transforms (49) into an infinite set of other algebraic varieties, and hence cannot be criticd.
Generally, critical manifolds need to be (globally) invariant under this infinite set of trans
formations (discrete symmetries). Actually, for the anisotropic square Potts modd, for instance,
one can show that, when q is not a Tutte-Beraha number?!, the only algebraic varieties compatible
with the inversion relation symmetries (41) are given by the well-known ferromagnetic condition:

(e =1)- (e 1) =g, (50)
and the antiferromagnetic condition obtained by R. J. Baxter:
(1 +1) - (ef2 +1) =4 —¢, (51

(for which the model is exactly soluble). Note tha these two varieties can be deduced from the
conjecture (47) by taking 1 = x3 and z2 = x4. In this limit, the criticd condition (47) factors
into conditions (50) and (51). In fact, it has Snce been shown tha the criticd condition (47)
corresponds to an integrability condition of the checkerboard Potts modd.

At criticality the Potts modd is exactly solvable. Let us give the example of the square
latice. The free energy of the isotropic Potts modd a the ferromagnetic critical point T' = T,
reads:

© _—nb
flg,T) = +9+2-Ze tanh(n9)7 for: ¢>4
=1

n

N | —

21\When ¢ is a Tutte-Beraha number the generically infinite discrete group I' generated by the inversion rd ations
on the modd becomes afinite group, and many agebraic varieties can be invariant under such a finite group: asimple
way to build such agebraic I'-invariants amounts to performing summations over the group I
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flg,Tz) =In(2) +4-1n (%) , for: g=4 (52
oo sinh((m — p)x
f(%TC) = %—’— /—oo %tanh(um) %7 for: q<4

where the varigbles 6 and . correspond to the rational parametrization of the modd at 7' = T¢,
namely cosh(#) = /q/2 or cos(p) = /q/2.

The exact critica exponents of the standard scdar Potts modd are also givenin this review.
These critical exponents, which are rational when q is the Tutte-Beraha numbers, are:

oy = 2 1220 ﬁ_l—f—u T du+d?
I T DT e T R A O (R
CB-u)-(5-u) ., 2-u B 1 —wu?
=T VTV s asw "TTa o
where the parameter v isrdaed to ¢ by:
U
2 cos (7) =4, or: 2+ 2cos(mu) = q. (53)

These results played a key role in the emergence of the conformal theory.

VII-2. Comments on the checkerboard Potts model

The Wu conjecture (47) for the criticdity condition of the ¢-state checkerboard has snce
been confirmed from an inverson relaion andysis To discusstheinverson reation we introduce
vaiables u, v, w, z, t defined by:

Ko —t K1 —t

© :t v y € :t v yo (54)
ef1+g—1 1—t3u’ ef24q—1 1 —t3v

_ 43 43
or: 6K1:GZL, eKQZb:L,"'
t- (1 —ut) t-(1—ut)
with:  t+t71 = /g
In these variables the criticality condition (47) reads

uvwz = 1. (55)

Using the inversion trick?2, the partition function of the checkerboard mode a criticality can be
written in a multiplicative form

22 With the well-suited variables (54) theinvers on trick naturally yields exact formulae as products over an infinite
discrete group, in this case Eul erian products (56).
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2ty 0,0, 2 )ps—t) = o - F(u) - F(1/u) F(v)-F(1/v)

t2 1—tu 1—tv
(56)
F(w) - F(1/w) F(2)-F(1/z2)
1—tw 1—tz

o0 4n—1
1-—t¢ U
where F(u) = m
n=1

This formulais reminiscent of (10) for the Sx-vertex model (see section (Il11-1)), asit should since
it also foll ows from the Potts and six-vertex modd correspondence (see section (V11-3) below).

Note that, in the anisotropic case w = u and z = v, the critical condition (55) factorizes
into uv = +1 and ww = —1 which are, regectively, the aforementioned ferromagnetic and
antiferromagnetic criticdities (and integrability).

The checkerboard modd reduces to a honeycomb modd, and hence a triangular modd by
taking the dual, if one of the four interactions vanishes. Therefore it is useful to re-examine the
triangular lattice limit of the checkerboard variety. P Martin et al. have esteblished two varieties
for the triangular Potts modd : a ferromagnetic variety which is precisely (36) with x = 1, and an
antiferromagnetic varigty.

(q—2)* =2+ (a+ b+ c+ abc)(qg— 2) + 2(ac + ab + be) = 0. (57)

These two algebraic varieties can be written, respectivdy, as uvw = +t and u v w = —t, which
can be deduced by taking, repectively, d =1 and d = —(q — 2)/2 in (48).

For ¢ = 3 the antiferromagnetic algebraic variety yidds an algebraic critical point very
dose to the first-order transition point for the three-state Potts modd [91, 143].

Along the wdl-known ferromagnetic variety (44), which for the isotropic model reads
(e —1) - (X" —1) = g, it is of interest to point out the existence of some “hidden” dudlity
K — KT, such tha the antiferromagnetic condition (51) reads K, = K. This hidden dudity is
the involution:

K
Kkt _ e +q—3
¢ eK+1 7 8
Note that the dudities (44) and (58) commute, and their product gives the involution:
*T - * K
B N (k) R P (59)

The ferromagnetic critica variety of the anisotropic triangular Potts model (36) now transforms
into the anti-ferromagnetic critical variety (57) under (59). One dso finds that the ferromagnetic
critical variety of the anisotropic square-lattice Potts model (50), and its anti-ferromagnetic critica
vaiey (51), are both invariant under transformations (44), (58) and thus (59). More generdly;,
for the checkerboard modd, one finds that (48) is invariant under both (44), (58), and thus (59).
These reaults can be very smply seen in the varidbles u, v, w, z. For example, (59) is simply
u — —u. Involutions like the “hidden dudity” (58), or like (59), do not yidd smple functiond
equations on the partition function like the KramersWannier duality does (see (44) and (44)).
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They are not symmetries of the modd, but, rather, “symmetries of the second kind”’: symmetries
of the symmetries.

VII-3. Equivalence of the g-state Potts model with a six-vertex model

Recdl that the partition function of the standard scdar ¢-state Potts modd can readily
be written as a Whitney-Tutte polynomid. In a further sep, Temperley and Lieb used operator
methods to show that, for the square latice, the Whitney-Tutte polynomial is, in tumn, equivalent
to a staggered ice-type vertex modd.

In a classic paper [57] by R. J. Baxter, S. B. Kedland and F. Y. Wu, this equivalence is
rederived from agraphical goproach (see (72) in section (VI1-7)), which iseasier than thealgebraic
method of Temperley and Lieb and is goplicable to an arbitrary planar graph. In particular, the
equivaence was extended to triangular or honeycomb Potts modes and a staggered six-vertex
model on the Kagomé lattice.

The equivalences are as follows (page 404 in [57]). For the square, triangular and honey-
comb latices, the equivalent ice-type vertex modd has the Boltzmann weights:

(whw?a e awﬁ) = (17 17m7“7x7’7AraB7’)a (60)

where (4,, B;) ae repectively, for the square, triangular and honeycomb lattices:

1 Ty 1 er 1 Ly 2
<;+azr~s,?+s), <;+$r't’t_2+t)’ <t—2+a?r-t,?+t>,

with:
efr —1
Va

These mappings play an important role in the Lee-Yang theorem to be discussed later (see section
(VII-5-1)).

s=é’, t=¢"3, 2cosh(f) = Va, T, = (62)

VII4. Miscellaneous Potts model phase diagrams

VII4-1. Potts model with competing interactions

Kinzd, Selke and Wu [82] have studied a square lattice Potts modd with the competing in-
teractions dluded to earlier in section (VII-1). A Smilar model in 3 dimensionswith next-neares-
neighbor competing interactions has been studied by J. R. Banavar and Wu using mean-fied
theory and Monte-Carlo simulations [97]. A rich phase diagram was found, and they established
positively that the behavior of the 4-gate three dimensional Potts modd is mean-fied-like.

VII4-2. First-order transition in the antiferromagnetic Potts model

F. Y. Wu ef al. have analyzed secificdly the three-state triangular Potts modd and
congdered the (tricky) tricritical behavior of this modd [166].

Recdling the results of section (VI-1), and in paticular the special role played by ¢ = 3
for the two- and three-site interaction Potts model (33), Monte-Carlo calculations of the ¢ = 3
isotropic limit of the modd have been performed [144]. These studies confirmed the existence
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of an antiferromagnetic critica point (in addition to the well-known ferromagnetic one), probably
corresponding to a firg-order transition occurring near the variety = = 1 isotropic region.

For the triangular Potts modd with two-spin interactions, Monte-Carlo caculations [166]
confirm the localization a ~ 0.204 £ .003 for a first-order transition point. This transition point
is confirmed to be different from the algebraic antiferromagnetic point localized a a = 0.22665
derived beow (see (67) bdow).

The antiferromagnetic transition point a ~ 0.204 4 .003 can be interpreted as beonging to
some singular manifold in the parameter space of the modd with two- and three-spin interactions
This angular manifold corresponds to a firg-order transition frontier. Recdling discussions in
section (VI-1), the question of the dgebraic or transcendentd status of this first-order transition
frontier gill remains open.

VII-4-3. Chiral Potts models

F. Y. Wu et al. have andyzed a particular two-dimensond chiral Potts mode, namdy, the
3-date chird Potts, in order to understand the rdaion between the (higher genus) integrability
and criticality conditions [143]. On the checkerboard modd the higher genus integrability of the
3-date chird Potts modd is restricted to the following dgebrac variety:

3-(Qi PoP3Pi+ QP P3P+ Qs PP P+ Q4P P )

—(P1Q2Q3Qu + P2Q1Q30Qs + P3Q1 Q2 Qs + P1Q1Q2Q3) =0, )
where:
F=Ffi—3h, Qi=/fi—2g +3h, hi = a3 b7 ¢ (63
fi=aibici (a}+b}+c}), gi=alb} +b}c +ctal,

where a;, b;, ¢; denote the three possible vaues of the four edge Boltzmann weights w; (o, — o7)
of the checkerboard lattice:

a; =w;i(0), b =wi(l) =wi(-2), ¢ =wi(2) =wi(-1), i=1,2,3,4.

Recdling the conformd theory prejudice (criticdity in two dimensons versus integrability), one
can also wonder if an integrability condition like (62) could correspond to a criticd subvariety
of the phase diagram. Let us consider the standard scalar limit of this model. The higher genus
integrability condition (62) reduces to the criticd condition (47) or (48) of the dandard scalar
Potts mode on the checkerboard lattice for ¢ = 3:

abed — (ab+ ad+ ac+ bc+bd + cd) — (a + b+ c+d) = 0, (64)
together with another d gebraic variety:

abed+2 - (acd + bed + abd + abe) + ab + bd + c¢d + ac + ad + be

65
—(a+b+ct+d —2=0. ()

With the variables (54) taken for ¢ = 3, the critical condition (64) reads uvwz = +1, and
the dgebraic condition (65) reeds wwvwz = —1. Conddering the similarity of (65), namdy
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uwvwz = —1, with (64), namely uvwz = +1, it is tempting to imagine that (65) could also be in
some domain of the parameter space a, b, ¢, d, acritical vaiety.

In the isotropic triangular and sandard scdar limit the higher genus integrability condition
(62) factorizes into two conditions. One is the ferromagnetic critica condition of the standard
scdar Potts modd (see dso (36)) 2 —q—a—b—c+abc =0 (or uvw = t) with ¢ = 3, the
other one is

—22 -2+ (a+b+c+abc)g—2)+2(ac+ab+ bc) =0,
(¢ —2) ( (g —2) +2( ) (66

or: uvw = —t,
with ¢ = 3. In the isotropic limit and for ¢ = 3, these two algebraic vari eties give, reectivey
a®—~3a—-1=0 ad a®+6a®>+3a—1=0, (67)

yidding the ferromagnetic criticd point, a = 1.8793 and an antiferromagnetic transition point a
a = 0.22665. This antiferromagnetic point must be compared with the antiferromagnetic criticd
and first-order trandtion point a ~ 0.204 4+ 0.003 obtained from series andysis by I. G. Enting
and F Y. Wu [91].

VII-S. Zeros of partition functions of Potts models

In 1952 Yang and Leeintroduced the concept of considering the zeros of the grand partition
function of statisticad mechanicd sysems, a consderdion that has since opened new avenues to
the study of phase transitions. While Yang and Lee consdered the zeros in the complex fugacity
plane, or equivaently the complex magnetic fidd planein the case of spin systems, Fisher in 1964
called atention to the rdevance of the zeros of the canonicad partition function in the complex
temperaure plane. Genedly speaking, there exist severd different kinds of exact results on
lattice modds in statigicad mechanics. Idedly, one would like to obtain the exact, closed-form,
expressions of thermodynamic quantities such as the per-site free energy, the surface tenson,
goontaneous magnetization, and correation functions. A knowledge of these exact expressons
leads to a complete description of the system induding the phase boundary (critica frontier)
and the location of the zeros of the partition function. However, exact evaluaions of physca
guantities are not dways possible. In such cases one can sometimes determine the critical frontier
from properties such as the dudity and the inversion relaions, or andyze the andyticity properties
of the free energy by locating the zeros of the partition function. But other than in the case of
ome Pecia one-dimensional modd, exact results on the zeros have been confined mostly to the
Ising modd.

VII5-1. Fugacity variable for checkerboard Potts model, staggering field, Lee-Yang
theorem, duality

Le us consider a g-state Potts modd on a square, or triangular, lattice, with no magnetic
fidd. Since one does not have amagnetic field, one does not expect a Lee-Yang theorem to exist.
Actually this is not true: thereisa*hidden” fidd for the standard scalar ¢-state Potts model !

A. Hinterman, H. Kunz and F. Y. Wu [70] combined the equivalence of the Potts mode
with a staggered six-vertex modd , together with the Lee-Yang circdle theorem due to Suzuki and
Fisher (see dso [30]), to deduce the criticd variety of the Potts modd. In this consideration
a fugacity variable 2 is associated with the staggering fidd that occurs in the aforementioned
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correspondence. In terms of the variables (A,, B,) given in (V11-3), the fugacity variable = reeds
respectively, for the square and triangular lattices:

4 A1A 6  A1AxAs

z _31327 : _BlBQBZ%.

(68)
A condition on the Suzuki-Fisher extenson of the Lee-Yang theorem and for real temperatures
requires that we mugt have ¢ > 4.

All these reaults can be generdized to the ¢-state Potts modd on the checkerboard lattice.
Not surprisingly, (68) is generdized into:

s Ao Ag A,
B1By B3 By

Note that the duality (44) of the Potts modd has a very simple representation in terms of these
fugacity variables z : z — 1/z.

The zeros of the partition function of the checkerboard model will later be seen to lie on
|z| = 1, as they should from the Lee-Yang theorem which applies when ¢ > 4. Remarkably, it
was &dso seen later by other authors, that the |z| = 1 condition can be extended to ¢ < 4, and tha
one then recovers the wel-known Fisher’s circles for the Ising modd !!

The fugadity variable z is a fundamental variable. It corregponds to a crucial combination
of variables encgpaulding the action of the infinite discrete group generated by the inversion
relations. The criticdity conditions corresponding to z = 1 and z = —1 seem dso to play some
role (s2e (65) for ¢ = 3 in section (V11-4-3)), but not a critica or transition point role. In terms of
the variables u, v, w, z of section (V1I-4-3), the fugacity variable z is Smply the product u v w z.

VII-5-2. Zeros for the square lattice: A graph-theoretical viewpoint
Following F. Y. WU's gpproach, let us consder the ¢-state Potts model on the square lattice
from a graph-theoreticd viewpoint with the partition function (43). Introducing the variable

z= (" - 1)/Vg (69)
the partition function (43) can be written as a polynomial in x
E
Z =Pg(g,r) = Zcb(q):cb, whee  ¢(q) = ¢"? Z 7"
b=0 &ca

where the second summation is taken over dl G’ C G for afixed b. Then, the dudity rdation
(44) can be rewritten as a dudity relation for the polynomid Pg [58]:

PG(Q7 :1:) = qN_l_E/2 :EE : PD (Qa :I"_l)' (70)

In the case of the square lattice for which D isidenticd to G in the thermodynamic limit regardiess
of boundary conditions, (70) implies tha the system is critical & z. = 1. For finite sdf-dud
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|attices relation (70) gives an example of a sdf-dud polynomid?3 [197].

To describe the dendty of zeros on the Lee-Yang circle, we introduce an angle # associated
with the location of the zero on the unit circle. For small @ we have g(6) = a|§|'~*@), forq 4,
and g(f) = e(q), when ¢ > 4. This leads to the spedific hea singularity |t|~*@), for¢ 4, and a
jump discontinuity of e(q) in U for ¢ 4. This isthe known criticad behavior of the Potts model
[89].

The zeros of the partition function of the ¢-state Potts model on the square latice have been
evaluated numerically [170]. On the basis of these numericd results, it was conjectured [170]
that, for both finite self-dud lattices and for lattices with free or periodic boundary conditions in
the thermodynamic limit, the zeros in the Re(x) > 0 region of the complex = plane are located
on the unit circle |z| = 1.

VII-5-3. Zeros for two- and three-spin interactions on triangular lattice
We now return to the g-gate Potts model on the triangular lattice with two- and three-site
interactions in alternate triangular faces [79] (section VI-1)). The partition function is:

Z(xvxlvx%x?)):ZW(G)a where:
G

W(G) = H(l + Uéabc)(l + vlébc)(l + U25ca)(1 + v35ab)7

A
and v=el -1, v =effi — 1,

and the product is taken over dl up-pointing triangles It is convenient to represent termsin the

expansion of the partition function by graphs G in which the up-pointing triangular faces are

ether occupied by a solid triangle with a fugecity v or unoccupied.

We next evaluate the weight W (G) asociaed with the graph G. It is dear that each solid
triangle contributes a factor v to W (G), and each bond a factor v;. In addition, by including the
associated bond factors, each olid triangl e contributes an additiond factor (1 4+ v;)(1+ v2)(1+
v3) = ef1+K2+Ks - Consider next the ¢ dependence of W (G). For the graph representing N
isolated points we have simply W (G) = ¢”. For other graphs, each triangle reduces the factor
¢~ by ¢?, and each bond by ¢. But whenever the triangles and bonds dose up to form a circuit?*,
this restores a factor ¢, due to the overlgpping of one lattice site summation. Thus we have

v ™ o1 vy 12 wy1%
7 — qNZ _26K1+K2+K3:| _1:| _2:| _3:| qc, (71)
o 4 gl 9] 4«
where the summation is over the 2™V graphs G, m i sthe number of solid triangles, b; is the number
of bonds with weight v;, and ¢(G) is the number of independent circuitsin G. Expresson (71)
generates the hi gh-temperature expanson of the partition function.
In the case of pure three-site interactions, (71) reduces to

23 A polynomia P(z) in z is self-dual if it is proportional to P(1/z). Self-dual polynomids occur naturaly
in lattice models in gatistica physcs and in restricted partitions of an integer in number theoary (see section (V111-3)
below).

24 Here, we use the term circuit in the topological sense that solid triangles can be regarded as sars having three
branches, each of which can be connected to ather triangles and bonds
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Z=¢"> (w/q)" D¢, where w=(e"-1)/q.
G

For pure three-site interacti ons, the partition function is sdf-dud and the critical variety
assumes the simple form w = 1. On the basis of a reciprocal symmetry and numerical results
Wu et al. [170] conjectured that zeros for the three-dte Potts modd (in up-pointing triangles)
lie in the thermodynamic limit on the unit circle |w| = 1, as well as a line segment on the red
negative axis.

VII-5-4. Density of Fisher zeros for the Ising model

One trademark of F. Y. WuU's research is that he often looks a old problems and finds new
life or new solution that others have naot previously seen. A good example of a new look at an
old problem is the density of Fisher zeros for the Ising modd, which is the ¢ = 2 Potts modd.

In 1964 Fisher pointed out that in the thermodynamic limit, the zeros of the Ising partition
function for a square lattice lie on two crcles, now known as the Fisher drcles, in the complex
tanh K plane, where K is the nearest-neighbor interaction. However, Fisher had not made the
argument rigorous and, furthermore, no one had bothered to look into the distribution of the zeros
on the circles, except a smdl angles which dictates the Ising critical behavior.

Both of these two deficiencies have been rectified by W. T. Lu and F. Y. Wu. Firg,
by considering the zeros of the Fisher zeros for the Ising modd on finite sdf-dud lattices, Lu
and Wu [190] established rigoroudy that, indeed, the Fisher zeros gpproach two cirdes in the
thermodynamic limit. In a subsequent paper published in 2000 [202], they deduced the dose
form expression for the dengty of the Fisher zeros for many regular two-dimensional lettices, thus
completing the story of the Fisher zeros some 25 years after it was firg proposed!

VII-6. Duality relation for Potts correlation functions

VII-6-1. Correlation dualities

Dudity considerations are not often applied to corrdation functions [133], but F. Y. Wu
initisted a new method for generating dudity relationsfor corrdation functions of the Potts modd
on planar grgohs In a pioneering paper [183], he obtaned dudity rdations for 2- and 3-point
corrdation functions, for spins residing on the boundary of alattice. The consideraion was soon
extended to n-point correlations [187, 189] and to the case where the spins reside on 2 or more
facesintheinterior of the latice [206]. A graph-theoreticd formulation of the results in terms of
rooted Tutte polynomids (see section (V11-6-2) below) was adso given [186, 187]. In addition, C.
King and Wu [206] showed that, generally, it is linear combinations of correation functions, not
the individual correations, that are related by dudities

VII-6-2. Correlation functions as rooted Tutte Polynomials

As previously mentioned, the Potts partition function is dso the Whitney-Tutte pol ynomid,
or in short, the Tutte polynomial, considered in graph theory. In one further gep, F. Y. Wu, C.
King and W. L. Lu formulated the Potts corrdation function as arooted Tutte polynomial [193].

In grgph theory a vertex is rooted if it is colored with a prescribed (fixed) color and a graph
isrooted if it contains a rooted vertex. If one interprets the color of a site (vertex) as spin states,
then the Potts corrdation functions for which the spin states of given dtes are fixed can naturdly
be formulated as rooted-Tutte polynomials. Thisisthe basisof their graph-theoretical formulation
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of the Potts correlaion function, from which duality rdaions of the Potts corrdations become
transparent and can be analyzed [193].

VII-7. Potts model and graph theory

F. Y. Wu has written severd review papers dedicated to the andysis of the Potts modd
from agrgph theoretical viewpoint [57, 71, 117, 122]. The mog important oneis the classic paper
[57] written in collaboration with Baxter and Kdland alluded to above, which gives the graphicad
congruction of the equivalence of the partition function of the Potts modd with an ice-type modd
[57]. This derivation simplifies the algebraic method of Temperley and Lieb, which is based on
the Temperley-Lieb algebra®:

Ugm = \/(? Uii+1,
Uiic1 - Uiiv1-Uiji—1 = Ui, Uiit1-Uii-1 - Uiit1 = Uiy,
Uiiv1-Ujjr1 =Ujj+1 - Uiina if ‘Z — j’ > 3,

and goplies to an arbitrary planar graph. This then opens the door for anayzing the triangular
and honeycomb Potts models.

Another important graphicd analyss of a Potts modd is the joint work with J. H. H.
Perk [103, 104] on the non-intersecting string (NIS) modd of Stroganov and Schultz, the dose
packed loop modd. The NIS model formulaed by Perk and Wu in [103] turns out to be nothing
but the bracket polynomid introduced by L. H. Kauffman in his state-modd formulation of knot
invariants. This fact offersa mog naural approach to knot invariants from a gatistical mechanica
viewpoint [154].

VIIIL. Other miscellaneous topics

F. Y. Wu has worked on a diverse array of topics in mathematics and mathematica phys cs.
In this section we present a random choice of topics that are not incdluded above.

VIII-1. Topics in graph theory

F. Y. Wu is fond of graphs and has made many contributions to grgph theory. A fine
example is the aforementioned introduction of the rooted Tutte polynomial. Even when Wu does
not obtain new results, he triesto provide simpler derivations, or find new consequences of known
results. A good example is his work on random graphs [92].

Random grgphsisa topic well-known to graph theorigs after the work by Erdos and Renyi,
who introduced the problem in 1960. In the simplest formulation each pair of points of a set of
N can be connected (by abond, say) with a probability «/N, where « is a constant. One then
asks quegtions such aswhat is the mean cluster size and the probability P(«) that the set becomes
fragmented, namey not connected, etc.

Usng a Potts modd formulation, Wu [93] reproduced the Erdos-Renyi reault in jug a
few steps, showing that a transition occurs at o, = 1 and computed the critical exponents as well
as the mean cluster size a criticdity. This work has drawn considerable attention from graph

25 A matrix representation of the U; .., is, for instance, the g™ x g™ matrices with entriesq~*/2 17,2 6(05,0%)
and ¢'/25(0i, 0i41) [T, 6(0, o).
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theorists. Wu has dso applied the result to evduate therdiability probability of a communication
network [92].

As another example of WU's work in grgph theory, one can mention his paper on the
Temperley-Nagle identity for grgoh embeddings [69], where he provides a Smple derivation of
the Temperley-Nagle identity:

S = - ()

where G denotes section graphs of the origind grgph of v vertices and [ lines, and L is aline
st of G containing [ lines covering v vertices. Using a weak-grgph expanson he dso deduced a
sum-rule rddion connecting the lattice constants of weak and strong embeddings.

VIII-2. The vicious neighbor problem

Congder N points randomly distributed in a bounded d-dimensional space. At a given
ingance, each point destroys his neares neighbor (vicious neighbors) with a probability p. What
is the probebility Py (p) that a given point will surviveinthe N — oo limit?

Thed = 2, p = 1 version of this problem was fird posed by the Brandeis mathematician
R. Abilock in American Mathematical Monthly in 1967, and remained unsolved for dmost two
decades In 1986 the Omni magazine poded a prize for its correct solution, and R. Tao and Wu
cdamed the prize by publishing the solution for general d and p in 1987 [111].

The idea of ther solution is very smple. In d dimensons a given point can be killed
by at most a finite number ny of other points. In two dimensions, for example, the number is
ng = 5 (theoretically a point can dso be killed by 6 other points, but the phase space for that
to happen has a zero measure). Therefore, one computes the volumes of the phase space for a
point to be killed by 1, 2, - --, ng neighbors, and uses the inclusion-exclusion principl e to write
the probability in question as an dternae series in p, whose highes power is ng. However, the
evauation of the volumes of the phase spece is tedious, requiring specia techniques.

For d = 1 the result is quite Smple and one has P, (p) = 1 — p + p?/2. For d = 2 the
reultis

Po(p) =1 —p+0.316 3335p> —0.032 9390 p> + 0.000 6575 p* — 0.000 0010p°, (72)

where the coefficient of each term isevaduaed from integrads which can, in principle, be computed
to any numerica accuracy. The coefficient of thelag term, for exampl e, is obtained by combining
two 8-fold integrations

For p = 1, (72) yields P (1) = 0.284 051..., a solution which clamed the Omni prize
Tao and Wu also carried out Monte Carlo Smulations to obtain the solution for d = 3,4, 5.

VIII-3. Counting partitions: from Potts to three-dimensional enumeration and beyond

F. Y. Wu et al. [172] considered a directed lattice animal problem on the d-dimensiond
hypercubic lattice, and established its equivaence firg with the infinite-range Potts modd and, in
asecond gep, with the enumeration of (d— 1)-dimensiond restricted partitions of an integer. The
directed compact lattice animd problem was solved exactly in two and three dimensons using
known results in number theory. They found that the number of lattice animals of n sites grows
&s:

exp(c- nld D/,
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Furthermore, the infinite-state Potts model solution leads to a conjectured limiting form for the
generating function of redricted partitions for d > 3, which is along-standing unsolved problem
in number theory.

Let us denote by A,,(Ly, Lo, -- - Ly) the number of n-site animals that can grow on an
Ly x Ly x -+ x Lg latice F. Y. Wu et al. showed that A,, is precisdy the number of (d — 1)-
dimensond redricted partitions of the integer n into non-negative parts to units of a hypercube
of 9ze L1 x Lo x --- x Ly_1, with the size of each part being & most L.

Define the generating function

Li-La-L3-Ly
G(L1, Ly, Ls,--- Lait) =1+ > An(L1, La,- -+ La) - ",

n=1

which is of interest in number theory. F. Y. Wu et al. showed that G is precisely the partition
function of a Potts modd on the d-dimensional lattice in the infinite-state limit, provided one
identifies ¢ with z¢ where z = (e — 1) /¢*/?. This then connects the Potts model with the theory
of partitions in number theory.

For d = 2, the generating function corresponding to the square lattice (L1, L2) reads?S:

(H) 11 +1s
G(L1, Lo; t) = 12—, 73
B b2 =), o), "
p
where (t), = H(l—tq). G(Ly, L) isapolynomial in ¢, also known as the Gaussan polynomia
q=1

or the “ g-coefficient”. For d = 3, the generating function reads:

PR L D P S R VR D P T
G(Ll, L2, L3at) B [t]L1+L2 : [t]L2+L3 ' [t]L3+L1 ’ (74)

where [t];, denotes

L—1 p
e =[[W L>1, (t)p=]]Q -t (75)
p=1 q=1

For d =4, G(L1, L2, L3, Ly;t) is the generating function of resricted solid partitions of a
positive integer into partson a Ly x Ly x L3 cubic lattice, with each part being no grester than L.
The evaluation of a closed-form expression for GG in this case has remained an unsolved problem
for almost a century.

The expression which graightforwardly generalizes (73) and (74) would be:

NG(t) .
Gyraiont (L1, Lo, L3, La; t) = ) with: 76

26 Let usrecdl the classic anaysis due to Rademacher, which yields the celebrated Hardy-Ramanujan asymptatic
result: A, ~ 1/(4n+/3) -exp(m+/2n/3). One gets the fdlowing asymptotic behavior for An (L1, L2) when Ly = Lo:
An(L, L) ~ (v/3/(2nn)) - 222",
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No(t) ={t} it rorLs+Ls  {avre {thoavrs {thoirr,
Aty - {t}ovny  {thosLy,
Da(t) ={t} 1y + Lo+ 1y {t Lot LatLy A i+ Lot Ly AT L+ Lot Ly
{troy - {tho. - {thes - {t}La,
where:
L—-1

e=[[H L>2 (7

p=1

But the explicit expression of G(2,2,2, Ls; t), obtained by Mgor P. A. MacMahon in 1916 is

G(27 2,2, Ly; t) = Gstraight(2a 2,2, Ly; t) + 0(27 2,2, Ly; t)v (78)
where
4
G(2,2,2, Ly t L4+8 L with
(2.2 L6t =D 9 5 s

=0
g =1, g1 = 2t2 (1+t+t2 + 13 +t4) + 14

@ =15+ (1+ 3t +4t2 + 83 + 4t* + 3t° + 16)
=20 (1+t++83+t4) +¢2, ga =116,

C(2, 2,2, P; 1) :_<t6- (t+1)%-(t* —2t3 4 2 —2t+1)> . ((t(t)p_H; )

2 rt+1 )8(t) p—2

H. Y. Huang and F. Y. Wu [179] decided to look into the zeros of the generaing function
G(2,2,2, Ly; t) for various incressing values of Ls. They found that the zeros are not exactly
on the unit circle, but seem to converge to the unit circle as L, increases. This indicaes that a
multiplicetive correction Cruit(2,2, 2, La;t) = G(L1, Lo, L3, La; t) /Gstraight (L1, L2, L3, La; t),
would not have any simple Eulerian product form asin (76) and (77):

Cunut(2,2,2, Last) = T (1 — "), (79)

n=1

where «,, are posgtive integers, since these product forms (79) would necessarily yield zeros on
the unit circle. H. Y. Huang and F. Y. Wu conj ectured however, on the bass on their numericad
reults tha the zeros tend to be on the unit circle in the limit, when any one of Ly, Lo, Ls,
L4 — OQ.

VIII-3-1. Directed percolation and random walk problems
F. Y. Wu and H. E. Stanley [90] have consdered a directed percolation problem on square
and triangular lattices in which the occupation probability is unity dong one spatial direction.
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They formulated the problem as a random walk, and evduaed in dosed-form the percolation
probability, or the arriving probability of a walker. To this date this solution gands as the only
exactly solved modd of directed percolation.

In another random wak problem, Wu and H. Kunz [192] considered restricted random
walks on graphs, which keep track of the number of immediate reversal steps, by using a trander
matrix formulation. A closed-form expression was obtained for the number of n-gep walks with
r immediate reversas for any grgph. In the case of graphs of a uniform vaence, they established
a probabilistic meaning of the formulation, and deduced explicit expressions for the generating
function in terms for the eigenvaues of the adjacency matrix.

IX. Knot theory

The connection between knot theory and gatistical mechanics was probably first discovered
by Jones. His derivation of the V. Jones polynomial reflects the resemblance to the von Neumann
dgebra when he uses with the Lieb-Temperley algebra occurring in the Potts modd (see section
(VII-7)). Thisdirect connection cameto light when L. Kauffman produced a simple derivation of
the Jones polynomial using the very diagrammatic formulation of the non-intersecting string (N1S)
model of J H. H. Perk and F. Y. Wu [103, 104]. Soon theresfter Jones worked out a derivation
of the Homfly polynomid using a vertex-mode approach. The connection between knot theory
and lattice statistical mechani cs was further extended by Jones to include spin and IRF models.

F. Y. Wu has written several papers on the connection between knot theory and statidicd
mechanics [150, 151, 154], induding a comprehensive review [150]. In hindsight, knot invariants
arose naturdly in datistical mechanics even before the connection with solvable modds was
discovered. In ther joint paper [103], for example, J. H. H. Perk and F. Y. Wu described a
version of an NIS modd which is precisdy the bracket polynomial of L. Kauffman. Similarly,
the g-color NIS model studied by J.H.H. Perk and C. Schultz is a g(¢ — 1) vertex modd which
generates the Homfly polynomial. Here we briefly describe the latter connection.

Theg-color NISmodd has vertex weights (0,4, = 1 if a = b = ¢ = d and zero otherwie):

w(a, b,¢,d) = (W(u) — S(u) = T(u)) - dabed + S(w) - davdea + T (w) - GacObd, (80)

where: W(u) = sinh(u) =sinh(n 4+ u), S(u) = sinh(u),
T (u) = sinh(n — u), g=el+e ",

and the Homfly polynomial is a two variable knot invariant polynomial, discovered after Jones
work, by Freyd et al. The Homfly polynomial knot invariant has since been re-derived and
andyzed by Jones using the Hecke algebra of the brad group. It can also be constructed from
the Perk-Schultz NIS modd. Actudly the partition function Z(g, €") of the NIS model is a knot
invari ant related to the Homfly polynomid P(t, z):

Pt z) = % - Z(q,em).

In the infinite rapidity limit this modd leads to the Jones polynomial. The Boltzmann
weight (80) of the non-intersecting sring modd becomes

w(a, b,c,d) = —ei2”5a7b5c7d + ei”%d with: g=¢"+e™". (81
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'\I’/rle Jonej_ polynomial V(¢) is then obtained from the Homfly polynomid P(t,z) by teking z =
t— 1/t

F. Y. Wu discussed many knot invariants in his review [154]: the Alexander-Conway
polynomial, the Jones polynomid, the Homfly polynomial, the Kauffman polynomial and the
Akutsu-Wadati polynomial, etic. The Alexander-Conway polynomial can be obtained from the
Homfly polynomial by setting ¢ = 1 in the Homfly polynomial P(¢,z). The Akutsu-Wedati
polynomial is an exampleof anew knot invariant derived from exactly solvable modesin statistica
mechanics.

As our final example of F. Y. Wu's versatility, he and P Pant and C. King [162] have
obtained a new knot invariant using the exactly solvable chird Potts modd and a generalized
Gaussian summation identity. Starting from a general formulation of link invariants using edge-
interaction spin modes, they establish the uniqueness of the invariant for self-dua models They
applied the formulation to the sdf-dud chira Potts modd, and obtain a link invariant in theform
of a lattice sum defined by a matrix associaed with the link diagram. A generalized Gaussan
summeation identity was then used to carry out this lattice sum, enabling them to cag the invariant
into a tractable form.  The resulting expression for the link invariant was charecterized by the
roots of unity and does not appear to belong to the usual quantum group family of invariants.

Findly, Pant and Wu [185] have derived alink i nvariant associated with the Izergin-Korepin
modd.

X. Conclusion

It would not be far to summarize F. Y. Wu's contributions by a quick conduson such as:
he wrote several important monographs on vertex modes, on the Potts model and on knot theory,
obtained many important results, in particular the Lieb-Wu solution of the Hubbard model, the
Fan-Wu free-fermion vertex modd, the solution of the Baxter-Wu mode, and many other results
on dimers or free-fermion models, 3D dimers, d-dimensional free-fermion modds, Potts models
Ising and vertex modds, using a large set of tools including andytic calculaions expansons
sries andysis, Monte-Carl o, ..., with a particular emphasis on graph-theoreticd methods.

Most of the work of F. Y. Wu could be said to correspond to exact reaults in ldtice
datigicd mechanics, or inmathematics with parti cular emphasis on graph theory and enumerative
combinatorics We have tried to give here some hints as to the space of F Y. Wu's very large
“graph” of concepts, results, tools, models, with many “intdlectual loops’. We have not tried to
provide an exhaustive description of F. Y. WU's contributions but, rather, only to provide a few
comments on some of his results, emphasizing the fruitful cross-fertilizations between the various
domains of mathematica phyd cs and mathematics, and aso to show the mativation and reevance
of these reqults tools, concepts and methods.

Beyond a post-modern accountant’s evauation and from a research viewpoint, one must
say that the important and numerous results F. Y. Wu has obtained are not due to publish-or-
perish productivity pressure, but, on the contrary, are the natural consequence of the pleasure of a
scientist who loves to play with concepts and mathematical obj ects (dimers, gragphswith particular
boundary conditions, dualities, Potts modds, series expangons with transmissivities ...) and who
has a strong desire to reach ambitious gods, such as obtaining new results in three dimensons,
new reaults for non-critical Potts modes, or even for the Ising model in a magnetic fied.

A <cientig does not become as productive as F. Y. Wu in response to external pressure but,
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on the contrary, only by forces being in harmony with his degp persond motivations. Thisis the
only way to be as efficient and productive as F. Y. Wu and, as the famous French mathematician
Jean Dieudonné once wrote, to work efficiently, “pour | honneur de I'esprit humain”.
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