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R4sumd. Le diagramme de phase du modble de Potts chiral I trots 4tats est 4tud14 num4ri-

quement par deux m4thodes di1f4rentes. Une attention particulibre est port4e par simula-

tion Monte Carlo
au point d'intersection entre la ligne self-duale et la courbe d'int4grabilit4

du mod+le. En outre le m6canisme donnant lieu k la multiplicit4 des maxima de la chaleur

sp4cifique comme fonction de la temp4rature est expliqu4, au moins pour les petites tailles, par

des consid4rations sur la structure de la densit4 d'4tats, L'interpr4tation physique des courbes

d'int4grabilit4 reste une question ouverte.

Abstract. The phase diagram of the three-state chiral Potts model
on a square lattice is

numerically investigated using two different methods. The special point located at the intersec-

tion of the self-dual line and the integrability curve is analyzed in great detail using extensive

Monte-Carlo simulations. The mechanism giving rise to the multiplicity of the maxima of the

specific heat as a function of the temperature, is explained, at least for small sizes, by considering
the structure of the density ofstates. The physical interpretation of the integrability curves still

remains an open question.

1. Introduction.

The chiral Potts model is
an

interesting "toy model" which helps one in understanding im-

portant physical issues such
as

commensurate-incommensurate transitions, floating phases,
or

the occurrence
of very rich phase diagrams even for twc-dimensional systems [II. The physics

emerging from chirality is still far from being understood. Moreover, a better understand-

ing of the level crossing problems in statistical mechanics
seems to be

a necessary step for

many modern solid state physics problems (High Tc; ). Recently interest in this model
was

rekindled by the discovery of new
solutions of the Yang-Baxter equations for this model [2, 3].

These integrability
cases

happened to be the first solutions of the Yang-Baxter equations with

genus greater than
one [4]. In the last year particular efforts have been devoted specifically to
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the three-state chiral Potts model [5]. Despite its smaller number of parameters, this model

exhibits
a

rich phase diagram and many subtleties [6].
We first briefly recall the integrability curves, the self-dual lines and the symmetries of

this model on a square lattice. We then introduce trajectories with fixed chirality. These

particular trajectories in the phase diagram enable
a better understanding of the physics of the

model. We take two approaches in this letter. First, exact partition functions for small lattice

sizes are
calculated by exhaustive enumeration. Then, extensive Monte-Carlo simulations are

performed for much larger sizes, with a special emphasis on twc-point correlation functions. It

is known that size effects are very strong for this model [7]. It is also very sensitive to boundary
conditions. Rather than being

a problem, this sensitivity happens here to be an
advantage:

using different boundary conditions,
we

identify
on

small lattices different properties of the

thermodynamical limit. Its is striking to find on small lattice sizes, such as the 4x4 lattice,
two maxima for the specific heat

as a
function of the temperature. The peculiar form of

the density of states well explains the occurrence of these two maxima. On the other hand,
quantities such as correlation functions require large sizes and can only be investigated by
Monte Carlo simulations. We find an oscillatory behaviour for the two spin correlation function

as a function of the distance between the two spins. This can be seen as correlated with the

occurrence of
a

floating phase for the model.

2. The model.

The partition function of the isotropic three-state chiral Potts model on a square lattice reads:

Z #~j fl
W(Y; -Yj) (I)

a <ij>

where a; =
0,1, 2, the difference is taken modulo 3, the product runs over all the vertical

and horizontal bonds and the
sum runs over

all the spin configurations. The parameter space
is spanned by the three homogeneous parameter w(0), toil)

=
w(-2) and w(2)

=
w(-I). This

three-parameter homogeneous space will be described in terms of two independent variables.

We will use
the (a b) parameter space where

a =
(W10) 2Wll) + W(2))/lAlW10) + toll) + W12))) 12)

b
=

lW(0) W12))/1V5lW10) + toll) + W12))) 13)

We will also make the chirality A explicit using
a

(A T) plane, where

W10) = exP ICOS12~A/3)/T) (4)

W(I)
= exP ICOS12~lA + 2)/3)/T) IS)

wj2)
= exp jars j2~jA + 1)/3) IT) j6)

This model is known in the literature
as

the CC3 model [9]. The spin reversal symmetry,
S a;- a;, yields an invariance of the partition function under the exchange of toil and

w(2). In terms of the (a b) variables this accounts for
a symmetry reflection with respect

to the line
a =

v% b. This also amounts to negating the chirality A
-

A. Note that

this invariance is compatible witb any boundary conditions. Another symmetry, denoted C,
corresponding to a

simple transformation of the dummy variables a; also exists for lattice sizes

which are multiples of three with periodic boundary conditions, and for lattices of any size with

open boundary conditions. In terms of the homogeneous variables w(ii's the symmetry C reads
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w(I)
-

w(I + I). This transformation is of order three. The corresponding transformation in

the (a b) plane is a
2~/3 rotation, or a shift of the chirality A-A + I in the (A T) plane.

A "duality" symmetry D also exists for this model [6],[1II

D Win)
-

ilJln)
= ~jW"~W(P) (7)

where uJ~
=

I.

In fact it is
a

transformation of order four [8]. There exists a line globally invariant under

the transformation D. This self-dual line reads

v5 wjo)
=

wjo) + w(i) + w(2) 18)

Some integrability conditions of Au-Yang et al. for this model [8] correspond to the two

branches in parameter space:

ViP + Q
=

0 (9)

Q=0 (lo)

where

P
=

/ 3h

Q
=

f 2g + 3h

f
=

W10)Wll)W12) lW10)~ + Wll)~ + W12)~)

g =
W10)~wll)~ + WI1)~W12)~ + W10)~W12)~

h
=

W10)~wll)~W12)~

Others integrability conditions also exits specifically for the q=3 chiral Potts model [?] and

are not represented in figure I. The triangle ABC of figure la represents in the (a b) plane
the physical region where all the Bolt2mann weights w(0), toil) and w(2) are positive. The

self-dual line and its transforms under the symmetry C are represented by full lines. The first

branch v%P + Q
"

0 of the integrability curve is the dashed line joining A with B, B with C

and C with A. The three dashed loops attached to A, B and C respectively are
the physical part

of the second branch Q
"

0. The ferromagnetic standard scalar Potts model [13] corresponds
to the AO line. The same lines

are also shown with the same symbol in the (A T) plane in

figure 16. The six regions of the phase diagram which map into each other by the symmetry

groups generated by the transformation C and the transformation S are
labelled by the same

number in the (a b) plane and in the (A T) plane. Figure lc represents fixed chirality
trajectories in the (a b) plane: namely A

=
0 (the standard scalar Potts line), A

=
-0.2,

A
=

-0.3 and A
=

-0A. The value A
=

-0.3 was choosen because the corresponding fixed

chirality trajectory almost contains the intersection M of the self-dual line with the integrability

curve
v%P + Q

=
0. Recalling a previous Monte Carlo study of the three-state chiral Potts

model [10], this very special point M could be the bifurcation point where the floating phase
originates, similarly to what happens for the Ashkin-Teller model [14] where the self-dual line

splits into two critical curves.

3. Enumeration results for small lattice size.

Denoting na the number of bonds (I, j) with aj a;
I

~Y, ~Y =
0,1, 2, we

have calculated the

total number g(no,ni,n2) of spin configurations for each no, ni,n2. The partition function

thus reads:
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Fig-I- Phase diagram of the three-state chiral Potts model
on a square lattice (see text).

Z
=

~j g(no, ni, n2) w(0)"°w(I)"iw(2)"? (ii)

no,ni,n2

It is straightfoward to calculate from all the g(no, ni, n2) the partition function, the internal

energy, the specific heat etc. for any point of the (a b) plane
or of the (A T) plane. The

calculation was performed in four cases: a 4x4 square lattice with open boundary conditions,

a 4x4 square lattice with periodic boundary conditions,
a 6x3 rectangular lattice with open

boundary conditions and
a

6x3 rectangular lattice with periodic boundary conditions. Figure
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Fig.2. Specific heat
as a

function of the chirality a and the temperature T on a 6x3 rectangular
lattice.

2 shows the specific heat
as a

function of the temperature T and of the chirality A for a

rectangular 6x3 lattice and periodic boundary conditions. For the other choices of lattice
we

obtained similar surfaces representing the specific heat
as a

function of A and T. For fixed

chirality the existence of two maxima in the specific heat versus temperature is clearly seen for

values of the chirality A ranging from 0.45 to 0.55. This phenomena also occurs for the 4x4

periodic square lattice and is illustrated in figure 3a. In this figure the bold line represents
the specific heat with its two maxima. In order to understand the physical origin of these two

maxima we analyzed the density of states. In figure 3b the thin line shows for A
=

-0.47 the

logarithm of the density of states as a
function of the energy. In the same figure the bold line

represents the same density of states for A
=

-1/2 where only 25 values of the Boltzmann

factor are possible for any of the 43046721 states. For generic values of A the degeneracy

comes from the fact that many configurations have the same
triplet (no, ni,n2) (the usual

combinatorial degeniracy). Nevertheless for A
=

-1/2
one

also has
a degeneracy of another

origin: different triplets (no ni, n2) may give the same Boltzmann factor w(0)"°w(I)"'w(2)"?.
Changing slighlty A from this A

=
-1/2 value will lift this second type of degeneracy, and

give its structure to the density of states for A
=

-0.47
=

-1/2 + 0.03 as seen in figure 3b.

The physical interpretation of the two maxima of figure 3a is now clear: for T > 0.5 the details

of the density of states are irrelevant and the system orders the same way as
for A

=
-1/2,

but for T<0.5 the details of the density of states become important and the system orders

among the numerous states which constitute the ground state for the A
=

-1/2
case. This

new ordering gives rise to the low-temperature maximum. This is illustrated in figure 3 where

the dashed
curve represents the specific heat for A

=
-1/2. The broken line (low-temperature

maximum) is obtained for A
=

-0.47, taking into account only the fifteen lowest energy states.

These fifteen states are located
on

the first band of the density of states for A
=

-0.47 and

have the same minimal energy for A
=

-1/2 (see Fig. 3b). It is clearly seen in figure 3a that

the bold curve is the
sum

of the two dashed and broken curves. Other values than A
=

-1/2

may exhibits this property of "additional degeneracy". Figure 4 represents the ratio of triplets
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Fig.3. a) Specific heat versus temperature for a 4X4 non periodic square lattice and a
=

-0.46.

b) Density of states for the same parameters (see text).

(no, ni, n2) (with no + ni + n2
fixed) giving the same

Boltzmann weight w(0)"°w(I)"'w(2)"?
to the total number of triplets as a

function of A. Among the values of A exhibiting this

additional degeneracy, quarter integer values stand out. Indeed on a
periodic 4x4 square

lattice and for A
=

-7/4 + e (e small) the specific heat versus temperature again exhibits two

maxima. The location of the maxima of the specific heat in the (A T) plane is given in figure
5 for a

periodic 4x4 square lattice and for a periodic 6x3 rectangular lattice. Note that only
the 6x3 lattice is invariant under the shift A- A+1/2

,

due to the symmetry C as already
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FigA. Additionnal degeneracy for
n = no + ni + n2 =

2000 versus a (see text).

explained. Also note that for this particular value of A the chiral Potts model has
a

residual

entropy.

4. Results of Monte Carlo simulations.

Results of exact enumerations, though restricted to small sizes, enable one to find some features

relevant
even in the thermodynamical limit. However they do not give any hint about other

quantities such
as

correlation functions. Let us
therefore turn to Monte Carlo simulations

with larger sizes [6] in order to revisit the phase diagram of the model and in particular
to investigate the the extent of the floating phase. All

our Monte Carlo simulations
were

performed
on a square lattice with helicoidal boundary conditions in

one
direction and open

boundary conditions in the other direction. We were
able to reach equilibrium on a 128x128

lattice. We worked at fixed chirality which allowed us to have
a criterion of equilibrium using

the fluctuation-dissipation theorem.

One remaining question about the location of the floating phase of the three-state chiral

Potts model is whether it originates at the (ferromagnetic) critical point F of the standard

scalar Potts model, or if one has a critical line (separating an ordered phase from
a

disordered

phase) which would, at a
certain point Y, split into two branches delimiting the floating phase

(see Fig. I). Previous Monte Carlo simulations showed that, up to the precision of this method,
such

a
critical line, if it exists, would be indistinguishable from the self-dual line [6]. In this

framework it is worthy to decide if the point M intersection of the self-dual line with the

integrability branches v%P + Q
"

0) is not the bifurcation point Y. In the (A T) plane point
M has coordinates A

=
-0.304405 and T

=
1.08141. We therefore chose the value A

=
-0.3

to answer this question. We also chose A
=

-0.2 as a
comparison because this trajectory lies

between point M and point F. It is clear from our results that M is not the bifurcation point
Y. Indeed a floating phase exists over a

finite range of temperature around T
=

1.01841. By
contrast, for A

=
-0.2, our accuracy is not good enough to decide wether

or not the floating
phase still exists. Figure 6 shows for L

=
128 and A

=
-0.3 the specific heat as a function
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Fig-S. Location of the maxima of specific heat in the a T plane. a) for a fix 3 periodic rectangular
lattice b) for

a 4X4 periodic square lattice.

of the temperature. We easily identify five maxima (these maxima
are

reminiscent of the

floating phase already encountered in previous simulations [6]). To understand the
occurence

of these maxima it is illuminating to look at snapshots of the sample for different temperatures
below and above each maximum. For example

we present in figure 7a and figure 7b snapshots of

128 x128 samples at A
=

-0.3 for T
=

0.95 and T
=

0.97. The strips running diagonally
accross

the sample
are

evident. Due to the helicoidal boundary conditions, their number is
a

multiple
of three. Passing through each maximum of the specific heat corresponds to an

increment
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Fig.7. Snapshots of the spins configuration for
a 128X128 square lattice v4th helicoidal boundary

conditions for a
=

-0.3 and for: a) T
=

o.95 b) T
=

0.97.

by three of the number of strips. A more quantitative description of these strips can only be

achieved by
means

of averaged quantities. In figure 8 we show, for A
=

-0.3 and T
=

0.97,
the most probable of the three values 0, or 2 for the spin a; = a(a,a) given a(o~o) "

0, as a

function of the distance
~Y. We therefore restrict ourself to the diagonal perpendicular to the

strip. There is
no

ambiguity
on

the number of strips on this averaged quantity. Finally different

correlation functions
can

be defined. We defined for instance Polo) to be the probability that

a(a~~) a(o,o) "
0 and Pi(~Y) to be the probability that a(a~~) a(o,o) =

I. The various

correlation functions < aaao > which
can

be introduced can all be expressed in terms of Po(~Y)



576 JOURNAL DE PHYSIQUE I N°2

2

~(
>

~
2
fl I

o
£

8~
o

0

a
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a
for a 128x128 Square lattice (see

text).

and Pi (o). Figure 9a shows Polo) and Pi la) for A
=

-0.30, L
=

64 and T
=

0.95, as a function

of the distance of o, 0 < ~Y < 128, and figure 9b shows the same quantities for T
=

1.01. Again
the oscillations of the correlation functions

are
evident. Note that the twc-points correlation

functions along the diagonal parallel to the strip do not present oscillations.

5. Conclusion.

We have related the shape of the specific heat versus temperature curves to the density of

states for the three-state chiral Potts model on a 4X4 square lattice. For integer, half integer
and quarter integer values of the chirality an extra degeneracy of the ground state occurs.

The low-temperature maximum of the specific heat for chirality close to these special values,
is

a consequence of the lifting of this extra degeneracy, while the high-temperature maximum

comes from the "envelope" of the density of states. In others words
one

maximum is related

to the general shape of the density of states while the other is related to the details of the first

band of states. For larger sizes where the number of maxima increases, it would be interesting
to see

if this mechanism still holds. This could mean some kind of "hierarchical" structure for

the density of states. In this point of view, the spectrum has
a

low energy band, and this band

itself has
a

low energy sub-band etc..

On the other hand the characteristic oscillations of some correlation functions are in good
agreement with the existence of a floating phase. Analysis of these correlation functions, and

other quantities, gives much insight into the limit of this floating phase. Actually the particular
point M, the intersection of the self-dual line with the integrability curve, was not found to

identify with the bifurcation point where the floating phase originates. As a consequence the

integrability branch v%P + Q
=

0 seems to cross the three regions of the phase diagram,
in contrast with the branch Q

=
0 entirely located inside the ordered phase. What can be

the physical interpretation of such "special" points occuring in the disordered phase (such

as part of the the branch v%P + "
0 in the disordered phase) One possibility is that
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Fig.9. Correlation function Po and Pi versus the distance
a for a 64X64 square lattice (see text)

for: a) T
=

0.95; b) T
=

1.01

these points could be points like the sc-called "disorder points" introduced by Stephenson
[15]. For a fixed value of A the integrability curve defines

a temperature below which the

correlation functions could be oscillating with
an

exponential damping, while above one would

have have the usual exponential decay, these oscillating behaviors being not incompatible with

our numerical results.
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