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We will try to sketch Professor F. Y. Wu’s contributions in lattice statistical mechanics,
solid state physics, graph theory, enumerative combinatorics and so many other domains of
physics and mathematics. We will recall F. Y. Wu’s most important and well-known classic
results, and we will also sketch his most recent research dedicated to the connections of lattice
statistical mechanical models with deep problems in pure mathematics. Since it is hard to
provide an exhaustive list of all his contributions, to give some representation of F. Y. Wu’s
“mental connectivity”, we will concentrate on the interrelations between the various results
he has obtained in so many different domains of physics and mathematics. Along the way
we will also try to understand Wu’s motivations and his favorite concepts, tools and ideas.

PACS. 05.50.+q – Lattice theory and statistics; Ising problems.

I. Introduction

The publish-or-perish period of science could soon be seen as a golden age: our brave new
world now celebrates the triumph of Enron’s financial and accounting creativity. Sadly science is
now also, increasingly, considered from an accountant’s viewpoint. In this respect, if one takes
this “modern” point of view, Professor F. Y. Wu’s contribution1 is clearly a very good return on
investment: he has given more than 270 talks in meetings or conferences, published over 200
papers and monographs in refereed journals, and had many students. He has also published in, or
is the editor2 of, many books [21, 31, 71, 122, 138, 157, 171, 178, 179, 196].

Professor Wu was trained in theoretical condensed matter physics [3, 4, 19, 20, 27, 35,
108], but he is now seen as a mathematical physicist who is a leading expert in mathematical
modeling of phase transition phenomena occurring in complex systems. Wu’s research includes

1 Professor F. Y. Wu is presently the Matthews University Distinguished Professor at Northeastern University.
He is a fellow of the American Physical Society and a permanent member of the Chinese Physical Society (Taipei).
His research has been supported by the National Science Foundation since 1968, a rare accomplishment by itself in
an environment of declining research support in the U.S., and he currently serves as the editor of three professional
journals: the Physica A, International Journal of Modern Physics B and the Modern Physics Letters B.

2 For instance, Ref. [180] contains the proceedings of the conference on “Exactly Soluble Models in Statistical
Mechanics: Historical Perspectives and Current Status”, held at Northeastern University in March 1996 – the first
ever international conference to deal exclusively with this topic. The proceedings reflect the broad range of interest in
exactly soluble models as well as the diverse fields in physics and mathematics that they connect.
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both theoretical studies and practical applications3 . Among his recent researches he has studied
connections of statistical mechanical models with deep problems in pure mathematics. This
includes the generation of knot and link invariants from soluble models of statistical mechanics
and the study of the long-standing unsolved mathematical problem of multidimensional partitions
of integers in number theory using a Potts model approach.

Professor Wu’s contributions to lattice statistical mechanics have been mostly in the area of
exactly solvable lattice models. While integrable models have continued to occupy a prominent
place in his work (such as the exact solution of two- and three-dimensional spin models and
interacting dimer systems), his work has ranged over a wide variety of problems including exact
lattice statistics in two and three dimensions, graph theory and combinatorics, to mention just a
few. His work in many-body theory [3, 4, 7, 8, 15, 22, 28, 36, 66], especially those on liquid
helium [2, 3, 6, 25, 26], has also been influential for many years.

F. Y. Wu joined the faculty of Northeastern University to work with Elliott Lieb in 1967,
and in 1968 they published a joint paper4 on the ground state of the Hubbard model [11] which
has since become a classic. The Baxter-Wu model [45, 49] is also, clearly, an important milestone
in the history of integrable lattice models.

F. Y. Wu has published several very important reviews of lattice statistical mechanics.
First, Lieb and Wu wrote a monograph in 1970 on vertex models which became the fundamental
reference in the field for decades [31]. Wu’s 1982 review on the Potts model is another classic
[89]. At more than one hundred citations per year ever since it was published, it is one of the
most cited papers in physics5. In 1992 F. Y. Wu published yet another extremely well-received
review on knot theory and its connection with lattice statistical mechanics [154]. In addition, in
1981, F. Y. Wu and Z. R. Yang published a series of expository papers on critical phenomena
written in Chinese [84] - [88]. This review is well-known to Chinese researchers.

I-1. The choice of presentation: a challenge in enumerative combinatorics
An intriguing aspect of lattice statistics is that seemingly totally different problems are

sometimes related to each other, and that the solution of one problem can often lead to solving
other outstanding unsolved problems. At first sight, most of the work of F. Y. Wu could be said
to correspond to exact results in lattice statistical mechanics, but because of the relations between
seemingly totally different problems it can equivalently be seen, and sometimes be explicitly pre-
sented, as exact results in various domains of mathematical physics or mathematics: sometimes
exact results in graph theory, sometimes in enumerative combinatorics, sometimes in knot theory,
sometimes in number theory, etc. Wu’s “intellectual walk” goes from vertex models to circle
theorems or duality relations, from dimers to Ising models and back, from percolations or animal
problems to Potts models, from Potts models to the Whitney-Tutte Polynomials, to polychromatic

3 He has considered, for instance, the modeling of physical adsorption and applied it to describe processes used in
chemical and environmental engineering [148, 175]. He has even published one experimental paper on slow neutron
detectors [5].

4 This paper has become prominent in the theory of high-Tc superconductors. P. W. Anderson even attributed to
this paper as “predicting” the existence of quarks in his Physics Today (October, 1997) article on the centennial of the
discovery of electrons.

5 There was once a study published in 1984 (E. Garfield, Current Comments 48, 3 (1984)) on citations in physics
for the year of 1982. It reports that in 1982, the year this Potts review was published, it was the fifth most-cited paper
among papers published in all of physics.
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polynomials or to knot theory, from results, or conjectures, on critical manifolds6 to Yang-Baxter
integrability, perhaps on the way revisiting duality or Lee-Yang zeros, etc., etc. The simple listing
of Professor Wu’s results and contributions, and the inter-relations between these results and the
associated concepts and tools, is by itself a challenge in enumerative combinatorics.

Actually it is impossible to describe Wu’s contributions linearly, in a sequence of sections
in a review paper like this, or even with a website-like “tree organization” of paragraphs. F.
Y. Wu’s contributions really correspond to a quite large “graph” of concepts, results, tools and
models, with many “intellectual loops”. The only possible “linear” and exhaustive description of
Wu’s contributions is his list of publications.

We have therefore chosen to give his exhaustive list of publications at the end of this paper. No
other references are given.

We have chosen to keep the notation F.Y. Wu used in his publications7, and not to normalize
them, so that the reader who wants to see more and goes back to the cited publications will
immediately be able to recover the equations and notations.

Obviously, we will not try to provide an exhaustive description of Wu’s contributions but,
rather, to provide some considered well-suited specific “morceaux choisis8”, comments on some
of his results, some hints of the kind of concepts he likes to work with, and try to explain why his
results are important, fruitful and stimulating for anyone who works in lattice statistical mechanics
or in mathematical physics.

II. Even before vertex models: the exact solution of the Hubbard model

Elliott H. Lieb and F. Y. Wu published in 1968 a joint paper on the ground state of
the Hubbard model [11] which has since become a classic, and served as a cornerstone in the
theory of high-Tc superconductors. An important question there corresponds to the spin-charge
decoupling, which is exact and explicit in one-dimensional models: is the spin-charge decoupling a
characteristic of one dimension? Is it possible that some “trace” of spin-charge decoupling remains
for quantum two-dimensional models which are supposedly related to high-Tc superconductors?

Let us describe briefly the classic Lieb-Wu solution of the Hubbard model. One assumes
that the electrons can hop between the Wannier states of neighboring lattice sites and that each site
is capable of accommodating two electrons of opposite spins with an interaction energy U > 0.
The corresponding Hamiltonian reads:

H = T
X

<ij>

X

¾

cyi¾cj¾ +U
X

i

cyi" ci" c
y
i# ci#;

6 The critical manifolds deduced or conjectured by F. Y. Wu are mostly algebraic varieties and not simple
differentiable or analytical manifolds.

7 The price paid is, for instance, that the spin edge Boltzmann weights will sometimes be denoted eK1 , eK2 ,
eK3 , eK4 , or a; b; c; d, or x1 , x2 , x3, x4, and the vertex Boltzmann weights !1 , !2 , ¢¢¢ or a; b; c; d;a0; b0 ; c0 ; d0. This
corresponds to the spectrum of notations used in the lattice statistical mechanics literature. These different notations
were often introduced when one faced large polynomial expressions and the eKi or e¡ ¯¢Ji notations for Boltzmann
weights would be painful.

8 I apologize, in advance, for the fact that these “morceaux choisis” are obviously biased by my personal taste for
effective birational algebraic geometry in lattice statistical mechanics.
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where cyi¾ and ci¾ are the creation and annihilation operators for an electron of spin ¾ in the
Wannier state at the i-th lattice site and the first sum is taken over nearest neighbor sites. Denoting
f(x1;x2;¢¢¢ ; xM ;xM+1; ¢¢¢ ;xN) the amplitude of the wavefunction for which the down spins
are located at sites x1; x2; ¢¢¢ ;xM and the up spins are located at sites xM+1; ¢¢¢; xN . The
eigenvalue equation HÃ = EÃ leads to:

¡
NX

i=1

X

s=§ 1

f(x1;x2;¢¢¢ ; xi + s; ¢¢¢ ; xN)

+U
X

i<j

±(xi ¡ xj)f(x1;x2;¢¢¢ ;xN) = E f(x1;x2;¢¢¢ ;xN);
(1)

where f(x1; x2;¢¢¢ ;xN) is antisymmetric in the firstM and the lastN¡ M variables (separately).
Let ¹+ (resp. ¹¡ ) denote the chemical potential of adding (resp. removing) one electron. In the
half-filled band one has ¹+ = U ¡ ¹¡ , and the calculation of ¹¡ can be done in closed form
with the result:

¹¡ = 2 ¡ 4

Z 1

0

J1(!) ¢d!
! ¢(1 + exp(!U=2))

; (2)

where J1 is the Bessel function. It can be established from (2) and ¹+ = U ¡ ¹¡ that ¹+ > ¹¡
for U > 0. In other words, the ground state for a half-filled band is insulating for any nonzero
U, and conducting for U = 0. Equivalently, there is no Mott transition for nonzero U , i.e., the
ground state is analytic in U on the real axis except at the origin.

III. Vertex models

The distinction between vertex models and spin models is traditional in lattice statistical
mechanics, but there are “bridges” between these two sets of lattice models [78]. Roughly speaking
one can say that F. Y. Wu first obtained results on vertex models [13, 14] (five-vertex models [9,
10], free-fermion vertex models [50], dimer models seen as vertex models, ...) and then obtained
results on spin models (Ising model with second-neighbor Interactions [12], the Baxter-Wu model
[45, 49], Potts model, ...), introducing more and more graph theoretical approaches, up to looping
the loop with knot theory, which is, in fact, closely related to vertex models and to Potts models!
As far as vertex models are concerned, we will first sketch the approach given in his monograph
with Lieb (section (III-1)), in a second step we will sketch his free-fermion results (section (III-
2-1)) closely followed by his dimer results (section (III-3)), and, then, we will discuss some
miscellaneous results he obtained on five-, six- and eight-vertex models (section (III-4)).

III-1. Two-dimensional ferroelectric models
Elliott Lieb and F. Y. Wu wrote a monograph on vertex models in 1970, entitled “Two-

dimensional Ferroelectric Models”, which became a fundamental reference in the field for decades
[31]. This monograph gives the best introduction to the sixteen-vertex model, which is a funda-
mental model in lattice statistical mechanics. Unfortunately it is not known well enough, even to
many specialists of lattice models, that it contains the most general eight-vertex model, most of the
(Yang-Baxter) integrable vertex models (the symmetric eight-vertex model, various free-fermion
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models, the asymmetric free-fermion model, the asymmetric and symmetric six-vertex model, the
five-vertex models, three-coloring of square maps, and others) and also fundamental non-integrable
models such as, for instance, the Ising model in a magnetic field. In particular the monograph
mentions explicitly the weak-graph duality (see section (V) below) on the sixteen-vertex model
(see page 457 of [31]):

!¤1 =
1

4
¢

16X

i=1

!i; !¤2 =
1

4
¢
³ 8X

i=1

!i ¡
16X

i=9

!i
´

!¤3 = 14 ¢
³ 4X

i=1

!i ¡
8X

i=5

!i + (!10 + !12 + !14 + !16)

¡ (!9 + !11 +!13 +!15)!i
´
; ¢¢¢

(3)

The 154 pages of this monograph are still, by today’s standard, an extremely valuable document for
any specialist of lattice models. Beyond the taxonomy of ferro and ferrielectric models (ice model,
KDP [9, 18], modified KDP [41], F model [13], modified F model [38, 75, 80], F model with
a staggered field, ...), this monograph remains extremely modern and valuable from a technical
viewpoint.

Among the exactly soluble models (the bread-and-butter of F. Y. Wu) was one that, for
a long time, was a “sleeper”, namely, Bethe’s 1931 solution of the ground state energy and
elementary excitations of the one-dimensional quantum-mechanical spin- 1

2 Heisenberg model of
antiferromagnetism. We will see below a large set of results from the Lieb-Wu monograph on
vertex models, in particular the six-vertex model.

The monograph gives an extremely lucid exposition of the Bethe ansatz for the six-vertex
model. The Bethe ansatz is analyzed and explained in the most general framework (with horizontal
and vertical fields) and it is a must-read anyone who wants to work seriously on the coordinate
Bethe ansatz. It is certainly much more interesting and deeper than so many subsequent papers
that have revisited, at nauseum, the Bethe ansatz of the symmetric six-vertex model, re-styling this
simple Bethe ansatz with a conformal resp. quantum group, resp. knot theory, resp. ... framework.
The analysis of the conditions for the transfer matrix T of the most general sixteen-vertex model
to have a non-trivial “linear operator” (1D quantum Hamiltonian) that commutes9 with T (pages
367 to 373) are probably one of the first pages any student who wants to study integrable lattice
models should read.

The monograph makes crystal clear the fact that the Bethe ansatz is related to the conserva-
tion of a certain charge. This can be seen from the fact that most of the analysis (from page 374
to page 444) relies on the use (page 363 equation (81)) of the variable y = 1 ¡ 2 n=N, which in
spin language is the average z-component of the spin per vertical bond, namely, y =< Sz > =N
for a square lattice of size N £ M, where n denotes the number of down arrows and N the
number of vertical bonds in a row.

We use the same notation as in Lieb-Wu. In particular, let us introduce the horizontal and
vertical fields H and V , respectively. The partition function per site in the thermodynamic limit is:

9 Which is the most obvious manifestation of the Yang-Baxter integrability.
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lim
N!1

1

N
¢ln(¤ ) = max

¡ 1· y· +1
[z(y) + V ¢y]; (4)

where ¤ denotes the largest eigenvalue of the transfer matrix. The monograph details a large set
of situations. Let us consider here the regime

¢ ´ (!1!2 + !3!4 ¡ !5!6)=2
p
!1!2!3!4 < ¡ 1; (5)

and introduce the variable:

eµ0 =
1 + ´e¸

e¸ + ´
; 0 · µ0 · ¸ where:

´= ejK1j =
³ !1!2

!3!4

´1=2
or:

³!3!4

!1!2

´1=2
:

When ¢ < ¡ 1, z(y) reads:

z(y) = ¡K2 +max(0; ¡K1) +
1

4¼
¢
Z +b

¡ b
R(®) ¢C(®) ¢d®;

where: C(®) = ln
³ cosh(2¸ ¡ µ0) ¡ cos(® )

cosh(µ0) ¡ cos(®)

´
;

and the (normalized) density10 R(® ) satisfies the Bethe-ansatz integral equation with the kernel
K(®):

R(®) =
sinh(¸)

cosh(¸) ¡ cos(® )
¡
Z +b

¡ b
K(® ¡ ¯) ¢R(¯)d¯ (6)

with: 2¼ ¢K(® ¡ ¯) =
sinh(2¸)

cosh(2¸) ¡ cos(® ¡ ¯)
:

The integral equation (6) is nothing but the well-known Yang-Yang Bethe ansatz integral equation
on the density ½(q):

1 = 2¼ ¢½(p) ¡
Z +Q

¡ Q

dµ(p;q)

dp
½(q) ¢dq with: Q=

¼ ¢(1 ¡ y)

2
:

The range b of the new variable ® in the integral relation (6) can be deduced from the
definition of the density R(®):

¼ ¢(1 ¡ y) =

Z +b

¡ b
R(®)d® =

Z +Q

¡ Q
½(q) ¢dq:

When y = 0, the integral attains its maximum range and one can solve (6) by using a Fourier series
of a Fourier transform. One thus gets R(®) as a simple dn elliptic function. Not surprisingly one
can also calculate all the derivatives of z(y) at y = 0. One can thus expand z(y) namely, write
z(y) = z(0)¡ z0(0)¢y+z

000
(0)¢y3=6 +¢¢¢. To first order in y one obtains z 0(0) = ¡ ¥(¸ ¡ µ0),

where the function ¥ is related to the Jacobian elliptic function nd:

10 One has R(®) ¢d® = 2¼½(p) ¢dp.
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¥ (Á) = ln
³ cosh((¸ + Á)=2)

cosh((¸ ¡ Á)=2)

´
¡ Á

2
¡

1X

n=1

(¡ 1)n ¢e¡ 2ņ ¢sinh(nÁ)

n ¢cosh(n¸)
:

The function ¥ (Á) also satisfies the nice involutive functional relations11:

¥ (Á) = ¡ ¥ (¡ Á); ¥ (¸ + Á)¥ (¸ ¡ Á); ¥ (4¸ + Á) = ¥(Á):

Let us consider the thermodynamic properties of the model when H = 0 and V 6= 0. From (4)
one sees that the thermodynamic properties depend on the optimal choice of y given by:

z0(y) = ¡ V:

When lowering the temperature the slope of z(y) corresponding to the transition sticks at
y ' 0, and one thus has (see page 425 of [31]) an antiferroelectric transition occurring at Tc(V )
given by:

V = ¥ (¸ ¡ µ0): (7)

This gives a beautiful example of a transcendental critical manifold which reduces, in some
domain of the parameters (low temperatures), to a transcendental equation (7) and not to an
algebraic one, as one is used to seeing in exactly solvable models. One thus has a transcendental
critical manifold for a vertex model for which one can actually write down the exact Bethe ansatz
(see equation (6)). Writing a closed simple formula for the solution is not possible, but one can
certainly find numerical solutions on a computer. Should we say that the model is exactly solvable
but not “computable”? We will revisit these questions of the algebraicity of the critical manifold
versus integrability in other sections of this paper with other critical manifold conjectures, or
results, of F. Y. Wu (see for instance sections (VI-3), (IV-1) below). For those who have a
“naive” point of view on the character of critical manifolds12, example (7) shows that a model
having a Bethe ansatz can have a transcendental critical manifold.

The Lieb-Wu review provides wonderful pieces of analytical work (analysis in one complex
variable, see for instance pages 410-411 and the analysis of the analytic structure of the F model or
the temperature Riemann structure for the free energy of the F model). One finds a festival of one
complex variable analytical tools (the Maclaurin formula, tools for the evaluations of asymptotic
behaviors, path integration, etc.).

Many more results can be found in the monograph (the three-color problem, the hard square
model, the F model on the triangular lattice, three coloring of the edges of the hexagonal lattice
...). Let us mention, in particular, the six-vertex model with site-dependent weights (which can
be considered as the first example of a Z-invariant model). Let us introduce !j(I;J) where j = 1,

11 In agreement with the inversion relations on the model.
12 With, for instance, a prejudice of algebraicity of the critical manifolds of “solvable” models: all examples

known in the literature are polynomial expressions in well-suited variables eKi . These include, for instance, the critical
varieties of the anisotropic Ising, or Potts, models on square, and triangular lattices, or the critical varieties of the
Baxter model. For non-integrable models the common wisdom is, probably, that critical manifolds are always analytic,
or may be differentiable, and the algebraicity of the critical manifolds is ruled out by the non-integrability. This is also
a naive point of view: see (36) in section (VI-1).
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¢¢¢ ;6, are the six possible Boltzmann factors of the vertex in row I and column J, and let us
require that the algebraic invariant ¢ be independent of I;J :

¢ =
!1(I;J)!2(I;J) +!3(I;J)!4(I;J) ¡ !5(I;J)!6(I; J)

2 ¢(!1(I;J)!2(I;J)!3(I; J)!4(I; J))1=2
: (8)

Up to a multiplicative factor ·I;J , a (rational) parametrization of these invariance conditions (8)
is:

!1(I; J) = (1 ¡ t ¢pI;J) ¢®I;J¯I;J ;

!2(I; J) = (1 ¡ t ¢pI;J) ¢ 1

®I;J¯I;J
;

!3(I; J) = (pI;J ¡ t) ¢®I;J
¯I;J

; !4(I;J) = (pI;J ¡ t) ¢¯I;J
® I;J

;

!5(I; J) =
³ 1

t
¡ t

´
¢pI;J ¢°I;J; !6(I;J) = (1 ¡ t2) ¢ 1

°I;J
:

(9)

Baxter’s Z-invariance condition for integrability requires that the pI;J’s are actually products
of a (spectral) parameter depending on the row and another parameter depending on the column:
pI;J = ½I¢¾J . We will see in section (7) when sketching the correspondence between the standard
scalar Potts model and a staggered asymmetric six-vertex model, that these product conditions,
pI;J = ½I¾J , actually correspond in the case of the checkerboard Potts model to criticality,
or to the vanishing conditions of a staggering field Hstag from a Lee-Yang zeros viewpoint:
jzj = eHstag = 1.

Provided that the pI;J = ½I ¢¾J integrability conditions are satisfied, the partition function,
with parametrization (9), can be expressed as a multiplicative closed formula:

Z = 2
MY

I=1

MY

I=1

p
!5(I;J)!6(I;J)

1 ¡ t2
¢F(½I¾J) ¢F

³ 1

½I¾J

´
;

where: F(z) =
1Y

m=1

1 ¡ t4m¡ 1z

1 ¡ t4m+1z
:

(10)

III-2. Vertex models: free fermions
Another classic work of F. Y. Wu is his 1970 paper with C. Fan in which they coined

the term the free-fermion model [16]. This work was later extended to its checkerboard version
during one of Wu’s visits to Taiwan [50, 52]. In the following we shall arrange the homogeneous
vertex weights in a matrix R, whose size and form vary according to the number of edge states
and the coordination number of the lattice. Typical examples we will consider are the 2D square
and triangular lattices shown below:

R
ij
uv =

u

j

v

i

¡
¡

¡¡

@
@

@@
v

j

u

w

k

i
R
ijk
uvw =

2D square 2D triangular
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III-2-1. Free-fermion asymmetric eight-vertex model
C. Fan and F. Y. Wu obtained many free-fermion results [12, 16]. The free energy of the

most general free-fermion model on a square lattice evaluated by Fan and Wu reads:

f =
1

16¼2

Z 2¼

0
dµ dÁ ln

³
2a+ 2b cos µ+ 2c cosÁ + 2d cos(µ ¡ Á) +2 e cos(µ+ Á)

´
;

where:

a=
1

2
¢(!2

1 + !2
2 + !2

3 +!2
4); b = !1 !3 ¡ !2 !4;

c = !1 !4 ¡ !2!3; d = !3 !4 ¡ !7!8; e = !3!4 ¡ !5 !6;

provided that the free fermion condition:

!1!2 +!3!4 = !5!6 + !7!8 (11)

is satisfied.
Let us revisit some of their results from an inversion relation viewpoint. Renaming the vertex

weights as a = !1, a0 = !2, b = !3, b0 = !4, c = !5, c0 = !6, d = !7 , d0 = !8, the matrix R of
the eight-vertex model is then:

R =

0
BB@

a 0 0 d0

0 b c0 0
0 c b0 0
d 0 0 a0

1
CCA : (12)

A matrix of the form (12) can be brought, by a similarity transformation, to a block-diagonal
form:

R =

µ
R1 0
0 R2

¶
; with R1 =

µ
a d0

d a0

¶
and R2 =

µ
b c0

c b0

¶
:

If one introduces ±1 = aa0 ¡ dd0 and ±2 = bb0 ¡ cc0, the determinants of the two blocks, then the
(homogeneous) matrix inverse I (namely R! det(R) ¢R¡ 1) reads:

(a;a0; d;d0) ! (a0 ¢±2; a ¢±2; ¡ d ¢±2;¡ d0 ¢±2)

(b; b0; c; c0) ! (b0 ¢±1; b ¢±1;¡ c ¢±1; ¡ c0 ¢±1):
(13)

It is straightforward to see that the free-fermion condition (11) is ±1 = ¡ ±2 which has the
effect of linearizing the inversion (13) into an involution given by:

a$ a0; b$¡ b0; (d; d0) ! (¡ d; d0); b$ ¡ b0; (c; c0) ! (c; c0)

The group generated by the two inversion relations of the model is then realized by permutations
of the entries mixing with sign changes, and its orbits are thus finite. The finiteness condition of
the group is a common feature of all free-fermion models.
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III-2-2. Free-fermion for the 32-vertex model on a triangular lattice
We next consider the free-fermion conditions of J. E. Sacco and F. Y. Wu [53] for the

32-vertex model on a triangular lattice. Using the same notation as in [53], we have:

R =

2
66666666664

f0 0 0 f23 0 f13 f12 0
0 f36 f26 0 f16 0 0 ¹f45

0 f35 f25 0 f15 0 0 ¹f46

f56 0 0 ¹f14 0 ¹f24
¹f34 0

0 f34 f24 0 f14 0 0 ¹f56

f46 0 0 ¹f15 0 ¹f25
¹f35 0

f45 0 0 ¹f16 0 ¹f26
¹f36 0

0 ¹f12
¹f13 0 ¹f23 0 0 ¹f0

3
77777777775

: (14)

By permuting rows and columns, this matrix can be brought into the block diagonal form:

R =

µ
R1 0
0 R2

¶
; with: (15)

R1 =

2
664

f0 f13 f12 f23

f46
¹f25

¹f35
¹f15

f45
¹f26

¹f36
¹f16

f56
¹f24

¹f34
¹f14

3
775 ; R2 =

2
664

f14 f34 f24
¹f56

f16 f36 f26
¹f45

f15 f35 f25
¹f46

¹f23
¹f12

¹f13
¹f0

3
775 : (16)

The inverse I, written polynomially (homogeneous matrix inverse), is now a transformation of
degree 7. If one introduces the two determinants, ¢ 1 = det(R1) and ¢ 2 = det(R2), then each
term in the expression of I(R) is a product of a degree three minor, taken within a block, times
the determinant of the other block. This inverse I clearly singles out one of the three directions of
the triangular lattice. These three involutions do not commute and generate a quite large infinite
discrete group ¡ triang (see also section (IV-1) below).

The free-fermion conditions of Sacco and Wu [53] read:

f0fijkl= fijfkl ¡ fikfjl + filfjk; 8 i; j; k; l = 1; : : : ;6

f0
¹f0 = f12

¹f12 ¡ f13
¹f13 + f14

¹f14 ¡ f15
¹f15 + f16

¹f16;
(17)

which we denote by V. What is remarkable is that, not only is the rational variety V globally
invariant under ¡ triang, but again the realization of this (generically very large infinite discrete
group) ¡ triang on this variety becomes finite. This comes about from the degeneration of I into a
mixture of sign changes and permutations of the entries, as in the preceding subsection.

Remark. The ordinary matrix product of three matrices (14) solutions of (17), is another
solution ! In other words, if R® , R¯ , R° 2 V, then R® ¢R¯ ¢R° 2 V, while R® ¢R¯ =2 V. This
was also the case for involutions of (11) in the case of the square lattice, but the mechanism is
more subtle here as the conditions (17) imply ¢ 1 = ¢ 2 .
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III-3. Dimers and spanning trees
Before Fan and Wu’s free-fermion vertex models, the Onsager solution of the two-dimensional

Ising model was clearly the first free-fermion model ever solved. There were also several ap-
proaches to the two-dimensional Ising model that did not use the transfer matrix formalism; the
most interesting one is perhaps the mapping of the problem onto a dimer-covering problem on a
slightly more complicated lattice. The dimer problem was first solved by Temperley-Fisher and
Kasteleyn. Kasteleyn found out how to treat the most general planar graph.

The dimer problem has a life of its own and has generated since many followup works, not
only in statistical mechanics, but also in combinatorial theory. In this regard, Wu has provided a
large number of new results [37, 173, 184, 194, 207, 205], including applications to condensed
matter physics, as well as in pure combinatorial analysis. In addition, Wu has obtained new results
on the spanning tree problem [198, 200], a problem intimately related to the dimer problem through
a bijection due to Temperley. In the following we shall describe some of the contributions in this
area.

III-3-1. Revisiting dimers: the honeycomb lattice
The dimer model on the honeycomb lattice was first solved by Kasteleyn, but he never

published the solution, except for hinting at the existence of a transition. This deficiency was
made up by Wu in a 1968 paper [10] in which he presented details of the analysis for the
honeycomb lattice, and applied the results to describe the physics of a modified KDP model.

III-3-2. Revisiting dimers: Interacting dimers in 2 and 3 dimensions
Almost 30 years after the publication of the solution for the dimers on the honeycomb lattice

[10], Wu and his co-workers made two important extensions of the earlier Kasteleyn solution. In
the first, H. Y. Huang, F. Y. Wu, H. Kunz, and D. Kim [173] considered the case where the
dimers have nearest-neighbor interaction. This model turns out to be identical to the most general
five-vertex model, a degenerate case of the six-vertex model which requires a special Bethe ansatz
analysis. The resulting phase diagram of this five-vertex model is very complicated and the
analysis extremely lengthy.

In the second work H. Y. Huang, V. Popkov and F. Y. Wu [177, 184] introduced, and
solved, a three-dimensional model consisting of layered honeycomb dimer lattices, as described
in the preceding subsection, but with a specific layer-layer interaction. Again, the phase diagram
is very complicated. It is noted that this model is the only solvable three-dimensional lattice
model with physical Boltzmann weights (the Baxter solution of the 3D Zamolodchikov model
has negative weights). However, the layered dimer model, while having strictly positive weights,
describes dimer configurations in which the dimers are confined in planes. As a consequence the
critical behavior is essentially two-dimensional.

III-3-3. Revisiting dimers: a continuous-line model
F. Y. Wu and H. Y. Huang [158] have further used a dimer mapping to solve a continuous-

line lattice model in three and higher dimensions. They have also applied it to model a type-II
superconductor [160. In three dimensions, the model is a special case of an O(n) model on a
finite L1 £ L2 £ L3 cubic lattice with periodic boundary conditions with the partition function:

Z(n) =
X

closed polygons

nl ¢zb;
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where the summation is taken over all closed non-intersecting polygonal configurations, l is the
number of polygons, and b is the number of edges of each configuration. They considered the
n = ¡ 1 special case, which they showed to be in one-to-one correspondence with a dimer problem
whose partition function can be evaluated as a Pfaffian. The result for a finite lattice is:

Z(¡ 1) =
L1Y

n1=1

L2Y

n2=1

L3Y

n3=1

¯̄
¯̄
¯1 +

3X

i=1

z ¢e2¼ni=Ni

¯̄
¯̄
¯:

In the thermodynamic limit, this leads to the per-site free energy:

f =
1

(2¼)3
¢
Z 2¼

0

dµ1

Z 2¼

0

dµ2

Z 2¼

0

dµ3 ln

¯̄
¯̄
¯1 +

3X

i=1

z ¢e2¼ni=Ni

¯̄
¯̄
¯:

The phase diagram is rich and quite non-trivial.
However, it must be said that this exactly soluble three-dimensional O(¡ 1) model describes

line configurations running only in a preferred direction and, secondly,13 the Boltzmann weights
can be negative.

III-3-4. Revisiting dimers: nonorientable surfaces
More recently W. T. Lu and F. Y. Wu initiated studies on dimers and Ising models on

nonorientable surfaces [194, 203, 205]. For dimers on an M £ N net, embedded on non-
orientable surfaces, they solved both the Möbius strip and the Klein bottle problems for all sizes
M and N and obtained the dimer generating function ZM;N as:

ZM;N

zMN=2
= Re

³
(1 ¡ i) ¢

(M+1)=2Y

m=1

NY

n=1

³
2i(¡ 1)M=2+m+1 sin

³ (4 n ¡ 1)¼

2N

´
+2Xm

´´
;

where Re denotes the real part, zv and zh are the dimer weights in the vertical and horizontal
directions, respectively, and Xm is given for the Möbius strip and the Klein bottle respectively
by:

Xm =
zv
zh

¢cos
³ m¼

M +1

´
; Xm =

zv
zh

¢cos
³ (2m ¡ 1)¼

M

´
:

In paper [205] they also obtained an extension of the Stanley-Propp reciprocity theorem for
dimers14. Inspired by this work, there is now much activity in this area. There is also very
much current interest in finite-size corrections and conformal field theories on more complicated
surfaces (higher genus pretzels, ...).

III-3-5. Dimers on a square lattice with a boundary defect
In a very recent paper [207], fittingly dedicated to the 70th birthday of Michael Fisher, who

first solved the dimer problem for the square lattice, W. J. Tzeng and F. Y. Wu obtained the dimer

13 But we are used to this after R. J. Baxter’s solution of the 3D Zamolodchikov model.
14 A subject matter of pertinent interest to mathematicians.
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generating function for the square lattice with one corner (or some other boundary site) of the
lattice missing. In this work they made use of a bijection between the dimer and spanning tree
configurations due to Temperley (and extended by Wu in his unpublished 1976 lecture notes as
well as well as more recently by Kenyon, Propp and Wilson). They also carried out a finite-size
analyses which lead to a logarithmic correction term in the large-size expansion for the vacancy
problem with free boundary conditions. They found a central charge c = ¡ 2 for the vacancy
problem, to be compared with c = ¡ 1 when there is no vacancy. This central charge c = ¡ 2 is
in contradiction with the prediction of a naive conformal field theory.

III-3-6. Spanning trees
As mentioned above, the problem of spanning trees in graph theory is intimately related

to the dimer problem, and it is not surprising that Wu found his way to spanning trees. In
1977 he published a paper [62] on the counting of spanning trees on two-dimensional lattices
using the equivalence with a Potts model. Very recently he refined the tools by using a result
in algebraic graph theory, which he and W. J. Tzeng rederived using elementary means. Tzeng
and Wu enumerated spanning trees for general d-dimensional lattices as well as non-orientable
surfaces [198]. Applying these results to general graphs and regular lattices, R. Shrock and F. Y.
Wu [200] published a lengthy paper in which they established new theorems on spanning trees as
well as enumerating spanning trees for a large number of regular lattices in the thermodynamic
limit.

III-4. Miscellaneous results on vertex models
In this section we describe an arbitrary choice of miscellaneous results obtained by F. Y.

Wu on vertex models.

III-4.1. Boundary conditions
The six-vertex model is known to be a boundary condition dependent model. However H.

J. Brascamp, H. Kunz and F. Y. Wu [43] established, for the first time, that, at sufficiently low
temperatures or sufficiently high fields, the six-vertex models with either periodic or free boundary
conditions are equivalent.

III-4-2. The eight-vertex model in a field
A simple result due to F. Y. Wu [105] is that a very general staggered eight-vertex model

in the Ising language (as introduced by Kadanoff and Wegner and by F. Y. Wu [78]) with the
special Yang-Lee magnetic field i¼kT=2, is equivalent to Baxter’s symmetric eight-vertex model
and hence is soluble. This result is remarkable, since the general eight-vertex model without this
field is not known to be soluble.

III-4-3. The eight-vertex model on the honeycomb lattice
F. Y. Wu has always been keen in providing results for the honeycomb lattice [48, 130].

One interesting result is that he has established the exact equivalence of the eight-vertex model on
the honeycomb lattice with an Ising model in a nonzero magnetic field [48, 130]. The equivalence
also leads to exact analysis of the Blume-Emery-Griffiths model for the honeycomb lattice (for
details see section (IV-3) below).

In pursuit of applications of these results, P. Pant and J. H. Barry and Wu [181, 182] obtained
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exact results for a model of a ternary polymer mixture which is equivalent to an eight-vertex
model. A model ternary polymer mixture was considered with bi- and tri-functional monomers
and a solvent placed on the sites of a honeycomb lattice. Using the equivalence with an eight-
vertex model which further maps the problem into an Ising model in a nonzero magnetic field, an
exact analysis of the model was carried out. The phase boundary of the three-phase equilibrium
polymerization regime was determined exactly.

Comment: These kinds of results are particularly interesting when one realizes that concepts
and structures corresponding to the Yang-Baxter integrability do not exist at first sight. This leads
to the natural question: how to construct a Yang-Baxter relation for the honeycomb lattice?

III-4-4. Exact critical line of a vertex model in 3 dimensions
Wu [46] has introduced a vertex model in three dimensions with real vertex weights, and

determined its exact first-order phase transition line by mapping it to an Ising model in a field. It
also exhibits a critical point. This is one of the very few lattice statistical models for which exact
results can be deduced in higher-than-two dimensions.

IV. Spin models: Ising models and other models

We will consider in this section F. Y. Wu’s results on spin models, mostly Ising models.
Due to its importance the Potts models will be treated separately in section (7).

The distinction between vertex models and spin models (more generally Interaction Round
a Face (IRF) models) is an important one in lattice statistical mechanics. However Wu showed
in paper [78] an equivalence between an Ising model with a vertex model. Similarly in paper
[114] Wu and K. Y. Lin studied the Ising model on the Union Jack lattice, showing it to be a
free-fermion model. Many of the free-fermion results on the vertex models in sections (III-2-1)
and (III-3) can also be re-styled as free-fermion Ising models.

As far as the Union Jack lattice is concerned Wu has also obtained the spontaneous mag-
netization of the three-spin Ising model [51]. It is, in fact, obtained in terms of the magnetic and
ferroelectric orderings of the eight-vertex model, or, equivalently, the spontaneous magnetization
and polarization of the eight-vertex model. It was found that the two sublattices possess different
critical exponents.

An important development in the history of lattice models is the analysis of the phase
diagram of the Ashkin-Teller model on the square lattice by F. Y. Wu and K. Y. Lin [47]. The
Ashkin-Teller model is another example of spin models for which the traditional distinction of
lattice statistical mechanics between spin and vertex models is irrelevant. The Ashkin-Teller
model can be seen as two Ising models coupled together with four-spin interactions. Performing a
dual transformation on one of the two Ising models and interpreting the result as a vertex model,
one finds that the Ashkin-Teller model is equivalent to a staggered eight-vertex model [29], thus
exhibiting two phase transitions.

Wu’s analysis of spin models was not restricted to two dimensions. For instance, Barry and
Wu have obtained exact results for a four-spin-interaction Ising model on the three-dimensional
pyrochlore lattice [128], and Wu has also obtained various results for spin models on the Bethe
lattice and Cayley trees [54, 56].

Wu also performed real-space renormalization studies for Ising models [129], but, not
surprisingly, using some duality ideas, namely, the duality-decimation transformation of T. W.
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Burkhardt. Wu had previously applied the duality-decimation transformation in order to solve the
two-dimensional Ising model with nearest-neighbor, next-nearest-neighbor and four-spin interac-
tions in a pure imaginary field [105] (see section III-4.2). In paper [129] Burkhardt’s method,
which combines a bond-moving and duality-decimation transformation, is modified, in order to
preserve the free energy in the renormalization transformation.

IV-1. Generalized transmissivities for spin models
We will see below that a large number of F. Y. Wu’s work correspond to graph expansions

(see section (VII-1)). For spin models with edge interactions this requires the introduction of
certain “transmissivity” variables. Thermal transmissivities are introduced when considering high-
temperature expansions of an edge-interaction spin model or performing renormalization analyses.
They are also the natural variables to use in the decimation of spins in a simple multiplicative
way.

Introduce the edge Boltzmann weight W(K1;K2;¢¢¢Kn;a;b), where K1; K2;¢¢¢Kn de-
note a set of coupling constants describing the model, and a and b are two nearest-neighbor spin
states which can take on q values. Let us assume that the decimation procedure yields a Boltzmann
weight of the same form:

X

b

W (K1;K2; ¢¢¢Kn;a;b) ¢W (K 0
1;K

0
2; ¢¢¢K0

n;b; c) = ¸ ¢W (K00
1 ;K

00
2 ;¢¢¢K 00

n;a;c): (18)

Alternatively, one can build a q£ q Boltzmann matrix W with entries Wi;j = W (K1;K2, ¢¢¢Kn;
i; j). In terms of such matrices relation (18) becomes W¢W0 = W00. The decimation procedures,
and also the high-temperature expansions in such models, are greatly simplified by introducing a
“transmissivity” function t® , such that the matrix relation W ¢W0 = W00 becomes one or more
multiplicative relations of the form:

t® (W) ¢t® (W0) = t® (W00); ® = 1; ¢¢¢ ;r:

The simplest example is the transmissivity variable for the q state standard scalar Potts
model, for which one has t = (eK ¡ 1)=(eK + q ¡ 1). This is the natural expansion variable
for the high-temperature series of the model (see also the fi;j’s in (45) and (46) introduced in
section (VII-1) below). For the Ising model this reduces to the tanh(K) variable. F. Y. Wu
et al. [147] underlined the fact that two quite different situations must be considered. If the
family of Boltzmann matrices W is a set of commuting matrices, then they can be diagonalized
simultaneously and the transmissivity variables are nothing but all the possible ratios of eigenvalues
of the Boltzmann matrices W. If, alternatively, the Boltzmann matrices W do not commute, then
one must perform a simultaneous block-diagonalization of this family of Boltzmann matrices,
and, therefore, some of the t® ’s will be block matrices from which one can extract functions Á®
satisfying Á®(W

00) = Á® (W)¢Á® (W0). One obvious choice for Á® is the (ratio of) determinants
of these blocks. A number of non-trivial non-commuting transmissivities are given in [147].

IV-2. Three-spin interactions: the Baxter-Wu model
Another important work in the history of exact solutions of lattice statistics is the Baxter-Wu

model, which is an Ising model on the triangular lattice with three-spin interactions. This model
was solved exactly by R. J. Baxter and F. Y. Wu in 1973 [45, 49].
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The three spins surrounding every triangular face interact with a three-body interaction of
strength ¡ J , so that the Hamiltonian reads:

H = ¡ J ¢
X

¾i¾ j¾k: (19)

Baxter and Wu found that the per-site partition function Z has a remarkably simple expression:

Z =
p

6yt with: t = sinh(2 jJj=kT); (20)

and where y is the solution of the algebraic equation:

(y ¡ 1)3 (1 + 3y) (1 + t2) ¢t = 2(1 ¡ t)4 ¢y3: (21)

The partition function has a singular part which behaves as jt ¡ 1j4=3.
Some interesting duality properties of the Baxter-Wu model are very clearly detailed in

[45], and used to convert the Baxter-Wu model into a coloring problem. This provides a very
heuristic example showing that duality is not specific to edge-interaction spin models, but can
also be introduced with many-body interactions. In the following we briefly describe how the
Baxter-Wu model is transformed into a coloring problem.

First we introduce a Z2-Fourier transform with function g(¸;¹) which enables us to simply
write the Kramers-Wannier duality for this three-spin model (¸ and ¹ are Ising spins) as:

g(¸; ¹) = +1 if: ¸ = +1;

g(¸; ¹) = ¹ if: ¸ = ¡ 1:
(22)

Note that this function is symmetric in ¸ and ¹ , namely, g(¸; ¹) = +1 when ¹ = +1 and
g(¸; ¹) = ¸ when ¹ = ¡ 1.

Returning to the Baxter-Wu model, each spin ¾i of the triangular lattice belongs to six
triangles around vertex i, which form a hexagon with the spin ¾ i at the center. Let us now
consider the close-packing of such hexagons. The spins ¾ i now form a (triangular) sublattice of
the initial triangular lattice.

Consider next the spins ¾ i, and denote the edge connecting nearest-neighboring spins, ¾k
and ¾l, sitting on the hexagon surrounding ¾i, by < kl >. Let us introduce Ising edge variables
¸r corresponding to the six edges < kl > of the hexagon: ¸r = ¾k ¢¾ l, r = 1;¢¢¢6. The local
Boltzmann weight of a hexagonal cell around a spin ¾i can be written as:

Whex =
1

2
¢
³
1 +

6Y

r=1

¸r
´
¢exp

³
K ¢¾i ¢

6X

r=1

¸r
´
; (23)

where the factor (1 +
Q
¸r) takes into account the fact that the Ising edge variables ¸r are not

independent, but are constrained by the condition
Q
¸r = 1. As usual this condition, associated

with every hexagon, can be written by introducing a dummy variable ¹ i also associated with every
hexagon:

X

¹ i=§ 1

6Y

r=1

g(¸r; ¹ i) = 1 +
6Y

r=1

¸r;
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enabling us to rewrite (23) as:

Whex =
X

¹ i=§ 1

6Y

r=1

g(¸r ; ¹ i) ¢exp
³
K ¢¾i ¢

6X

r=1

¸r
´
:

The partition function of the Baxter-Wu model is now seen as a summation over all the (initial)
spins ¾ i and the (dummy) spins ¹ i of a triangular sublattice, and the edge Ising spins ¸r. Let us
focus on one ¸r. The edge r =< kl > belongs to a hexagon around spin ¾ i and a neighboring
hexagon around another spin, say, ¾j . The edge Ising spin ¸r thus occurs in the Boltzmann factors
with a factor of

W¸r = eK¢(¾ i+¾j)¢̧ r ¢g(¸r; ¹ i) ¢g(¸r ; ¹ j):
Summing over the edge Ising spin ¸r in the partition function and using relations (22), one thus
obtains a factor:

!ij =
X

¸ r=§ 1

W¸r = eK(¾ i+¾j) + ¹ i¹ j ¢e¡ K(¾i+¾ j) (24)

between two spins ¾i and ¾ j on the sublattice. This can be interpreted as the edge weight associated
with a coloring problem, and the Baxter-Wu model is transformed into a coloring problem.

IV-3. The Blume-Emery-Griffiths model
The Blume-Emery-Griffiths (BEG) model is a model that F. Y. Wu and his coworkers quite

naturally considered [106, 116, 136, 148], since it reduces to an Ising model on the honeycomb
lattice on a special manifold [106, 116].

The BEG model is defined by the Hamiltonian:

¡ ¯ ¢H = ¡ J ¢
X

<i;j>

SiSj ¡ K ¢
X

<i;j>

S2
i ;S

2
j ¡ ¢

X

i

S2
i ¡ H ¢

X

i

Si; (25)

where the spins are classical spin-1 spins taking on the values Si = 0;§ 1.In the high-temperature
expansion the nearest-neighbor Boltzmann factor assumes the form

exp(J Si Sj + KS2
i S

2
j ) = 1 + (eK sinh J)SiSj + (eK cosh J ¡ 1)S2

i S
2
j : (26)

It follows then in the subspace K = ¡ ln(cosh J), one has the simple relation

exp(JSiSj +KS2
i S

2
j ) = 1 + Si Sj tanh(J);

and the partition function of the BEG model assumes the simpler form:

ZBEG =
X

Si=0;§ 1

Y

<i;j>

(1 + SiSj tanhJ)
Y

i

exp(¡ ¢ S2
i + HSi):

Expanding the products over neighboring pairs, representing each term by a graph and making
use of the identities

X

Si=0;§ 1

Sn
i ¢e¡ ¢ S2

i = ½(n) with: ½(2) = 2e¡ ¢ ;

½(0) = 2e¡ ¢ +1; ½(1) = 0;
(27)
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one finds that one has eight possible configurations at each vertex of the honeycomb lattice,
corresponding to the following Boltzmann weights of an (isotropic) eight-vertex model:

a = 1 + 2e¡ ¢ cosh(H); b = 2
p

tanh(J)e¡ ¢ sinh(H);

c = 2 tanh(J)e¡ ¢ cosh(H); d= 2(tanh(J))3=2e¡ ¢ sinh(H):

With these notations one deduces the identity of the partition function of the BEG model (25)
with the eight-vertex model on a honeycomb lattice (see also sections (V-1) and (V-3) below):

ZBEG = Z8v(a; b; c;d):

Performing a weak-graph duality transformation on this eight-vertex model (see section (V) below)
associated with the 2 £ 2 (gauge) matrix [48]:

g1 = g2 =
1p
2
¢
µ

1 y
¡ y 1

¶
;

one finds that the partition function of the eight-vertex model Z8v(a; b; c;d) remains invariant
under a weak-graph duality transformation [7, 116]:

~a = (a+3yb +3y2c+ y3d)=(1 + y2)3=2; ¢¢¢ Z8v(a;b; c; d) = Z8v(~a;~b; ~c; ~d): (28)

The four parameters a; b; c;d or ~a;~b; ~c; ~d can be seen, as far as the calculation of the partition
function is concerned, as four homogeneous parameters. Taking into account an irrelevant overall
factor and the irrelevant gauge variable y from the weak-graph symmetry (28), one sees that
the partition function of the eight-vertex model Z8v(a; b; c;d) basically depends on two variables
instead of four. Not surprisingly, Wu found that Z8v(a;b; c; d) is equivalent to the partition
function of an Ising model with nearest-neighbor interactions KI and a magnetic field L:

ZIsing(L;KI )=
X

¾

Y

<ij>

exp(KI¾i¾j)
Y

i

exp(L¾i)

= Z8v(~a;~b; ~c; ~d) ¢
Ã

2 cosh(L) cosh3=2(KI )

~a

!N

;

(29)

where N is the number of lattice sites. The explicit expressions of KI and L in terms of the BEG
parameters are complicated. But for H = 0, one has L = 0 and

tanh(KI ) =
2

2 + e¢
¢tanh(J);

using which one determines the critical line KI = 1=
p

3 in the J > 0 regime. The spontaneous
magnetization of the BEG model for J > 0 and the phase boundary of the J < 0 BEG model can
be similarly determined [116].

The proof of the equivalence of the honeycomb eight-vertex model with an Ising model in
a field, as outlined in the above, is quite tedious. However, a more direct derivation has since
been given by Wu [130].
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The eight-vertex model on the honeycomb lattice can also be seen to be related to a lattice-
gas grand partition function ¥Kag(z;J;J3) on the Kagomé lattice [126] (see also section (VI-3)
below), where ¡ J is the nearest-neighbor interaction, ¡ J3 the triplet interactions existing among
three sites surrounding a triangular face of the lattice, and z denotes the fugacity. Then one has
the equivalence:

¥Kag(z;J; J3) = Z8v(a;b; c; d)

a= 1; b =
p
z; c = z ¢eJ ; d = z3=2 ¢e3J+J3:

(30)

From (29) and (30), F. Y. Wu and X. N. Wu were able to obtain results for the liquid and vapor
densities, showing that an observed anomalous critical behavior occurs in the lattice gas only when
there are nonzero triplet interactions [126]. This analysis has been extended to a lattice gas on
the 3-12 lattice by J. L. Ting, S. C. Lin and F. Y. Wu [140].

Wu’s tricks for the honeycomb BEG model are not limited to the weak-graph transformation
for the eight-vertex model. Using a syzygy analysis of the invariants under the O(3) transformation
L. H. Gwa and F. Y. Wu have obtained an expression for the critical variety of the honeycomb
BEG model to an extremely high degree of accuracy [148] (see section (V-4) below).

IV-4. Other spin results: disorder points
Let us finally describe, among many results obtained by F. Y. Wu on spin models, one result

concerning disorder points. Disorder solutions are particularly simple solutions corresponding to
some “dimensional reduction” of the model, which provide simple exact results for models which
are generically quite involved. While this yields severe constraints on the phase diagrams, the
series expansion, and the analyticity properties of the model, it does lead to exact solutions of
models which are otherwise nonintegrable.

For example, using a decimation approach, Wu [100] has deduced the disorder solution
for the triangular Ising model in a nonzero magnetic field. Wu and K. Y. Lin [120] have used a
checkerboard Ising lattice to illustrate that there may exist more than one disorder point in a given
spin system. Along the same vein, N. C. Chao and Wu [101] have explored the validity of the
decimation approach by considering the disorder solutions of a general checkerboard Ising model
in a field.

V. Weak-graph dualities and Hilbert’s syzygies

In a pioneering paper F. Y. Wu and Y. K. Wang [58] introduced a duality transformation
for a general spin model which can have chiral interactions. This is the first time that a chiral
spin model was explicitly considered. In terms of R matrices such as (12) these transformations
are the tensor product of two similarities:

R ¡! g1 ­ g2 ¢R ¢g¡ 1
1 ­ g¡ 1

2 (31)

where g1 and g2 are two q £ q matrices, R is a q2£ q2 matrix (q = 2 for the sixteen-vertex model).
This symmetry group is an sl(q) £ sl(q) symmetry group. The high- and low-temperature duality
(3) given in section (III-1) for the sixteen-vertex model is a particular case of such transformations,
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corresponding to g1 and g2 being two involutions:

g1 = g2 =
1p
2
¢
µ

1 i
¡ i 1

¶
:

This duality relation [58, 131] is now well-known for vertex models. It corresponds to symmetries
of the model and can be used, as will be seen in the next two subsections, to find good variables to
express the critical manifolds of a lattice model, and, hopefully, to determine their exact expressions
when algebraic.

V-1. Hilbert’s syzygies, gauge-like dualities and critical manifolds
Let us give some hints as to how the gauge-like dualities enable us to deduce results on

critical manifolds or varieties. The main idea is to construct algebraic invariants under these gauge
transformations.

Hilbert has shown that all invariants of a linear transformation are algebraic and can be
expressed in terms of a set of homogeneous polynomials, the syzygies. Considering the sixteen-
vertex model, the transformation is O(2) and the fundamental invariants corresponding to the O(2)
group have been constructed by J. H. H. Perk, F. Y. Wu and X. N. Wu in [131]. Likewise for 3-
state vertex models the transformation is O(3) and the associated invariants have been constructed
by L. H. Gwa and F. Y. Wu [146] (see section (V-4) below).

V-2. Hilbert’s syzygies and the square lattice Ising model in a magnetic field
With an algebraic prejudice for critical manifolds, it is very tempting to conjecture closed

algebraic formula for critical manifolds that will reproduce known exact results in various limits.
For instance, closed-form expressions for the critical line of the square lattice antiferromagnetic
Ising model in a magnetic field were proposed15 by Müller-Hartmann and Zittartz. However, it
has been shown that the expression is numerically incorrect.

X. N. Wu and F. Y. Wu [135] considered the square lattice antiferromagnetic Ising model
in a magnetic field, which can be seen as a subcase of the sixteen-vertex model under the O(2)
group. Introducing the variables

a = 1; b =
p
vh; c = v; d = v3=2h; e= v2

with: v = tanh(J=kT ); h = tanh(H=kT );

the five fundamental Hilbert invariants of O(2) read:

I1 = a+2c+ e I2 = (a ¡ 6c + e)2 + 16(b ¡ d)2;

I3 = (a¡ e)2 + 4(b + d)2; I5 = a2d¡ be2 ¡ 3(a ¡ e)(b+ d)c;

I4 = (a¡ 6c + e) ¢((a ¡ e)2 ¡ 4(b+ d)2) + 4(a ¡ e)(b2 ¡ d2);

and the critical line proposed by Wu and Wu assumes the form

c1 ¢I4
1 c2 ¢I2

1 I2 + c3 ¢I2
1 I3 + c4 ¢I2

2 + c5 ¢I2
3 + c6 ¢I2 I3 = 0:

15 This is just one example in a very long list of incorrect algebraic conjectures for critical manifolds that one can

find in the literature.
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They then determined the ci’s using the various known results, including a constraint dictated
by the known zero-field critical point, as well as the results of a finite-size analyses which they
carried out. This lead to the values c1 = 1, c2 = ¡ 0:044 338, c3 = 0:362 73, c4 = 0:000 4938,
c5 = 0:042 779, c6 = ¡ 0:008 9149. The resulting closed form expression for the critical line
reproduces all known numerical data to a high degree of accuracy. For instance, the critical line
yields for a small magnetic field: Tc ' T0 ¢(1 ¡ u ¢(H=J)2) with u ' 0:038 022. This is
compared to the presumably exact value obtained by M. Kauffman: u' 0:038 0123 259 ¢¢¢

V-3. Hilbert’s syzygies and the honeycomb lattice Ising model in a magnetic field
Similar analyses have been carried out for the honeycomb lattice by F. Y. Wu, X. N. Wu

and H. W. J. Blöte [132]. For the corresponding honeycomb eight-vertex model we have

a= 1; b =
p
vh; c = v; d= v3=2h

with: v = tanh(J=kT); h = tanh(H=kT):

Analogous to (32), we introduce the following Hilbert’s syzygies:

P = a2 +3ac +3bd+ d2; Q= b2 ¡ ac + c2 ¡ bd

P2= 2(a4 + d4) ¡ 6(a2 c2 + b2 d2) + 12(a2 b2 + c2 d2) ¡ 5a2 d2

+27 b2 c2 +36(ab + cd)bc +18ab c d:

The critical line proposed by Wu, Wu and Blöte now reads [125]:

c1 ¢P2 + c2 ¢P2 + c3 ¢PQ+ c4 ¢Q2 = 0: (32)

After an extensive search by mapping with all known exact results, they proposed the numbers:
c1 = 1, c2 = ¡ (4 +3

p
3)=6, c3 = ¡ (1 ¡ 9

p
3)=8, and c4 = ¡ 3(3 ¡ p

3)=8.
The initial slope of this critical frontier for small H is ¡ ln(zc) where zc is the criti-

cal fugacity of the nearest-neighbor exclusion gas. Their expression leads to the value zc '
7:851 780 04 ¢¢¢ which is in very good agreement with the value obtained from finite-size analy-
sis, namely, zc ' 7:851 725 175(13). The critical line (32) is probably not the exact one but
certainly a very accurate approximation.

Comment: Hilbert’s invariant theory amounts to considering linear gauge-like symmetries
of the model and the associated invariants. From the inversion relations one has further an infinite
discrete set of birational non-linear symmetries, that one can couple with these continuous linear
groups. In fact, all the above analyses can be revisited by combining the gauge transformation
with the infinite discrete symmetries generated by the inversion relations of the sixteen- (or simply
eight)-vertex models. This would lead us to consider a unique “superinvariant” which is, in fact,
the modular invariant of the elliptic curves parametrizing the sixteen-vertex model.

V-4. Hilbert’s syzygies and the honeycomb BEG model
To apply the syzygy consideration to the BEG model, which is a 3-state spin model, one

needs to consider the O(3) gauge transformation and its associated invariants, but the construction
of the O(3) invariants is very complicated. However, the day is saved, since there exists a mapping
between O(3) and sl(2), and invariants for the latter have been worked out by mathematicians a
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long time ago. While the mathematics to decipher the old results is involved, L. H. Gwa and
F. Y. Wu [146] have succeeded in carrying out such an analysis and deduced that there are 5
independent invariants for the O(3) group. They next applied the analysis to the isotropic BEG
model on the honeycomb lattice [148], and found one of the invariants to vanish identically. The
remaining 4 invariants are then used to determine the critical variety of the BEG model, as in
the case of the O(2) gauge. The resulting closed-form expression for the critical variety agrees
extremely well with numbers obtained from a finite-size analysis, which they also carried out.

VI. Critical manifolds and critical varieties

A problem solver like F. Y. Wu first tries to find the exact solution of a problem. He tries to
“dig out” problems that can be solved. However since most of the problems one looks at cannot
be solved exactly, one then tries to study models for which some exact results can be “salvaged”.
This could be the critical manifolds, which are submanifolds along which the models are Yang-
Baxter integrable. In such cases the critical manifolds are, in fact, critical varieties. For other
models the critical manifolds are algebraic varieties without hidden Yang-Baxter integrability [79,
161].

For two-dimensional lattice models the situation is more specific: one can have some
“conformal prejudice” that critical manifolds should be submanifolds where the model has a
two-dimensional conformal (infinite) symmetry yielding some integrability in the scaling limit.
Therefore, as far as critical manifolds are concerned, it is crucial to understand the inter-relation
between 1) algebraicity consequences of Yang-Baxter integrability, 2) conformal integrability con-
sequences of a two dimensional criticality, and 3) self-duality.

Many criticality conditions have been obtained, or simply conjectured, in the literature of
lattice models in statistical mechanics [47, 65, 72-74, 79, 80], and all these conjectures were
algebraic [125]. A straightforward situation corresponds to the case where the model possesses a
duality symmetry (see section (V)) for which it is always possible to give a linear representation of
this duality transformation. One can sometimes find varieties which are globally invariant under
this symmetry.

Let us, instead, consider the fixed points of the linear duality transformation, which belong
to some algebraic variety (hyperplane). If the algebraic variety separates the phase diagram into
two disconnected parts, and if one assumes that the critical temperature is unique, one can actually
deduce that this algebraic variety is a critical variety [79]. Of course if the algebraic variety is
only globally invariant (and not invariant point-by-point on the algebraic variety) one cannot draw
any conclusion.

In fact, for most of the time one is not in a situation where a simple self-dual argument
allows the determination of the critical points. A good example is the duality transformation
(31) for the sixteen-vertex model for which self-dual arguments are insufficient. In fact there
exists a “super-invariant” in this model after taking into account the gauge (weak-graph) duality
symmetries (31) and the inversion relation symmetries16. But that is another story.

When the critical varieties are exact, they are almost always related to some integrability
of the model, the algebraicity thus being a consequence of the integrability. A paradigm is the

16 Remarkably this consideration even extends the sl(2)­ sl(2) weak-graph symmetry group to an sl(2)­ sl(2)­
sl(2) ­ sl(2) symmetry group.
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standard scalar Potts model (see section (VII-1)) which is integrable at criticality. However, we
will give below, in the case of the two- and three-site interaction Potts model [161], an algebraic
variety which is the critical condition [125] but is unrelated to any simple Yang-Baxter-like
integrability.

Throughout the years F. Y. Wu has obtained numerous results on critical varieties for two-
and three-dimensional spin models, and many related conjectures as well. One can only say that
the seeking of critical manifolds and critical varieties is a fascinating subject matter by itself for
specialists like Wu.

VI-1. Inversion relations, duality and critical varieties
The considerations of inversion relations has been shown to be a powerful tool for analyzing

the phase diagram of lattice models and, particularly, for obtaining critical algebraic manifolds in
the form of algebraic varieties (see (56) in section (VII-2)).

Let us consider the standard scalar q-state Potts model on an anisotropic triangular lattice
with nearest-neighbor and three-spin interactions around up-pointing triangles [79, 161] as shown:
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The partition function of the models reads:

Z =
X

f¾ig

Y

<i;j>

eK1±¾ i;¾ j
Y

<j;k>

eK2±¾j ;¾k
Y

<k;l>

eK3±¾k ;¾l
Y

¢

eK±¾ i;¾ j±¾ j;¾ k :

Here the summation is taken over all spin configurations, the first three products denote edge
Boltzmann weights and the last product is over all up-pointing triangles.

A duality transformation exists for this model [79]. We introduce the following notation:

x = eK; xi = eKi ; i = 1; 2;3

y = x x1 x2 x3 ¡ (x1 + x2 +x3) +2:
(33)

With the notation (33) the duality

D :

8
>><
>>:

xi ¡! x¤i = 1 + q
xi ¡ 1

y
; y ¡! y¤ =

q2

y
;

x ¡! x¤ =
x1 + x2 + x3 ¡ 2 + q2=y

x1 x2 x3
;

(34)
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and the partition transforms as

Z(x1; x2; x3; y) = (y=q)N ¢Z(x¤1;x
¤
2;x

¤
3; y

¤); (35)

where N is the number of sites.
On the basis of this duality Baxter et al. proposed that the critical points are located on the

algebraic variety:

x x1 x2 x3 ¡ (x1 +x2 + x3) + 2 ¡ q = 0; (36)

which corresponds to the set of fixed points of D. The critical variety (36) is not only globally
invariant under (34), it is also point-by-point invariant, namely, every point on the variety is
invariant. In general when an algebraic variety is such that every point of the variety is invariant
under a duality symmetry, it is possible to argue, subject to some continuity and uniqueness
arguments, that the variety actually corresponds to the criticality variety. This has been done
by Wu and Zia [125] for q > 4 in the ferromagnetic region. It is important to note that the
critical variety (36) is not an algebraic variety on which the model becomes Yang-Baxter (star-
triangle) integrable. This is an interesting example of a model where algebraic criticality does
not automatically imply Yang-Baxter integrability.

Comment: In suitable variables the duality transformations can be seen as a linear trans-
formation. There are two globally invariant hyperplanes under D: y = +q and y = ¡ q. The
(ferromagnetic) criticality variety (36) corresponds to y = +q. The second hyperplane y = ¡ q
is not a point-by-point invariant although it is globally self-dual. It is not a locus for critical or
transition points.

This illustrates a fundamental question one frequently encounters when trying to analyze a
lattice model: is the critical manifold an algebraic variety or a transcendental manifold? It will
be seen that a first-order transition manifold exists for this model for q = 3, and its algebraic or
transcendental status is far from being clear (see [166] and (67) in section (VII-4-3)). The existence
of such a very large (nonlinear) group of (birational) symmetries provides drastic constraints on
the critical manifold and therefore the phase diagram.

There exist three inversion relations associated with the three directions of the triangular
lattice for this model [161]. For instance, the inversion relation which singles out direction 1 (see
figure 1) is the (involutive) rational transformation I1:

I1 : (x;x1;x2;x3) ¡!
³ (xx1 ¡ 1)2(x1 + q ¡ 2)

(xx2
1 +xx1(q ¡ 3) ¡ q +2)(x1 ¡ 1)

;

2 ¡ q ¡ x1 +
x1(x ¡ 1)

x1 x ¡ 1
;

x1 ¡ 1

x3(xx1 ¡ 1)
;

x1 ¡ 1

x2(xx1 ¡ 1)

´
:

(37)

These three inversion relations generate a group of symmetries which is naturally represented in
terms of birational transformations in a four dimensional space. This infinite discrete group of
birational symmetries is generically a very large one (as large as a free group). The algebraic
variety (36) is remarkable from an algebraic geometry viewpoint: it is invariant under this very
large group generated by three involutions (37).

In this framework of a very large group of symmetries of the model, an amazing situation
arises: the one for which q, the number of states of the Potts model, corresponds to Tutte-Beraha
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numbers q = 2 +2 cos(2¼=N ) where N is an integer. For these selected numbers of q, the group
of birational transformations is generated by generators of finite order: it is seen as a Coxeter group
generated by generators and relations between the generators. The elements of the group can be
seen as the words one can build from an alphabet of three letters A, B and C with the constraints
AN+1 = A, BN+1 = B, CN+1 = C . Since the generators A, B and C do not commute (nor
does any power of A, B and C) the number of words of length L still grows exponentially with
L (hyperbolic group). Among these values of q, two Tutte-Beraha numbers play a special role:
q = 1 and q = 3. For these two values the hyperbolic Coxeter group degenerates17 into a group
isomorphic to Z £ Z.

For the standard scalar nearest-neighbor Potts model the Tutte-Beraha numbers correspond
to the values of q for which the critical exponents of the model are rational (see (53) in section
(VII-1)).

VI-2. The exact critical frontier of the Potts model on the 3-12 lattice
F. Y. Wu et al. considered a general 3-12 lattice with two and three-site interaction on the

triangular cells [155]. This model has eleven coupling constants and includes the Kagomé lattice
as a special case.

In a special parameter subspace of the model, condition (38) below, an exact critical frontier
for this Potts model on a general 3-12 lattice Potts model was determined. The Kagomé lattice
limit is unfortunately not compatible with the required condition (38).

The condition under which they obtained the exact critical frontier reads:

x2 x2
1 x

2
2 x

2
3 ¡ xx1 x2 x3 ¢(x1 x2 +x2 x3 + x1 x3 ¡ 1)

+(x1 +x2 + x3 + q ¡ 4) ¢(x1x2 +x2x3 +x1x3 +3 ¡ q)

¡ q x1 x2 x3 ¡ (x2
1 +x2

2 + x2
3) + q2 ¡ 6 q +10 = 0:

(38)

This is nothing but the condition which corresponds to the star-triangle relation of the Potts model.

Comment: One can show that condition (38) is actually invariant under the inversion relation
(37) of the previous section (VI-1), and therefore, since (38) is symmetric under the permutations
of K1, K2 and K3, under the three inversions generating the very large group of birational
transformations previously mentioned in section (VI-1). More generally, introducing D1, D2 and
D3:

D1 = x1 + x2 +x3 ¡ xx1x2x3 + q ¡ 2; D3 = xx1x2x3 ¡ x1 x2 x3;

D2 = x1 + x2 +x3 +xx1x2x3 ¡ 1 ¡ (x1x2 + x2 x3 +x1x3);

one can show that the algebraic expression

I1(x1;x2;x3;x) =
D1 ¢D2

D1D2 ¡ q ¢D3
(39)

is invariant under the three inversion relations and the large group of birational transformation they

17 Up to semi-direct products by finite groups.
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generate, the (star-triangle) condition (38) corresponding to I1(x1;x2;x3;x) = 1, namely18

D1 D2 ¡ qD3 = 0.
When x = 1, or q = 1 or 3, there are additional invariants of the three inversions (37). For

instance, for x = 1, one can build an invariant from a covariant we give below (see (57)). For
q = 3, introducing

D5 = x1x2x3 ¢(x2
1x

2
2x

2
3x

2 ¡ x2
2xx

2
1 ¡ x2

3xx
2
1 ¡ x2

2x
2
3x +x2

1 + x2
2 + x2

3 ¡ 1);

one finds that the expression:

I2(x1; x2; x3; x) =
D3

1 ¢D2

35 ¢D5
;

is invariant under the three inversions (37). One can try to find the manifold corresponding to
the first order transition (see (VII-4-3) below) in the form F(I1; I2) = 0. It still remains an
open question whether this variety is algebraic or transcendental. The x = 1 limit corresponds to
I1 = +1. The condition I2(x1;x2;x3;x) = 1 yields x1 = x2 = x3 = 0:215 816 (to be compared
with 0:226 681 from (57) in section (VII-2) below), still different from 0:204 (see (66) in section
(VII-4-3) below), which is believed to be the location of the first-order transition point.

VI-3. The embarrassing Kagomé critical manifold
At the end of the 80’s there was a surge of interest in the Kagomé lattice coming from

the theoretical study of high-Tc or strongly interacting fermions in two dimensions (the 2D Hub-
bard model, resonating valence bond (RVB), ground state of the Heisenberg model). The two-
dimensional Gutzwiller product RVB ansatz strategy promoted by P. W. Anderson for describing
strongly interacting fermions seemed to fail for regular lattices (square, triangular, ...). Thus,
because of its ground state entropy and other specific properties, the Kagomé lattice seemed to be
the “last chance” for the RVB approach.

Since one can obtain a critical frontier (38) for the general 3-12 lattice model, and since
the 3-12 model includes the Kagomé lattice as a special case, it is tempting to try to obtain the
critical frontier for the Potts Kagomé lattice.

The Kagomé Potts critical point was first conjectured by Wu [74] as

y6 ¡ 6y4 + 2(2 ¡ q)¢y3 +3(3 ¡ 2 q) ¢y2 ¡ 6(q ¡ 1) ¢(q ¡ 2)y

¡ (q ¡ 2) (q2 ¡ 4 q +2) = 0;
(40)

which gives, for q = 2, the correct critical point y4 ¡ 6y2 ¡ 3 = 0 and for q = 0 gives (also
correctly) y = 1. Furthermore, for large q, y behaves like

p
q, as it should. However in the perco-

lation limit q ! 1, it gives a percolation threshold pc for the Kagomé lattice of pc = 0:524 43¢¢¢,
which compares to the best numerical estimate19 obtained by R. M. Ziff and P. N. Suding, namely
pc = 0:524 405 3 ¢¢¢, with uncertainty in the last quoted digit. Wu’s conjecture is thus wrong,

18 For x = 1 (no three-spin interaction, D3 = 0), condition (38) factorizes and one recovers the ferromagnetic
critical condition (36) of the q-state Potts model on an anisotropic triangular lattice.

19 R. M. Ziff and P. N. Suding, Determination of the bond percolation threshold for the Kagomé lattice, J. Phys.
A 30, 5351 (1997) and cond-mat/9707110.
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but by less than 5¢10¡ 5. Some very long high-temperature series of I. Jensen, A. J. Guttmann and
I. G.Enting on the q-state Potts model on the Kagomé lattice further confirm that the conjecture
is wrong for arbitrary values of q. Nevertheless the Wu conjecture remains an extraordinary
approximation.

It is a bit surprising that no exact result on integrability (along some algebraic subvariety)
or exact expression for the critical variety is known for the standard scalar Potts model on the
Kagomé lattice, as generally one expects that the integrability on one lattice, say the square lattice,
implies integrability for most of the other Euclidian lattices. This is certainly not the case for the
Kagomé lattice.

VII. Potts models

The Potts model encompasses a very large number of problems in statistical physics and
lattice statistics. The Potts model, which is a generalization of the two-component Ising model
to q components for arbitrary q, has been the subject matter of intense interest in many fields
ranging from condensed matter to high-energy physics. It is also related to coloring problems in
graph theory.

However, exact results for the Potts model have proven to be extremely elusive. Rigorous
results are limited, and include essentially only a closed-form evaluation of its free energy for
q = 2, the Ising model, and critical properties for the square, triangular and honeycomb lattices
[70]. Much less is known about its correlation functions.

VII-1. Wu’s review of the Potts model
F. Y. Wu’s 1982 review of the Potts model is very well-known [89] (see also [98]). It is

an exhaustive expository review of most of the results known about the Potts model up to 1981,
a time when interest in the model began to mount. It has remained extremely valuable for anyone
wishing to work on the standard scalar Potts model. In particular, it explains the q ! 1 limit
of the percolation problem (see also [64]), the q ! 1=2 limit of the dilute spin glass problem,
and the q ! 0 limit of the resistor network problem; the equivalences with the Whitney-Tutte
polynomial [89] (see section (7.7) and also [57])) and many other related models are also detailed.
For instance, the Blume-Capel and the Blume-Emery-Griffiths model (see (25) in (IV-3)) can also
be seen as a Potts models. More generally, it is shown that any system of classical q-state spins,
the Potts model included, can be formulated as a spin (q ¡ 1)=2 system.

However, Wu’s review was not written in time to include discussions of the inversion
functional relations. For the two- and three-dimensional anisotropic q-state Potts models, the
partition functions satisfies, respectively, the functional relations:

Z(eK1; eK2) ¢Z(2 ¡ q ¡ eK1; e¡ K2) = (eK1 ¡ 1) ¢(1 ¡ q ¡ eK1); (41)

Zcubic(e
K1 ; eK2 ; eK3 )¢Zcubic(2 ¡ q ¡ eK1; e¡K2; eK3) = (eK1 ¡ 1) ¢(1 ¡ q ¡ eK1): (42)

There are also permutation symmetries like, in 3 dimensions, Zcubic(eK1, eK2, eK3 ) = Zcubic(eK3,
eK1; eK2) = Zcubic(e

K3, eK2, eK1). Combining these relations one generates an infinite set of
discrete symmetries which yield a canonical rational parametrization of the Potts model at
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and beyond20 T = Tc, and shows clearly the role played by the Tutte-Beraha numbers. These
infinite sets of discrete symmetries impose very severe constraints on the critical manifolds and the
integrability (see sections (6), (VI-1)). An inversion relation study has subsequently been carried
out by F. Y. Wu et al. [161].

Graph theory plays a central role in Wu’s work on the Potts model. The Potts partition
function can be written as [89]

Z ´ ZG(q;K) =
X

G0µ G
(eK ¡ 1)bqn; (43)

where K = J=kT , the summation is taken over all subgraphs G0 µ G, and b and n are, respec-
tively, the number of edges and clusters, including isolated vertices, of G0. The duality relation
of the Potts model can be obtained from a graph-theoretical viewpoint by using the Euler relation
c+ N = b +n, where c is the number of independent circuits in the subgraph G0, and N is the
total number of vertices in G. This leads to the duality relation

ZG(q; K) = vjEj ¢q1¡ND ¢ZD(q; K¤);

where D is the graph dual to G, and the dual variable K¤ is given by:

(eK ¡ 1)¢(eK¤ ¡ 1) = q: (44)

The generalization of the duality to multisite interactions is also given in the review.
A consequence of (43) is that one finds the following connection with the chromatic

polynomial PG(q) on G by taking the antiferromagnetic zero-temper-ature limit K !¡ 1:

ZG(q; K = ¡ 1) = PG(q):

The (high- and low-temperature) series expansions are described from a graph-theoretical
viewpoint. For instance, the high-temperature expansions are written in the (Domb) form:

ZG(q; K) =

q¡ 1X

¾ i=0

Y

<ij>

q + v

q
¢(1 + fij); fij =

v

q + v
¢(q±(¾i; ¾j) ¡ 1) : (45)

The introduction of these fij variables comes from the fact that

q¡ 1X

¾ j=0

fij = 0; (46)

and, consequently, all subgraphs with vertices of degree 1 give rise to zero contributions. The
number of subgraphs that occur in the expansion is therefore greatly reduced.

The location of the critical points of the anisotropic Potts model on a square, triangular and
honeycomb lattice were given in terms of the variables xr = (eKr ¡ 1)=

p
q (see also (61) below).

20 At T = Tc, one recovers the well-known rational parametrization of the model (occurring in (52) see below).
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These expressions are invariably the various special cases of Wu’s conjecture [89] for the critical
point of the more general checkerboard lattice, namely,

p
q +x1 + x2 +x3 + x4 =x1 x2 x3 +x1 x2 x4 + x1 x3 x4 +x2 x3 x4

+
p
q ¢x1 x2 x3 x4:

(47)

Using the notation a = eK1, b = eK2, c = eK3, d = eK4, this critical algebraic variety (47)
reads:

¡ (q ¡ 1)(q ¡ 3) + (a+ b+ c+ d)(2 ¡ q) ¡ (ab +ac + bc + ad+ bd+ cd) +abcd= 0: (48)

The critical point of a mixed ferromagnetic-antiferromagnetic square Potts model considered by
Kinzel, Selke and Wu [82]:

(eK1 ¡ 1) ¢(eK2 +1) = ¡ q; (49)

was also given. While this expression coincides with the critical point for q = 2, it is incompatible
with the inversion relations (41) for general q, and hence is not a critical variety. This is because
the infinite discrete group of symmetries generated from the inversion relations of the square Potts
model transforms (49) into an infinite set of other algebraic varieties, and hence cannot be critical.

Generally, critical manifolds need to be (globally) invariant under this infinite set of trans-
formations (discrete symmetries). Actually, for the anisotropic square Potts model, for instance,
one can show that, when q is not a Tutte-Beraha number21, the only algebraic varieties compatible
with the inversion relation symmetries (41) are given by the well-known ferromagnetic condition:

(eK1 ¡ 1) ¢(eK2 ¡ 1) = q; (50)

and the antiferromagnetic condition obtained by R. J. Baxter:

(eK1 + 1) ¢(eK2 +1) = 4 ¡ q; (51)

(for which the model is exactly soluble). Note that these two varieties can be deduced from the
conjecture (47) by taking x1 = x3 and x2 = x4. In this limit, the critical condition (47) factors
into conditions (50) and (51). In fact, it has since been shown that the critical condition (47)
corresponds to an integrability condition of the checkerboard Potts model.

At criticality the Potts model is exactly solvable. Let us give the example of the square
lattice. The free energy of the isotropic Potts model at the ferromagnetic critical point T = Tc
reads:

f(q; Tc) =
1

2
+ µ +2 ¢

1X

n=1

e¡ nµ ¢tanh(nµ)

n
; for: q > 4

21When q is a Tutte-Beraha number the generically infinite discrete group ¡ generated by the inversion relations
on the model becomes a finite group, and many algebraic varieties can be invariant under such a finite group: a simple

way to build such algebraic ¡ -invariants amounts to performing summations over the group ¡ .
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f(q;Tc) = ln(2) + 4 ¢ln
µ

¡(1=4)

2¡ (3=4)

¶
; for: q = 4 (52)

f(q;Tc) =
1

2
+

Z +1

¡ 1

dx

x
tanh(¹x)

sinh((¼ ¡ ¹)x)

sinh(¼x)
; for: q < 4;

where the variables µ and ¹ correspond to the rational parametrization of the model at T = Tc,
namely cosh(µ) =

p
q=2 or cos(¹) =

p
q=2.

The exact critical exponents of the standard scalar Potts model are also given in this review.
These critical exponents, which are rational when q is the Tutte-Beraha numbers, are:

® = ® 0 =
2

3
¢1 ¡ 2u

1 ¡ u
; ¯ =

1 + u

12
; ° = °0 =

7 ¡ 4u+ u2

6 ¢(1 ¡ u)
;

± =
(3 ¡ u) ¢(5 ¡ u)

1 ¡ u2 ; º = º0 =
2 ¡ u

3 ¢(1 ¡ u)
; ´ =

1 ¡ u2

2 ¢(2 ¡ u)
;

where the parameter u is related to q by:

2 cos
³ ¼u

2

´
=
p
q; or: 2 + 2cos(¼u) = q: (53)

These results played a key role in the emergence of the conformal theory.

VII-2. Comments on the checkerboard Potts model
The Wu conjecture (47) for the criticality condition of the q-state checkerboard has since

been confirmed from an inversion relation analysis. To discuss the inversion relation we introduce
variables u; v; w; z; t defined by:

eK1 ¡ 1

eK1 + q ¡ 1
= t ¢ u ¡ t

1 ¡ t3u
;

eK2 ¡ 1

eK2 + q ¡ 1
= t ¢ v ¡ t

1 ¡ t3v
;¢¢¢ (54)

or: eK1 = a =
u ¡ t3

t ¢(1 ¡ ut)
; eK2 = b =

v ¡ t3

t ¢(1 ¡ vt)
;¢¢¢

with: t+ t¡ 1 =
p
q:

In these variables the criticality condition (47) reads:

u vwz = 1: (55)

Using the inversion trick22 , the partition function of the checkerboard model at criticality can be
written in a multiplicative form

22 With the well-suited variables (54) the inversion trick naturally yields exact formulae as products over an infinite
discrete group, in this case Eulerian products (56).
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Z(u; v;w;z)[uvwz=1] =
q

t2
¢F (u) ¢F(1=u)

1 ¡ tu
¢F(v) ¢F(1=v)

1 ¡ tv

¢F(w) ¢F(1=w)

1 ¡ tw
¢F(z) ¢F (1=z)

1 ¡ tz

(56)

where: F (u) =

1Y

n=1

1 ¡ t4 n¡ 1u

1 ¡ t4 n+1u
:

This formula is reminiscent of (10) for the six-vertex model (see section (III-1)), as it should since
it also follows from the Potts and six-vertex model correspondence (see section (VII-3) below).

Note that, in the anisotropic case w = u and z = v, the critical condition (55) factorizes
into uv = +1 and uv = ¡ 1 which are, respectively, the aforementioned ferromagnetic and
antiferromagnetic criticalities (and integrability).

The checkerboard model reduces to a honeycomb model, and hence a triangular model by
taking the dual, if one of the four interactions vanishes. Therefore it is useful to re-examine the
triangular lattice limit of the checkerboard variety. P. Martin et al. have established two varieties
for the triangular Potts model: a ferromagnetic variety which is precisely (36) with x = 1, and an
antiferromagnetic variety:

(q ¡ 2)2 ¡ 2 + (a+ b+ c+ abc)(q ¡ 2) + 2(ac +ab + bc) = 0: (57)

These two algebraic varieties can be written, respectively, as uvw = +t and u vw = ¡ t, which
can be deduced by taking, respectively, d = 1 and d = ¡ (q ¡ 2)=2 in (48).

For q = 3 the antiferromagnetic algebraic variety yields an algebraic critical point very
close to the first-order transition point for the three-state Potts model [91, 143].

Along the well-known ferromagnetic variety (44), which for the isotropic model reads
(eK ¡ 1) ¢(eK¤ ¡ 1) = q, it is of interest to point out the existence of some “hidden” duality
K ! Ky, such that the antiferromagnetic condition (51) reads K2 = Ky

1 . This hidden duality is
the involution:

eK
y

= ¡ eK + q ¡ 3

eK + 1
: (58)

Note that the dualities (44) and (58) commute, and their product gives the involution:

eK ¡! eK
¤y

= ¡ (q ¡ 2) ¢eK + 2

:
2eK +(q ¡ 2) (59)

The ferromagnetic critical variety of the anisotropic triangular Potts model (36) now transforms
into the anti-ferromagnetic critical variety (57) under (59). One also finds that the ferromagnetic
critical variety of the anisotropic square-lattice Potts model (50), and its anti-ferromagnetic critical
variety (51), are both invariant under transformations (44), (58) and thus (59). More generally,
for the checkerboard model, one finds that (48) is invariant under both (44), (58), and thus (59).
These results can be very simply seen in the variables u, v, w, z. For example, (59) is simply
u! ¡ u. Involutions like the “hidden duality” (58), or like (59), do not yield simple functional
equations on the partition function like the Kramers-Wannier duality does (see (44) and (44)).
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They are not symmetries of the model, but, rather, “symmetries of the second kind”: symmetries
of the symmetries.

VII-3. Equivalence of the q-state Potts model with a six-vertex model
Recall that the partition function of the standard scalar q-state Potts model can readily

be written as a Whitney-Tutte polynomial. In a further step, Temperley and Lieb used operator
methods to show that, for the square lattice, the Whitney-Tutte polynomial is, in turn, equivalent
to a staggered ice-type vertex model.

In a classic paper [57] by R. J. Baxter, S. B. Kelland and F. Y. Wu, this equivalence is
rederived from a graphical approach (see (72) in section (VII-7)), which is easier than the algebraic
method of Temperley and Lieb and is applicable to an arbitrary planar graph. In particular, the
equivalence was extended to triangular or honeycomb Potts models and a staggered six-vertex
model on the Kagomé lattice.

The equivalences are as follows (page 404 in [57]). For the square, triangular and honey-
comb lattices, the equivalent ice-type vertex model has the Boltzmann weights:

(!1; !2;¢¢¢ ; !6) = (1; 1;xr;xr ;Ar;Br); (60)

where (Ar; Br) are, respectively, for the square, triangular and honeycomb lattices:
µ

1

s
+xr ¢s; xr

s
+ s

¶
;

µ
1

t
+ xr ¢t2; xr

t2
+ t

¶
;

µ
1

t2
+xr ¢t; xr

t
+ t2

¶
;

with:

s = eµ; t = eµ=3; 2 cosh(µ) =
p
q; xr =

eKr ¡ 1p
q

: (61)

These mappings play an important role in the Lee-Yang theorem to be discussed latter (see section
(VII-5-1)).

VII-4. Miscellaneous Potts model phase diagrams

VII-4-1. Potts model with competing interactions
Kinzel, Selke and Wu [82] have studied a square lattice Potts model with the competing in-

teractions alluded to earlier in section (VII-1). A similar model in 3 dimensions with next-nearest-
neighbor competing interactions has been studied by J. R. Banavar and Wu using mean-field
theory and Monte-Carlo simulations [97]. A rich phase diagram was found, and they established
positively that the behavior of the 4-state three dimensional Potts model is mean-field-like.

VII-4-2. First-order transition in the antiferromagnetic Potts model
F. Y. Wu et al. have analyzed specifically the three-state triangular Potts model and

considered the (tricky) tricritical behavior of this model [166].
Recalling the results of section (VI-1), and in particular the special role played by q = 3

for the two- and three-site interaction Potts model (33), Monte-Carlo calculations of the q = 3
isotropic limit of the model have been performed [144]. These studies confirmed the existence
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of an antiferromagnetic critical point (in addition to the well-known ferromagnetic one), probably
corresponding to a first-order transition occurring near the variety x = 1 isotropic region.

For the triangular Potts model with two-spin interactions, Monte-Carlo calculations [166]
confirm the localization a ' 0:204 § :003 for a first-order transition point. This transition point
is confirmed to be different from the algebraic antiferromagnetic point localized at a = 0:22665
derived below (see (67) below).

The antiferromagnetic transition point a ' 0:204 § :003 can be interpreted as belonging to
some singular manifold in the parameter space of the model with two- and three-spin interactions.
This singular manifold corresponds to a first-order transition frontier. Recalling discussions in
section (VI-1), the question of the algebraic or transcendental status of this first-order transition
frontier still remains open.

VII-4-3. Chiral Potts models
F. Y. Wu et al. have analyzed a particular two-dimensional chiral Potts model, namely, the

3-state chiral Potts, in order to understand the relation between the (higher genus) integrability
and criticality conditions [143]. On the checkerboard model the higher genus integrability of the
3-state chiral Potts model is restricted to the following algebraic variety:

3 ¢(Q1 P2P3P4 + Q2 P1 P3 P4 + Q3 P1 P2 P4 +Q4 P1 P2 P3)

¡ (P1 Q2Q3 Q4 +P2Q1Q3 Q4 +P3Q1 Q2 Q4 +P4Q1 Q2 Q3) = 0;
(62)

where:

Pi = fi ¡ 3hi; Qi = fi ¡ 2 gi + 3hi; hi = a2
i b

2
i c

2
i

fi = ai bi ci ¢(a3
i + b3

i + c3i ); gi = a3
i b

3
i + b3i c

3
i + c3

i a
3
i ;

(63)

where ai, bi, ci denote the three possible values of the four edge Boltzmann weights wi(¾k ¡ ¾l)
of the checkerboard lattice:

ai = wi(0); bi = wi(1) = wi(¡ 2); ci = wi(2) = wi(¡ 1); i = 1; 2; 3; 4:

Recalling the conformal theory prejudice (criticality in two dimensions versus integrability), one
can also wonder if an integrability condition like (62) could correspond to a critical subvariety
of the phase diagram. Let us consider the standard scalar limit of this model. The higher genus
integrability condition (62) reduces to the critical condition (47) or (48) of the standard scalar
Potts model on the checkerboard lattice for q = 3:

abcd ¡ (ab+ ad+ ac+ bc+ bd+ cd) ¡ (a+ b+ c+ d) = 0; (64)

together with another algebraic variety:

abcd+2 ¢(acd+ bcd+abd+ abc) +ab+ bd+ cd+ac+ ad+ bc

¡ (a+ b+ c+ d) ¡ 2 = 0:
(65)

With the variables (54) taken for q = 3, the critical condition (64) reads u vwz = +1, and
the algebraic condition (65) reads: uvwz = ¡ 1. Considering the similarity of (65), namely
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uvwz = ¡ 1, with (64), namely uvwz = +1, it is tempting to imagine that (65) could also be in
some domain of the parameter space a, b, c, d, a critical variety.

In the isotropic triangular and standard scalar limit the higher genus integrability condition
(62) factorizes into two conditions. One is the ferromagnetic critical condition of the standard
scalar Potts model (see also (36)) 2 ¡ q ¡ a ¡ b ¡ c+ ab c = 0 (or u vw = t) with q = 3, the
other one is:

(q ¡ 2)2 ¡ 2 + (a+ b + c + abc)(q ¡ 2) + 2(ac +ab+ bc) = 0;

or: u vw = ¡ t;
(66)

with q = 3. In the isotropic limit and for q = 3, these two algebraic varieties give, respectively

a3 ¡ 3a ¡ 1 = 0 and a3 + 6a2 + 3a ¡ 1 = 0; (67)

yielding the ferromagnetic critical point, a = 1.8793 and an antiferromagnetic transition point at
a = 0.22665. This antiferromagnetic point must be compared with the antiferromagnetic critical
and first-order transition point a ' 0.204 § 0.003 obtained from series analysis by I. G. Enting
and F. Y. Wu [91].

VII-5. Zeros of partition functions of Potts models
In 1952 Yang and Lee introduced the concept of considering the zeros of the grand partition

function of statistical mechanical systems, a consideration that has since opened new avenues to
the study of phase transitions. While Yang and Lee considered the zeros in the complex fugacity
plane, or equivalently the complex magnetic field plane in the case of spin systems, Fisher in 1964
called attention to the relevance of the zeros of the canonical partition function in the complex
temperature plane. Generally speaking, there exist several different kinds of exact results on
lattice models in statistical mechanics. Ideally, one would like to obtain the exact, closed-form,
expressions of thermodynamic quantities such as the per-site free energy, the surface tension,
spontaneous magnetization, and correlation functions. A knowledge of these exact expressions
leads to a complete description of the system including the phase boundary (critical frontier)
and the location of the zeros of the partition function. However, exact evaluations of physical
quantities are not always possible. In such cases one can sometimes determine the critical frontier
from properties such as the duality and the inversion relations, or analyze the analyticity properties
of the free energy by locating the zeros of the partition function. But other than in the case of
some special one-dimensional model, exact results on the zeros have been confined mostly to the
Ising model.

VII-5-1. Fugacity variable for checkerboard Potts model, staggering field, Lee-Yang
theorem, duality

Let us consider a q-state Potts model on a square, or triangular, lattice, with no magnetic
field. Since one does not have a magnetic field, one does not expect a Lee-Yang theorem to exist.
Actually this is not true: there is a “hidden” field for the standard scalar q-state Potts model !

A. Hinterman, H. Kunz and F. Y. Wu [70] combined the equivalence of the Potts model
with a staggered six-vertex model, together with the Lee-Yang circle theorem due to Suzuki and
Fisher (see also [30]), to deduce the critical variety of the Potts model. In this consideration
a fugacity variable z is associated with the staggering field that occurs in the aforementioned
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correspondence. In terms of the variables (Ar; Br) given in (VII-3), the fugacity variable z reads,
respectively, for the square and triangular lattices:

z4 =
A1A2

B1B2
; z6 =

A1A2 A3

B1B2 B3
: (68)

A condition on the Suzuki-Fisher extension of the Lee-Yang theorem and for real temperatures
requires that we must have q > 4.

All these results can be generalized to the q-state Potts model on the checkerboard lattice.
Not surprisingly, (68) is generalized into:

z8 =
A1A2 A3 A4

B1B2 B3 B4
:

Note that the duality (44) of the Potts model has a very simple representation in terms of these
fugacity variables z : z! 1=z.

The zeros of the partition function of the checkerboard model will later be seen to lie on
jzj = 1, as they should from the Lee-Yang theorem which applies when q > 4. Remarkably, it
was also seen later by other authors, that the jzj = 1 condition can be extended to q < 4, and that
one then recovers the well-known Fisher’s circles for the Ising model !!

The fugacity variable z is a fundamental variable. It corresponds to a crucial combination
of variables encapsulating the action of the infinite discrete group generated by the inversion
relations. The criticality conditions corresponding to z = 1 and z = ¡ 1 seem also to play some
role (see (65) for q = 3 in section (VII-4-3)), but not a critical or transition point role. In terms of
the variables u; v; w; z of section (VII-4-3), the fugacity variable z is simply the product u vwz.

VII-5-2. Zeros for the square lattice: A graph-theoretical viewpoint
Following F. Y. Wu’s approach, let us consider the q-state Potts model on the square lattice

from a graph-theoretical viewpoint with the partition function (43). Introducing the variable

x = (eK ¡ 1)=
p
q; (69)

the partition function (43) can be written as a polynomial in x

Z ´ PG(q;x) =
EX

b=0

cb(q)x
b; where cb(q) = qb=2

X

G`µ G
qn;

where the second summation is taken over all G0 µ G for a fixed b. Then, the duality relation
(44) can be rewritten as a duality relation for the polynomial PG [58]:

PG(q; x) = qN¡ 1¡ E=2 xE ¢PD(q; x¡ 1): (70)

In the case of the square lattice for which D is identical to G in the thermodynamic limit regardless
of boundary conditions, (70) implies that the system is critical at xc = 1. For finite self-dual
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lattices relation (70) gives an example of a self-dual polynomial23 [197].
To describe the density of zeros on the Lee-Yang circle, we introduce an angle µ associated

with the location of the zero on the unit circle. For small µ we have g(µ) = ajµj1¡ ® (q), for q · 4,
and g(µ) = ²(q), when q > 4. This leads to the specific heat singularity jtj¡ ® (q), for q · 4, and a
jump discontinuity of ²(q) in U for q · 4. This is the known critical behavior of the Potts model
[89].

The zeros of the partition function of the q-state Potts model on the square lattice have been
evaluated numerically [170]. On the basis of these numerical results, it was conjectured [170]
that, for both finite self-dual lattices and for lattices with free or periodic boundary conditions in
the thermodynamic limit, the zeros in the Re(x) > 0 region of the complex x plane are located
on the unit circle jxj = 1.

VII-5-3. Zeros for two- and three-spin interactions on triangular lattice
We now return to the q-state Potts model on the triangular lattice with two- and three-site

interactions in alternate triangular faces [79] (section VI-1)). The partition function is:

Z(x;x1;x2;x3)=
X

G

W (G); where:

W (G)=
Y

¢

(1 + v±abc)(1 + v1±bc)(1 + v2±ca)(1 + v3±ab);

and v = eK ¡ 1; vi = eKi ¡ 1;

and the product is taken over all up-pointing triangles. It is convenient to represent terms in the
expansion of the partition function by graphs G in which the up-pointing triangular faces are
either occupied by a solid triangle with a fugacity v or unoccupied.

We next evaluate the weight W(G) associated with the graph G. It is clear that each solid
triangle contributes a factor v to W (G), and each bond a factor vi. In addition, by including the
associated bond factors, each solid triangle contributes an additional factor (1 + v1)(1 + v2)(1 +
v3) = eK1+K2+K3. Consider next the q dependence of W (G). For the graph representing N
isolated points, we have simply W (G) = qN. For other graphs, each triangle reduces the factor
qN by q2 , and each bond by q. But whenever the triangles and bonds close up to form a circuit24 ,
this restores a factor q, due to the overlapping of one lattice site summation. Thus we have:

Z = qN
X

G

·
v

q2
eK1+K2+K3

¸m· v1

q

¸b1· v2

q

¸b2· v3

q

¸b3
qc; (71)

where the summation is over the 2N graphs G, m is the number of solid triangles, bi is the number
of bonds with weight vi, and c(G) is the number of independent circuits in G. Expression (71)
generates the high-temperature expansion of the partition function.

In the case of pure three-site interactions, (71) reduces to

23 A polynomial P(x) in x is self-dual if it is proportional to P(1=x). Self-dual polynomials occur naturally
in lattice models in statistical physics and in restricted partitions of an integer in number theory (see section (VIII-3)
below).

24 Here, we use the term circuit in the topological sense that solid triangles can be regarded as stars having three
branches, each of which can be connected to other triangles and bonds.
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Z = qN
X

G

(w=q)m(G)qc(G); where w = (eK ¡ 1)=q:

For pure three-site interactions, the partition function is self-dual and the critical variety
assumes the simple form w = 1. On the basis of a reciprocal symmetry and numerical results,
Wu et al. [170] conjectured that zeros for the three-site Potts model (in up-pointing triangles)
lie in the thermodynamic limit on the unit circle jwj = 1, as well as a line segment on the real
negative axis.

VII-5-4. Density of Fisher zeros for the Ising model
One trademark of F. Y. Wu’s research is that he often looks at old problems and finds new

life or new solution that others have not previously seen. A good example of a new look at an
old problem is the density of Fisher zeros for the Ising model, which is the q = 2 Potts model.

In 1964 Fisher pointed out that in the thermodynamic limit, the zeros of the Ising partition
function for a square lattice lie on two circles, now known as the Fisher circles, in the complex
tanhK plane, where K is the nearest-neighbor interaction. However, Fisher had not made the
argument rigorous and, furthermore, no one had bothered to look into the distribution of the zeros
on the circles, except at small angles which dictates the Ising critical behavior.

Both of these two deficiencies have been rectified by W. T. Lu and F. Y. Wu. First,
by considering the zeros of the Fisher zeros for the Ising model on finite self-dual lattices, Lu
and Wu [190] established rigorously that, indeed, the Fisher zeros approach two circles in the
thermodynamic limit. In a subsequent paper published in 2000 [202], they deduced the close-
form expression for the density of the Fisher zeros for many regular two-dimensional lattices, thus
completing the story of the Fisher zeros some 25 years after it was first proposed!

VII-6. Duality relation for Potts correlation functions

VII-6-1. Correlation dualities
Duality considerations are not often applied to correlation functions [133], but F. Y. Wu

initiated a new method for generating duality relations for correlation functions of the Potts model
on planar graphs. In a pioneering paper [183], he obtained duality relations for 2- and 3-point
correlation functions, for spins residing on the boundary of a lattice. The consideration was soon
extended to n-point correlations [187, 189] and to the case where the spins reside on 2 or more
faces in the interior of the lattice [206]. A graph-theoretical formulation of the results in terms of
rooted Tutte polynomials (see section (VII-6-2) below) was also given [186, 187]. In addition, C.
King and Wu [206] showed that, generally, it is linear combinations of correlation functions, not
the individual correlations, that are related by dualities.

VII-6-2. Correlation functions as rooted Tutte Polynomials
As previously mentioned, the Potts partition function is also the Whitney-Tutte polynomial,

or in short, the Tutte polynomial, considered in graph theory. In one further step, F. Y. Wu, C.
King and W. L. Lu formulated the Potts correlation function as a rooted Tutte polynomial [193].

In graph theory a vertex is rooted if it is colored with a prescribed (fixed) color and a graph
is rooted if it contains a rooted vertex. If one interprets the color of a site (vertex) as spin states,
then the Potts correlation functions for which the spin states of given sites are fixed can naturally
be formulated as rooted-Tutte polynomials. This is the basis of their graph-theoretical formulation
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of the Potts correlation function, from which duality relations of the Potts correlations become
transparent and can be analyzed [193].

VII-7. Potts model and graph theory
F. Y. Wu has written several review papers dedicated to the analysis of the Potts model

from a graph theoretical viewpoint [57, 71, 117, 122]. The most important one is the classic paper
[57] written in collaboration with Baxter and Kelland alluded to above, which gives the graphical
construction of the equivalence of the partition function of the Potts model with an ice-type model
[57]. This derivation simplifies the algebraic method of Temperley and Lieb, which is based on
the Temperley-Lieb algebra25:

U2
i;i+1 =

p
q ¢Ui;i+1;

Ui;i¡ 1 ¢Ui;i+1 ¢Ui;i¡ 1 = Ui;i¡ 1; Ui;i+1 ¢Ui;i¡ 1 ¢Ui;i+1 = Ui;i+1;

Ui;i+1 ¢Uj;j+1 = Uj;j+1 ¢Ui;i+1 if ji ¡ jj > 3;

and applies to an arbitrary planar graph. This then opens the door for analyzing the triangular
and honeycomb Potts models.

Another important graphical analysis of a Potts model is the joint work with J. H. H.
Perk [103, 104] on the non-intersecting string (NIS) model of Stroganov and Schultz, the close-
packed loop model. The NIS model formulated by Perk and Wu in [103] turns out to be nothing
but the bracket polynomial introduced by L. H. Kauffman in his state-model formulation of knot
invariants. This fact offers a most natural approach to knot invariants from a statistical mechanical
viewpoint [154].

VIII. Other miscellaneous topics

F. Y. Wu has worked on a diverse array of topics in mathematics and mathematical physics.
In this section we present a random choice of topics that are not included above.

VIII-1. Topics in graph theory
F. Y. Wu is fond of graphs and has made many contributions to graph theory. A fine

example is the aforementioned introduction of the rooted Tutte polynomial. Even when Wu does
not obtain new results, he tries to provide simpler derivations, or find new consequences of known
results. A good example is his work on random graphs [92].

Random graphs is a topic well-known to graph theorists after the work by Erdös and Renyi,
who introduced the problem in 1960. In the simplest formulation each pair of points of a set of
N can be connected (by a bond, say) with a probability ®=N , where ® is a constant. One then
asks questions such as what is the mean cluster size and the probability P(®) that the set becomes
fragmented, namely not connected, etc.

Using a Potts model formulation, Wu [93] reproduced the Erdös-Renyi result in just a
few steps, showing that a transition occurs at ® c = 1 and computed the critical exponents as well
as the mean cluster size at criticality. This work has drawn considerable attention from graph

25 A matrix representation of the Ui;i§ 1 is, for instance, the qn£ qn matrices with entries q¡ 1=2Qn
j=1;j6=i ±(¾j; ¾

0
j )

and q1=2±(¾i; ¾i+1)
Qn

j=1 ±(¾j; ¾
0
j).
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theorists. Wu has also applied the result to evaluate the reliability probability of a communication
network [92].

As another example of Wu’s work in graph theory, one can mention his paper on the
Temperley-Nagle identity for graph embeddings [69], where he provides a simple derivation of
the Temperley-Nagle identity:

X

G

xvyl = (1 +x)N
X

L

(y ¡ 1)l
³ x

1 + x

´v
;

where G denotes section graphs of the original graph of v vertices and l lines, and L is a line
set of G containing l lines covering v vertices. Using a weak-graph expansion he also deduced a
sum-rule relation connecting the lattice constants of weak and strong embeddings.

VIII-2. The vicious neighbor problem
Consider N points randomly distributed in a bounded d-dimensional space. At a given

instance, each point destroys his nearest neighbor (vicious neighbors) with a probability p. What
is the probability PN(p) that a given point will survive in the N ¡!1 limit?

The d = 2, p = 1 version of this problem was first posed by the Brandeis mathematician
R. Abilock in American Mathematical Monthly in 1967, and remained unsolved for almost two
decades. In 1986 the Omni magazine posted a prize for its correct solution, and R. Tao and Wu
claimed the prize by publishing the solution for general d and p in 1987 [111].

The idea of their solution is very simple. In d dimensions a given point can be killed
by at most a finite number nd of other points. In two dimensions, for example, the number is
n2 = 5 (theoretically a point can also be killed by 6 other points, but the phase space for that
to happen has a zero measure). Therefore, one computes the volumes of the phase space for a
point to be killed by 1, 2, ¢¢¢, nd neighbors, and uses the inclusion-exclusion principle to write
the probability in question as an alternate series in p, whose highest power is nd. However, the
evaluation of the volumes of the phase space is tedious, requiring special techniques.

For d = 1 the result is quite simple and one has P1(p) = 1 ¡ p + p2=2. For d = 2 the
result is:

P1(p) = 1 ¡ p +0:316 3335 p2 ¡ 0:032 9390 p3 +0:000 6575 p4 ¡ 0:000 0010 p5; (72)

where the coefficient of each term is evaluated from integrals which can, in principle, be computed
to any numerical accuracy. The coefficient of the last term, for example, is obtained by combining
two 8-fold integrations.

For p = 1, (72) yields P1(1) = 0:284 051:::, a solution which claimed the Omni prize.
Tao and Wu also carried out Monte Carlo simulations to obtain the solution for d= 3;4;5.

VIII-3. Counting partitions: from Potts to three-dimensional enumeration and beyond
F. Y. Wu et al. [172] considered a directed lattice animal problem on the d-dimensional

hypercubic lattice, and established its equivalence first with the infinite-range Potts model and, in
a second step, with the enumeration of (d¡ 1)-dimensional restricted partitions of an integer. The
directed compact lattice animal problem was solved exactly in two and three dimensions, using
known results in number theory. They found that the number of lattice animals of n sites grows
as:

exp(c ¢n(d¡ 1)=d):
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Furthermore, the infinite-state Potts model solution leads to a conjectured limiting form for the
generating function of restricted partitions for d > 3, which is a long-standing unsolved problem
in number theory.

Let us denote by An(L1;L2; ¢¢¢Ld) the number of n-site animals that can grow on an
L1 £ L2 £ ¢¢¢£ Ld lattice. F. Y. Wu et al. showed that An is precisely the number of (d ¡ 1)-
dimensional restricted partitions of the integer n into non-negative parts to units of a hypercube
of size L1 £ L2 £ ¢¢¢£ Ld¡ 1, with the size of each part being at most Ld.

Define the generating function

G(L1; L2; L3;¢¢¢Ld; t) = 1 +

L1¢L2¢L3¢¢¢LdX

n=1

An(L1; L2;¢¢¢Ld) ¢tn;

which is of interest in number theory. F. Y. Wu et al. showed that G is precisely the partition
function of a Potts model on the d-dimensional lattice in the infinite-state limit, provided one
identifies t with xd where x = (eK ¡ 1)=q1=d. This then connects the Potts model with the theory
of partitions in number theory.

For d = 2, the generating function corresponding to the square lattice (L1; L2) reads26:

G(L1; L2; t) =
(t)L1+L2

(t)L1 ¢(t)L2

; (73)

where (t)p =
pY

q=1

(1¡ tq). G(L1;L2) is a polynomial in t, also known as the Gaussian polynomial

or the “q-coefficient”. For d = 3, the generating function reads:

G(L1; L2; L3; t) =
[t]L1+L2+L3 ¢[t]L1 ¢[t]L2 ¢[t]L3

[t]L1+L2 ¢[t]L2+L3 ¢[t]L3+L1

; (74)

where [t]L denotes:

[t]L =

L¡ 1Y

p=1

(t)p; L > 1; (t)p =

pY

q=1

(1 ¡ tq ): (75)

For d = 4, G(L1;L2;L3; L4; t) is the generating function of restricted solid partitions of a
positive integer into parts on a L1£ L2£ L3 cubic lattice, with each part being no greater than L4 .
The evaluation of a closed-form expression for G in this case has remained an unsolved problem
for almost a century.

The expression which straightforwardly generalizes (73) and (74) would be:

Gstraight(L1; L2;L3; L4; t) =
NG(t)

DG(t)
; with: (76)

26 Let us recall the classic analysis due to Rademacher, which yields the celebrated Hardy-Ramanujan asymptotic

result: An ' 1=(4n
p

3)¢exp(¼
p

2n=3). One gets the following asymptotic behavior for An(L1; L2) when L1 = L2 :
An(L;L) ' (

p
3=(2¼n)) ¢22

p
2n.
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NG(t) = ftgL1+L2+L3+L4 ¢ftgL1+L2 ¢ftgL1+L3 ¢ftgL1+L4

¢ftgL2+L3 ¢ftgL2+L4 ¢ftgL3+L4;

DG(t) =ftgL1+L2+L3 ¢ftgL2+L3+L4 ¢ftgL1+L3+L4 ¢ftgL1+L2+L4

¢ftgL1 ¢ftgL2 ¢ftgL3 ¢ftgL4;

where:

ftgL =
L¡ 1Y

p=1

[t]p L > 2: (77)

But the explicit expression of G(2; 2;2;L4; t), obtained by Major P. A. MacMahon in 1916 is

G(2; 2;2;L4; t) = Gstraight(2; 2;2;L4; t) + C(2;2;2; L4; t); (78)

where

G(2;2;2; L4; t) =
4X

i=0

gi ¢ (t)L4+8¡ i
(t)8 ¢(t)L4¡ i

; with:

g0 = 1; g1 = 2t2 ¢(1 + t+ t2 + t3 + t4) + t4;

g2 = t5 ¢(1 + 3t +4t2 + 8t3 +4t4 +3t5 + t6)

g3 = 2t10 ¢(1 + t+ t2 + t3 + t4) + t12; g4 = t16;

and

C(2; 2; 2; P ; t) = ¡
³ t6 ¢(t +1)2 ¢(t4 ¡ 2 t3 + t2 ¡ 2 t +1)

t2 + t+ 1

´
¢
³ (t)P+6

(t)8(t)P¡ 2

´
:

H. Y. Huang and F. Y. Wu [179] decided to look into the zeros of the generating function
G(2;2;2; L4; t) for various increasing values of L4. They found that the zeros are not exactly
on the unit circle, but seem to converge to the unit circle as L4 increases. This indicates that a
multiplicative correction Cmult(2;2; 2; L4; t) = G(L1; L2;L3;L4; t)=Gstraight(L1;L2;L3; L4; t),
would not have any simple Eulerian product form as in (76) and (77):

Cmult(2;2;2; L4; t) =
Y

n=1

(1 ¡ tn)®n ; (79)

where ®n are positive integers, since these product forms (79) would necessarily yield zeros on
the unit circle. H. Y. Huang and F. Y. Wu conjectured however, on the basis on their numerical
results, that the zeros tend to be on the unit circle in the limit, when any one of L1, L2, L3,
L4 !1.

VIII-3-1. Directed percolation and random walk problems
F. Y. Wu and H. E. Stanley [90] have considered a directed percolation problem on square

and triangular lattices in which the occupation probability is unity along one spatial direction.
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They formulated the problem as a random walk, and evaluated in closed-form the percolation
probability, or the arriving probability of a walker. To this date this solution stands as the only
exactly solved model of directed percolation.

In another random walk problem, Wu and H. Kunz [192] considered restricted random
walks on graphs, which keep track of the number of immediate reversal steps, by using a transfer
matrix formulation. A closed-form expression was obtained for the number of n-step walks with
r immediate reversals for any graph. In the case of graphs of a uniform valence, they established
a probabilistic meaning of the formulation, and deduced explicit expressions for the generating
function in terms for the eigenvalues of the adjacency matrix.

IX. Knot theory

The connection between knot theory and statistical mechanics was probably first discovered
by Jones. His derivation of the V. Jones polynomial reflects the resemblance to the von Neumann
algebra when he uses with the Lieb-Temperley algebra occurring in the Potts model (see section
(VII-7)). This direct connection came to light when L. Kauffman produced a simple derivation of
the Jones polynomial using the very diagrammatic formulation of the non-intersecting string (NIS)
model of J. H. H. Perk and F. Y. Wu [103, 104]. Soon thereafter Jones worked out a derivation
of the Homfly polynomial using a vertex-model approach. The connection between knot theory
and lattice statistical mechanics was further extended by Jones to include spin and IRF models.

F. Y. Wu has written several papers on the connection between knot theory and statistical
mechanics [150, 151, 154], including a comprehensive review [150]. In hindsight, knot invariants
arose naturally in statistical mechanics even before the connection with solvable models was
discovered. In their joint paper [103], for example, J. H. H. Perk and F. Y. Wu described a
version of an NIS model which is precisely the bracket polynomial of L. Kauffman. Similarly,
the q-color NIS model studied by J.H.H. Perk and C. Schultz is a q(q ¡ 1) vertex model which
generates the Homfly polynomial. Here we briefly describe the latter connection.

The q-color NIS model has vertex weights (±abcd = 1 if a = b = c = d and zero otherwise):

w(a; b; c;d) = (W(u) ¡ S(u) ¡ T(u)) ¢±abcd + S(u) ¢±ab±cd +T (u)¢±ac±bd; (80)

where: W(u) = sinh(u) = sinh(´ + u); S(u) = sinh(u);

T (u) = sinh(´ ¡ u); q = e´ + e¡ ´;

and the Homfly polynomial is a two variable knot invariant polynomial, discovered after Jones’
work, by Freyd et al. The Homfly polynomial knot invariant has since been re-derived and
analyzed by Jones using the Hecke algebra of the braid group. It can also be constructed from
the Perk-Schultz NIS model. Actually the partition function Z(q; e´) of the NIS model is a knot
invariant related to the Homfly polynomial P(t; z):

P (t; z) =
sinh(´)

sinh(q´)
¢Z(q;e´):

In the infinite rapidity limit this model leads to the Jones polynomial. The Boltzmann
weight (80) of the non-intersecting string model becomes:

w(a; b; c;d) = ¡ e§ 2´±a;b±c;d + e§ ´±b;d with: q = e´ + e¡ ´ : (81)



VOL. 40 J.-M. MAILLARD 369

The Jones polynomial V (t) is then obtained from the Homfly polynomial P (t; z) by taking z =p
t ¡ 1=

p
t.

F. Y. Wu discussed many knot invariants in his review [154]: the Alexander-Conway
polynomial, the Jones polynomial, the Homfly polynomial, the Kauffman polynomial and the
Akutsu-Wadati polynomial, etc. The Alexander-Conway polynomial can be obtained from the
Homfly polynomial by setting t = 1 in the Homfly polynomial P (t; z). The Akutsu-Wadati
polynomial is an example of a new knot invariant derived from exactly solvable models in statistical
mechanics.

As our final example of F. Y. Wu’s versatility, he and P. Pant and C. King [162] have
obtained a new knot invariant using the exactly solvable chiral Potts model and a generalized
Gaussian summation identity. Starting from a general formulation of link invariants using edge-
interaction spin models, they establish the uniqueness of the invariant for self-dual models. They
applied the formulation to the self-dual chiral Potts model, and obtain a link invariant in the form
of a lattice sum defined by a matrix associated with the link diagram. A generalized Gaussian
summation identity was then used to carry out this lattice sum, enabling them to cast the invariant
into a tractable form. The resulting expression for the link invariant was characterized by the
roots of unity and does not appear to belong to the usual quantum group family of invariants.

Finally, Pant and Wu [185] have derived a link invariant associated with the Izergin-Korepin
model.

X. Conclusion

It would not be fair to summarize F. Y. Wu’s contributions by a quick conclusion such as:
he wrote several important monographs on vertex models, on the Potts model and on knot theory,
obtained many important results, in particular the Lieb-Wu solution of the Hubbard model, the
Fan-Wu free-fermion vertex model, the solution of the Baxter-Wu model, and many other results
on dimers or free-fermion models, 3D dimers, d-dimensional free-fermion models, Potts models,
Ising and vertex models, using a large set of tools including analytic calculations, expansions,
series analysis, Monte-Carlo, ..., with a particular emphasis on graph-theoretical methods.

Most of the work of F. Y. Wu could be said to correspond to exact results in lattice
statistical mechanics, or in mathematics, with particular emphasis on graph theory and enumerative
combinatorics. We have tried to give here some hints as to the space of F. Y. Wu’s very large
“graph” of concepts, results, tools, models, with many “intellectual loops”. We have not tried to
provide an exhaustive description of F. Y. Wu’s contributions but, rather, only to provide a few
comments on some of his results, emphasizing the fruitful cross-fertilizations between the various
domains of mathematical physics and mathematics, and also to show the motivation and relevance
of these results, tools, concepts and methods.

Beyond a post-modern accountant’s evaluation and from a research viewpoint, one must
say that the important and numerous results F. Y. Wu has obtained are not due to publish-or-
perish productivity pressure, but, on the contrary, are the natural consequence of the pleasure of a
scientist who loves to play with concepts and mathematical objects (dimers, graphs with particular
boundary conditions, dualities, Potts models, series expansions with transmissivities, ...) and who
has a strong desire to reach ambitious goals, such as obtaining new results in three dimensions,
new results for non-critical Potts models, or even for the Ising model in a magnetic field.

A scientist does not become as productive as F. Y. Wu in response to external pressure but,
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on the contrary, only by forces being in harmony with his deep personal motivations. This is the
only way to be as efficient and productive as F. Y. Wu and, as the famous French mathematician
Jean Dieudonné once wrote, to work efficiently, “pour l’honneur de l’esprit humain”.
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[41] F. Y. Wu, Modified KDP model on the Kagomé lattice, Prog. Theoret. Phys. (Kyoto) 49, 2156-2157

(1973).
[42] G. Keiser and F. Y. Wu, Correlation energy of an electron gas in the quantum strong-field limit,

Phys. Rev. A 8, 2094-2098 (1973).
[43] H. J. Brascamp, H. Kunz and F. Y. Wu, Some rigorous results for the vertex model in statistical

mechanics, J. Math. Phys. 14, 1927-1932 (1973).
[44] F. Y. Wu, Phase transition in an Ising model with many-spin interactions, Phys. Lett. A 46, 7-8

(1973).
[45] R. J. Baxter and F. Y. Wu, Exact solution of an Ising model with three-spin interactions on a triangular

lattice, Phys. Rev. Lett. 31, 1294-1297 (1973).



372 A CHALLENGE IN ENUMERATIVE COMBINATORICS: ¢¢¢ VOL. 40

[46] F. Y. Wu, Phase transition in a vertex model in three dimensions, Phys. Rev. Lett. 32, 460-463
(1974).

[47] F. Y. Wu and K. Y. Lin, Two phase transitions in the Ashkin-Teller model, J. Phys. C 7, L181-L184
(1974).

[48] F. Y. Wu, Eight-vertex model on the honeycomb lattice, J. Math. Phys. 6, 687-691 (1974).
[49] R. J. Baxter and F. Y. Wu, Ising model on a triangular lattice with three-spin interactions: I. The

eigenvalue equations, Aust. J. Phys. 27, 357-367 (1974).
[50] F. Y. Wu and K. Y. Lin, Staggered ice-rule model - The Pfaffian solution, Phys. Rev. B 12, 419-428

(1975).
[51] F. Y. Wu, Spontaneous magnetization of the three-spin Ising model on the Union Jack lattice, J.

Phys. C 8, 2262-2266 (1975).
[52] C. S. Hsue, K. Y. Lin and F. Y. Wu, Staggered eight-vertex model, Phys. Rev. B 12, 429-437

(1975).
[53] J. E. Sacco and F. Y. Wu, Thirty-two vertex model on a triangular lattice, J. Phys. A 8, 1780-1787

(1975).
[54] Y. K. Wang and F. Y. Wu, Multi-component spin model on the Bethe lattice, IUPAP Conference on

Statistical Physics (Akademiai Kiado, 1975), p. 142.
[55] M. L. C. Leung, B. Y. Tong and F. Y. Wu, Thermal denaturation and renaturation of DNA molecules,

Phys. Lett. A 54, 361-362 (1975).
[56] Y. K. Wang and F. Y. Wu, Multi-component spin model on the Cayley tree, J. Phys. A 9, 593-604

(1976).
[57] R. J. Baxter, S. B. Kelland and F. Y. Wu, Equivalence of the Potts model or Whitney polynomial

with the ice-type model: A new derivation, J. Phys. A 9, 397-406 (1976).
[58] F. Y. Wu and Y. K. Wang, Duality transformation in a many component spin model, J. Math. Phys.

17, 439-440 (1976).
[59] F. Y. Wu, Two phase transitions in triplet Ising models, J. Phys. C 10, L23-L27 (1977).
[60] F. Y. Wu, Ashkin-Teller model as a vertex problem, J. Math. Phys. 18, 611-613 (1977).
[61] K. G. Chen, H. H. Chen, C. S. Hsue and F. Y. Wu, Planar classical Heisenberg model with biquadratic

interactions, Physica A 87, 629-632 (1977).
[62] F. Y. Wu, Number of spanning trees on a lattice, J. Phys. A 10, L113-L115 (1977).
[63] H. Kunz and F. Y. Wu, Site percolation as a Potts model, J. Phys. C 11, L1-L4 (1978).
[64] F. Y. Wu, Percolation and the Potts model, J. Stat. Phys. 18, 115-123 (1978).
[65] F. Y. Wu, Some exact results for lattice models in two dimensions, Ann. Israel Phys. Soc. 2,

370-376 (1978).
[66] V. T. Rajan, C.-W. Woo and F. Y. Wu, Multiple density correlation for inhomogeneous systems, J.

Math. Phys. 19, 892-897 (1978).
[67] F. Y. Wu, Absence of phase transitions in tree-like percolation in two dimensions, Phys. Rev. B 18,

516-517 (1978).
[68] F. Y. Wu, Phase diagram of a spin-one Ising system, Chin. J. Phys. 16, 153-156 (1978).
[69] F. Y. Wu, On the Temperley-Nagle identity for graph embeddings, J. Phys. A 11, L243 (1978).
[70] A. Hinterman, H. Kunz and F. Y. Wu, Exact results for the Potts model in two dimensions, J. Stat.

Phys. 19, 623-632 (1978).
[71] F. Y. Wu, Graph Theory in Statistical Physics, in Studies in Foundations of Combinatorics, Adv. in

Math.: Supp. V.1, Ed. G-C. Rota, 151-166, (Academic Press, New York 1978).
[72] K. Y. Lin and F. Y. Wu, Phase diagram of the antiferromagnetic triangular Ising model with

anisotropic interactions, Z. Phys. B 33, 181-185 (1979).
[73] F. Y. Wu, Phase diagram of a five-state spin model, J. Phys. C 12, L317-L320 (1979).



VOL. 40 J.-M. MAILLARD 373

[74] F. Y. Wu, Critical point of planar Potts models, J. Phys. C 12, 645-649 (1979).
[75] X. Sun and F. Y. Wu, Critical polarization of the modified F model, J. Phys. C 12, L637-L641

(1979).
[76] F. Y. Wu and K. Y. Lin, On the triangular Potts model with two- and three-site interactions, J. Phys.

A 14, 629-636 (1980).
[77] F. Y. Wu, Exact results for a dilute Potts model, J. Stat. Phys. 23, 773-782 (1980).
[78] F. Y. Wu, On the equivalence of the Ising model with a vertex model, J. Phys. A 13, L303-L305

(1980).
[79] R. K. P. Zia and F. Y. Wu, Critical point of the triangular Potts model with two- and three-site

interactions, J. Phys. A 14, 721-727 (1981).
[80] X. Sun and F. Y. Wu, The critical isotherm of the modified F model, Physica A 106, 292-300 (1981).
[81] F. Y. Wu, Dilute Potts model, duality and site-bond percolation, J. Phys. A 14, L39-L44 (1981).
[82] W. Kinzel, W. Selke and F. Y. Wu, A Potts model with infinitely degenerate ground state, J. Phys.

A 14, L399-L404 (1981).
[83] S. Sarbach and F. Y. Wu, Exact results on the random Potts model, Z. Phys. B 44, 309-316 (1981).
[84] F. Y. Wu and Z. R. Yang, Critical phenomena and phase transitions I: Introduction, Prog. in Physics

(in Chinese) 1, 100-124 (1981).
[85] F. Y. Wu and Z. R. Yang, Critical phenomena and phase transitions II: The Ising Model, Prog. in

Physics (in Chinese) 1, 314-364 (1981).
[86] F. Y. Wu and Z. R. Yang, Critical phenomena and phase transitions III: The vertex model, Prog. in

Physics (in Chinese) 1, 487-510 (1981).
[87] F. Y. Wu and Z. R. Yang, Critical phenomena and phase transitions IV: Percolation, Prog. in Physics

(in Chinese) 1, 511-525 (1981).
[88] F. Y. Wu and Z. R. Yang, Critical phenomena and phase transitions V: Model systems, Prog. in

Physics (in Chinese) 1, 525-541 (1981).
[89] F. Y. Wu, The Potts Model, Rev. Mod. Physics 54, 235-268 (1982).
[90] F. Y. Wu and H. E. Stanley, Domany-Kinzel model of directed percolation: Formulation as a random-

walk problem and some exact results, Phys. Rev. Lett. 48, 775-777 (1982).
[91] I. G. Enting and F. Y. Wu, Triangular lattice Potts model, J. Stat. Phys. 28, 351-378 (1982).
[92] F. Y. Wu, Random graphs and network communication, J. Phys. A 15, L395-L398 (1982).
[93] F. Y. Wu, An infinite-range bond percolation, J. Appl. Phys. 53, 7977 (1982).
[94] F. Y. Wu and H. E. Stanley, Universality in Potts models with two- and three-site interactions, Phys.

Rev. B 26, 6326-6329 (1982).
[95] F. Y. Wu and Z. R. Yang, The Slater model of K(H1¡ xDx)2PO4 in two dimensions, J. Phys. C

16, L125-L129 (1983).
[96] F. Y. Wu and H. E. Stanley, Polychromatic Potts model: A new lattice-statistical problem and some

exact results, J. Phys. A 16, L751-755 (1983).
[97] J. R. Banavar and F. Y. Wu, Antiferromagnetic Potts model with competing interactions, Phys. Rev.

B 29, 1511-1513 (1984).
[98] F. Y. Wu, Potts model of ferromagnetism, J. Appl. Phys. 55, 2421-2425 (1984).
[99] D. H. Lee, R. G. Caflish, J. D. Joannopoulos, and F. Y. Wu, Antiferromagnetic classical XY -model:

A mean-field analysis, Phys. Rev. B 29, 2680-2684 (1984).
[100] F. Y. Wu, Exact solution of a triangular Ising model in a nonzero magnetic field, J. Stat. Phys. 40,

613-620 (1985).
[101] N. C. Chao and F. Y. Wu, Disorder solution of a General checkerboard Ising model in a field and

validity of the decimation approach, J. Phys. A 18, L603-L607 (1985).



374 A CHALLENGE IN ENUMERATIVE COMBINATORICS: ¢¢¢ VOL. 40

[102] Z. R. Yang and F. Y. Wu, Exact solution of a dilute-bond Potts model on the decorated square lattice,
Acta Physica Sinica (in Chinese), 34 484-492 (1985).

[103] J. H. H. Perk and F. Y. Wu, Non-intersecting string model and graphical approach: Equivalence with
a Potts model, J. Stat. Phys. 42, 727-742 (1986).

[104] J. H. H. Perk and F. Y. Wu, Graphical approach to the non-intersecting string model: Star-triangle
equation, inversion relation and exact solution, Physica A 138, 100-124 (1986).

[105] F. Y. Wu, Two-dimensional Ising model with crossing and four-spin interactions and a magnetic
field i¼kT=2, J. Stat. Phys. 44, 455-463 (1986).

[106] F. Y. Wu, On the Horiguchi’s Solution of the Blume-Emery-Griffiths Model, Phys. Lett. A 116,
245-247 (1986).

[107] F. Y. Wu, Thermodynamics of particle in a box, Ann. Report Inst. Phys. Academia Sinica 16, 25-30
(1986).

[108] H. K. Sim, R. Tao, and F. Y. Wu, Ground-state energy of charged quantum liquids in two dimensions,
Phys. Rev. B 34, 7123-7128 (1986).

[109] W. Selke and F. Y. Wu, Potts models with competing interactions, J. Phys. A 20, 703-711 (1987).
[110] Y. Chow and F. Y. Wu, Residual entropy and validity of the third law of thermodynamics in discrete

spin systems, Phys. Rev. B 36, 285-288 (1987).
[111] R. Tao and F. Y. Wu, The Vicious Neighbor Problem, J. Phys. A 20, L299-L306 (1987).
[112] G. O. Zimmerman, A. K. Ibrahim, and F. Y. Wu, The effect of defects on a two-dimensional dipolar

system on a honeycomb lattice, J. Appl. Phys. 61, 4416-4418 (1987).
[113] F. Y. Wu, Book Review: Statistical mechanics of periodic frustrated Ising systems (R. Liebmann),

J. Stat. Phys. 48, 953 (1987).
[114] F. Y. Wu and K. Y. Lin, Ising model on the Union Jack lattice as a free-fermion model, J. Phys. A

20, 5737-5740 (1987).
[115] G. O. Zimmerman, A. K. Ibrahim, and F. Y. Wu, A planar classical dipolar system on a honeycomb

lattice, Phys. Rev. B 37, 2059-2065 (1988).
[116] X. N. Wu and F. Y. Wu, The Blume-Emery-Griffiths Model on the honeycomb lattice, J. Stat. Phys.

50, 41-55 (1988).
[117] F. Y. Wu, Potts model and graph theory, J. Stat. Phys. 52, 99-112 (1988).
[118] K. Y. Lin and F. Y. Wu, Magnetization of the Ising model on the generalized checkerboard lattice,

J. Stat. Phys. 52, 669-677 (1988).
[119] K. Y. Lin and F. Y. Wu, Ising models in the magnetic field i¼=2, Int. J. Mod. Phys. B 2, 471-481

(1988).
[120] F. Y. Wu and K. Y. Lin, Spin model exhibiting multiple disorder points, Phys. Lett. A 130, 335-337

(1988).
[121] H. Kunz and F. Y. Wu, Exact results for an O(n) model in two dimensions, J. Phys. A 21, L1141-

L1144 (1988).
[122] F. Y. Wu, Potts model and graph theory, in Progress in Statistical Mechanics, Ed. C. K. Hu, (World

Scientific, Singapore 1988).
[123] K. Y. Lin and F. Y. Wu, Three-spin correlation of the free-fermion model, J. Phys. A 22 1121-1130

(1989).
[124] X. N. Wu and F. Y. Wu, Duality properties of a general vertex model, J. Phys. A 22, L55-L60

(1989).
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