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Abstract. An exact critical frontier for the Potts model on the 3-12 lattice, which includes
the Kagomé lattice as a special case, is determined in a special parameter space of the two-
and three-site interactions. The determination is made possible by the use of a star-tiangle
transformation which converts the lattice into one whose exact critical point is known,

The determination of the exact critical frontier for the Potts model [1] for general two-
dimensional lattices has remained very much an open problem. Unlike the Ising model
for which the exact critical point can be worked out for any two-dimensional lattice, the
critical point for the Potts mode] has been determined only for the square, triangular, and
honeycomb lattices [2,3]. In particular, the exact critical point for the Kagomé Poits lattice
has proven to be exceptionally elusive to analyse. In view of the considerable recent interest
in investigating higher spin systems on the Kagomé lattice in the coatext of high-temperature
superconductivity (see for example [4]), it is of some interest to revisit the Kagomé Potts
madel. Here we report on some exact results in this connection.

We begin by considering the Potts model on the more general 3-12 lattice. The 3-12
lattice, shown in figure 1 with (reduced) two-site and three-site interactions K, K/, J; and
M, M’, respectively, reduces to the Kagomé lattice by taking the J; = co limit. We shall
determine its exact critical frontier in a special manifold of the parameter space.

The first step of our consideration is a transformation which converts the 3-12 lattice
into a triangular one. This is accomplished by introducing the star-triangle transformation
shown in Rgure 2. Specifically, we require the up-pointing triangle comsisting of two-
site interactions Ky, Ko, K3 and the three-site interaction M to be replaced by the two-
site L1, L3, L3 interactions forming a ‘star” in the form of a *Y’. While generally this
transformation cannot be carried through for ¢ > 3, where g is the number of states, a little
algebra shows that the transformation does hold in a special parameter manifold [5]. To
obtain an explicit expression of this manifold, we write out the transformation which reads
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Figure 1, The 3-12 [attice.

Then, an expression of the special manifold in the {M, K, K5, K3} space is obtained from
(1) by eliminating L;, L3, Ls. This leads to the eguation

eZ(M-!-K]-I-Kz-FKa) — eM+K|+K;+K3(eK1+K2 + cKz-{-K; + eK3+K1 — 1)
4 (eKI. 4+ eXz K3 +q- 4)(eK1+Kz +efrtKa o oKytKy _ q _|_3)
— gefirtkeths _ (K1 4 o2 4 o263} 1 g2 — 694+ 10 =0. @

Figure 2. The star-triangie relation,

Carry out this star-triangle transformation for all up-pointing triangles. The 3-12 lattice is
reduced into a triangular one shown in figure 3, where each shaded down-pointing triangle
possesses a structure as shown in figure 4. The Boltzmann factor F (o), 02,03} of the
shaded triangle whose three termninal spins are in states oy,02,03 = 1,2,...,4 can be
readily worked out. After some algebra and disregarding an overall constant which does
not concem us, we arrive af the expression

F{o1,02,03) = A+ Bi833 + B2d3 + B3dia + Cdyps €)
where 3;; = 8§(¢;, ¢7), 8123 = (01, 02)8{o2, 03) and
A= (g +vi +v2+ 13)[q° + q(wi + wz + w3) + k] + vivavs
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and similar expressions for B and Bs;. Here

fo= oM KRR _ KL _ oK) oKY g g
v = (% — 1) —1)/(e" +e" + 4 -2 (5)
w; = efi— 1.

Then, the partition function of the 3-12 Potts model becomes

Zi_1p = an(m,f’z, o3) — (6
v

where the product is taken over all down-pointing triangles in figure 3.

Figure 3, The triangular lattice.

Figure 4. The internal structure of a shaded down-pointing triangle.

Now, the Potts model with the partition function (6) is self-dual [6,7]. It has been
established [8] that in the regimet

F(g,0,0) 2 {F(o,0.0"), F(o,0’,0), F(¢’,0,0), Flo,0', 0"} - )]
the critical frontier is located at the self-dual point
F(o,0,06)— F(o,0,0")— F(o,0',0) — F(o',0,0) =g —2 8
where o # o in (8). Substituting from (3) we find that {7) and (é) become, respectively
Bi+ B+ B:+C>0 B+ B;+C>0 i#j )
gA="_. (1)

t Assuming that, in this ferromagnetic regime, one has a unique critical point in some variable such as the one
denoted by y in [6-8]. :
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Thus, we have located an exact critical frontier for the Potts model on the 3-12 lattice. That
is, in the regime (1) and (9), the critical frontier is (10).
It is informative to examine the critical frontier (10) in some special instances.

Isotrapic case. For the isotropic lattice with K; = K, K] = K’, J; = J and hence L; = L,
we can solve e’ from the second line of (1), which now reads

(¢ — 1)% = (&5 ~ 1)[3(e* — 1) +4]- (n

The substitution of this expression of e’ into (10) now yields an explicit expression of the
critical frontier in terms of the Kagomé parameters X, X', M, M’, J. Here, M is given by
(2) or, equivalently

e?.M-i-GK + (1 — 352K)8M+3K + g - 2= (q — 9)C3K + 3(5 _ q)elf( + 3(q — S)GK. (12)
Indeed, we have verified that in this case the critical condition (10) does possess solutions
in the physical ferromagnetic regime.

Up—down symmetry. In the case of the lattice with up-down symmetry K{ = K;, M' =M
one can alternately perform the star-triangle transformation to both the up and down triangles
of the 3-12 lattice. This results in a honeycomb lattice whose edges are sequences of two
L; and one J; interactions and whose critical condition is known. The sequence of two L;
and one J; interactions can be replaced by a single equivalent interaction K = K;'(K;, J})

given by [9]
Ko Ly _ 2 I
?! 1 _ e 1 e L o (13)
eki +4—1 eli4g—1 eli+g—1

or, equivalently

Gt

eK;_1= 5 .
2eb +gq—2+ (el +g—1)" [(eh —1)

(14)

where el — 1 is given in terms of K; as in (11). Thus, from the known critical point for
the honeycomb lattice [2,3], one obtains an alternative expression for the critical frontier
in the {K, J} space of

sty = gty + 12 + 13) + ¢° (15)

where £; = X7 — 1. For isotropic interactions X} = K*, this reduces to
K* _ 1\ K* 2
(e. 1) = 3q(e - 1) 4 q°. (16)

Kagomé lattice. The Kagomé lattice is recovered by setting J; = o0, Generally, the critical
frontier (10) does not intersect the manifold M = O for the Kagomé lattice. This can be
seen from the fact that, using M = 0, one obtains from (1) the relations

VU3 = g(vy + v + v3) + g% a7
y=e“—1=g/(e" 1) i=12,3. (18)
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In the case of M' = M = 0 it is clear that (17) is incompatible with the critical frontier
(15), as both equations are of the same form but in terms of different variables # and v;.
Indeed, it is straightforward to verify for general M’ that, by first using (17) to eliminate
U1v,u; and then using (18) to eliminate v; (inside the square bracket in (19)), one obtains
from (4) the identity

94— C = [Z S g =D Y (N +eF)+ - D@ - 3)]. (19)
i#f ' i

This expression cannot vanish for integral ¢ > 2. Hence (10) has no solution for M = 0. In
addition, since M’ does not appear in (19), this implies that (10) has no solution whenever
one of the three-spin interactions M, M’ vanishes.

Finally, for the isotropic Kagomé lattice with up~down symmetry K’ = K, M' = M,
the critical frontier is (16) with

e — 1= (" —1)/(2¢" +q - 2). (20)
Here, e” is a function of e¥ given by (11), and e is related to X through (12).
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