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We introduce a "pre-Bethe-Ansatz" system of equations for three dimensional vertex models. We bring to the light 
various algebraic curves of high genus and discuss some situations where these curves simplify. As a result we describe 
remarkable subvarieties of the space of parameters. 

1. Introduction 

The  purpose  o f  this paper  is to sketch how ideas in t roduced  in the study of  the s ixteen-vertex model  in [ 1 ] 

can be general ized to higher lattice d imens ions .  We think that the ideas deve loped  here are relevant  tools for the 

analysis o f  lattice models  in three or  more  d imens ions ,  a widely unexplored area. 

In this paper  we in t roduce  the s implest  th ree-d imens iona l  general izat ion o f  the results o f  [ I ]. We describe 

a specific mode l  which natural ly general izes the Baxter  model .  Finally, we show how this general const ruct ion  

points  to a n u m b e r  o f  algebraic var ie t ies  o f  interest.  

2. Towards three-dimensional Bethe ansatz 

We denote  by w ( i . j .  k, l, m, n)  the Bol t zmann  weight  o f  a given three-d imensional  vertex. We shall only 

cons ider  the s implest  case where each o f  the spins i, j ,  k .  I. m and n can take only two values. The  vertex weights 
may be arranged in an 8 × 8 matr ix  o f  entr ies  

R u  k I t . .  = w ( i , j , k , l , m , n ) .  (1) 

The  natural  genera l iza t ion o f  the "pre-Bethc  Ansatz"  equa t ion  o f  [ 1 ] is 

R (u ,:~, "v .~ w)  = /~ • u t ~:;, c '  ;5 . / .  (2) 

Let us in t roduce  the no ta t ion  

q t  , IF ~ r l  . (3) 

In the fol lowing subsections,  we shall recall the symmet r ies  o f  a three d imens ional  vertex model ,  as descr ibed in 

[21. 
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2.1. The group o f  inversions F3D 

As in [2], we first introduce thc involution I changing R to its matrix inverse (we let appear  an overall factor 
), since the entry of  R are taken projectively):  

Z (IR)","v'3 "RJtJ,,3 )c~i (4) 
tk I ,¢z2.t~ 3 

Multiplying both sides of  (2) by IR,  we get an equation of  the same form as (2) with u and u', t, and ~,' and w 
and w'  exchanged and R replaced by IR. 

In [2], we also introduced three partial transposit ion t~, t2 and t3. t~ is defined by 

q,2,3 = RJJi2,3 (5) ( t l R ) i l i 2 J 3  q12J3 " 

The definitions of  t2 and t3 are similar. 
The four involutions I and t, (i  = I, 2, 3) generate an infinite discrete group F3D [2]. The so-called inversion 

relations of  the statistical mechanics model can be simply expressed with these building blocks. They are 

I ,  .I = t~It2t3. K = t2lt3t~, L = t31t~t2. (6) 

Considering the parameter  space as a projective space (the entries of  the R-matrix are homogeneous parameters) ,  
the elements of  the group F3D have a non-linear representation in terms of  hirational transformations. This 
group of  symmetry of  the parameter  space of  the model is very large. The number of  elements of  length 1 grows 
exponentially with I. It is actually a hyperbolic Coxetcr group [3]. The symmetry, group of  the Yang-Baxter  
equations in two dimensions is a mere affine Coxeter group [3,4,2]. 

The group F3D has been shown in [ 2 ] to enter the description of  the group of  automorphisms of  the tetrahedron 
equations (generalization of  the Yang-Baxter  equations in three dimensions) .  We shall use this symmetry group 
beyond integrability, that is to say for models which do not have to ve r i~  the tetrahedron equations. 

2.2. Weak-graph duality Jbr 3D models." the gauge group G 

A "gauge" group G = s12 × s12 × s12 acts linearly on the matrix R by similarity transformations (the weak-graph 
transformations, see [5] for details).  I f g  = g~ × g2 × g3, we define 

g ( R )  gl g2g3" R -t - I = " gl g2 Ig3- (7) 

Each of  the g,'s acts on the corresponding vector space and g~ for example is a short hand notation for g~ .~.0®I. 
The action of  G and F3D do not commute.  However, G and I do commute,  and the commutat ion relation between 
the t, 's and G gives a rather simple semi-direct product structure to the combined group: 

t lg = gt t t t ,  

with 

(8) 

g "  = 'gU l × g2 × g 3 ,  ( 9 )  

and similar relations for t2 and t3. In particular, F3D sends orbits of  G onto orbits of  G. The compatibi l i ty  of 
these two groups is described in [ 1 ] in a two-dimensional case, the sixteen-vertex model. 

The effect of  such a transformation on the pre-Bethe-Ansatz equation (2) is simple: gl acts naturally on u and 
u ' ,  g2 o n  ~ and v'  and g3 o n  tl, and tt ,t. 
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3. A three-dimensional model 

The most general vertex models on a cubic lattice has a large number  of  parameters (sixty-four). We therefore 
impose some relations on the Boltzmann weights of  the three-dimensional  vertex. We require that these relations 
are invariant  under the inverse 1 [6,7] and thc three partial transposit ions t~, t2 and 13 (eq. (5)) .  They will 
thus be invariant under the group F3D. We are particularly interested in generalizations of  the Baxter symmetric 
eight-vertex model, and define here a specific three-dimensional  model, denoted in the sequel/330. It is possible 
to "project" down a three-dimensional  model onto a bidimensional  one by just taking the trace of  the matrix R 
on one of  the spaces 1, 2, or 3: take for example space 3. 

~*S = Rt,) , ' ,3 Rkt  Z k,1.,,3 " ( 1 O) 
c~ 3 

The constraints verified by /33D are  such that the three possible projections are symmetric Baxter models. 
We define/33D by imposing the following restrictions on the entries [2]: 

R q~2~3 = R -0 ' - i2 ' - '~  (11) 
JIJ2J3 - J I , - J 2 " - J 3  ' 

il i2i3 Rj.j213 = 0 if i j i 2 i3 j l j2 j3  = - 1 .  (12) 

These constraints imply that the 8 × 8 matrix R is the direct product of  two times the same 4 × 4 submatrix [8]. 
It is further possible to impose that this 4 × 4 matrix is symmetric,  since such a symmett3' is preserved by the 
partial t ransposit ions t~, t2, t3 [2,8], that is, 

qt2'~ = RilS~s3 (13) 
R j l J 2 ) 3  ilt2t3 - 

We shall use the following notations for the entries of  this 4 × 4 submatrix: 

a dl d2 d 3 )  
dt bt c3 c2 
d2 c3 b2 cl " 

d3 c2 G b3 

(14) 

The four rows and columns of  this matrix correspond to the states ( + ,  + ,  + ), ( + ,  - ,  - ), ( - ,  + ,  - ) and ( - ,  - ,  + ) 
of  the triplets (i , ,  i2, i3 ) or (Jr, J2, J3 )- The matrix R can be completed by spin reversal, according to ( 11 ). Note 
that t~ (respectively t2, t3) simply exchanges cz with d2 and c3 with d3 (respectively circular permutat ions) .  I 
acts as the inversion of  this 4 x 4 matrix. 

It is quite remarkable that there exist four quanti t ies which are covariant by all the four generating involutions 
I ,  t l ,  t2, t3, and therefore the whole group 1-3D. Let us introduce 

P3 = ab3 + b,b2 - c 2 - d~,  q3 = cidl  - c2d2, (15) 

and the polynomials  obtained by permutat ions  of  I, 2 and 3. They form a five-dimensional space of  polynomials.  
Any ratio of  these polynomials  is invariant under all the four generating involutions I,  t~, t2, 13. CP9 is thus 
foliated by five dimensional  algebraic varieties invariant  under the whole  group  1-39. We can also express it by 
saying that the polynomials  (15) define a map from the parameter  space CP9 to CP4 invariant  under 1-3D. 

If we consider a subgroup 1-2 generated by only  two involutions, say 1 and L (6) or equivalently 1 and t3, one 
gets three more  independent  covariant  polynomials  leading to algebraic surfaces (see fig. 1 ). They read 
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2 r3 = a b 3  b l b 2 - c 3  + d  2, s3 = ( a + b 3 ) c 3 - d l d 2 - c l c 2 ,  t3 = (bl + b 2 ) d 3 - d l c 2 - c l d 2 .  (16) 

From the projection (10) we get a Baxter model. If we denote by al~, hA, ('t~, do the non-zero entries of the 

R-matrix of this model, we have 

a8 = a + b3, ho = bl + b2, co = 2c3, dr = 2d3. (17) 

4. Study of the three-dimensional "pre-Bethe" equations 

4. I. A .first at tempt 

In the study ofeq.  (2), we can start by eliminating the variables p and p'. We obtain the following system ot 

five equations for the remaining variables q, q', r and r': 
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2 O=c3d3-b2b3q2-c~r2 + (d2d3 t)2C'l +c2c'3-b3Cl)rq +c2d2q2r2-ablq'2 + ( a b 3 - c 3  + b l b 2 - d Z ) q q  ' 

+ (acl  - c2c3 + blCl - d2d3) rq '  + (b2dl  c3d2 - Qd3 + h3dl)  rq2q ' + 2(c ld]  - c2d2) rZqq ' 

- ( ad l  + b l d l  - c2d3 c3d2) r q q  '2 + c '3d3q2q '2 + c2d2r2q  '2 - d ~ q 2 r 2 q  '2 , (18)  

0 = ( c t c 3 - h 2 c 2 ) q +  ( b 3 c 3 - c m c 2 ) r +  ( c l d 2 - b 2 d 3 ) q 2 r +  ( h 3 d 2 - c l d 3 ) q r  2 + a c 2 q ' - a c 3 r ' - c l d 3 q 2 q ' - b 3 d 2 r 2 q  ' 

+ b2d3 q2r '  + C'ld2 r2r ' + d id3  q2r2q '  - d t d 2  q2r2r '  + (ad3 + C2dl - bsd3 - o ld2)  q r q '  

- (ad2 + c3dl - b2d2 -- C l d 3 ) q r r ' ,  (19)  

0 =  c 3 d 2 - h 2 c m  (q2 + r  2) + ( c ~ - [ , ~  + d ~  - c ~ ) r q  + ( a h 2 - d ~ ) r q ' +  (acre d 2 d 3 ) q q '  + ( h l b z - c ~ ) q r '  

- ah l  q ' r '  + c sd2q2r2  + (b2dl  - c3d2) r2qq  ' + (cld~ - c3d3) rq2q  ' + ( c ld t  - c2d2) rZqr  ' 

- d~ q2r2q ' r '  + (c2d3 + c3d2 - ad~ - h l d l )  r q r ' q '  + (b lc l  c2c3) rr '  + c2d2 r2q ' r  ' + (b2dl  - c3d2) r ' r q  2 

+ c3d3 q 2 q ' r ' ,  (20)  

0 = c3dl - b2c2q  2 - c l c 3 r  2 + ( d t d 2  - c'lc2 - bzcs + b l c s ) r q  + t h d 2 q 2 r  2 + (at2  - d l d 3 ) q q '  

+ (ac3 - d i d 2 )  rq '  - a c s q ' r '  + (c3dl h i d 2 )  r2qq  ' + (c2dl - h i d 3 )  rqZq ' + c'ld2 r2q ' r  ' + b z d 3 q 2 q ' r  ' 

- (ad2 + c3dt c ld3  - h2d2) r q r ' q '  - d i d 2  q 2 r 2 q ' r ' ,  (21)  

0 = (c3d2 - b 2 d ~ ) q  + (c3d3 - c~d~)," - (ah2 - d~ )  q 2 r -  (ac.  - d2d3)  qr  2 + ad~ q '  + (a  2 + d~ - d~ - d~)  r q q '  

- d2d3 (q2 + r2)q,  + ad l  q2r2q '  + (b ib2  - c32) q q ' r '  + (h~c'l - c2c3) r r ' q '  - ( ad l  + h~dl - c2d3 - c3d2) r q r ' q  '2 

+ c z d 2 r 2 q ' 2 r ' - a b l q ' 2 r  ' + (c'ldl - c 2 d 2 ) r 2 q r ' q  ' + (bzd l  - c 3 d 2 ) r q 2 r ' q  ' - d ~ q 2 r 2 q ' 2 r  ' + c 3 d 3 q Z q ' 2 r  ' .  (22)  

Two similar system of  equations can bc obtained by the elimination of  the pair of  variables q and q' or r and r'. 
The equations are of  degree two in each of  the variables, that is an overall maximum degree of  eight. In fact only 
one is of  degree seven, three are of  degree six and one is of  degree five. 

The only apparent property of  this system is the invariance by changing the sign of  each of  the variables q, q', 
r and  r ' ,  which is linked to the zeroes of  the R matrix for i j k l m n  = - 1. 

The spin reversal symmetry of  the R matrix and the change of  R into its inverse IR have no visible consequences. 
This is due to the particular choice made in the elimination of  p and p'. The equations we have written are 
just five out of  a system of  thirty-six equations with a number of  relations among them. On this full system, the 
symmetries should be more manifest. 

4.2. N e c e s s a r y  c o n d i t i o n s  f o r  I33o 

Since this direct attempt to find a full solution to (2)  leads to such a confuse result, we shall study some 
necessary, conditions. We replace the tensor product u ~ tr and tt' ~ t~' by general vectors in the tensor product 
of  space I and 2 U and U'. (2) becomes 

R (U ~ w )  = l~U' ~ tt". (23) 

83 



Volume 314, number 1 PHYSICS LETTERS B 9 September 1993 

This can be written as 

R2 
(RI  R4 ) ( r  Ut ) = t l  (rL, L':, ) R3 

with Ri . . . . .  R4 the 4 x 4 blocs of  R. 
Eliminating U and ~." gives the necessao' condit ion 

(24) 

de t (Ri  r '  + R2rr ' -  R3 - R4r) = 0. 

For the model introduced in section 3 (eqs. ( 1 I ), (12), (13) ), eq. (25) reads in terms of r and r '  

(25) 

A 3 • (r4r '4 + 1 ) + B3. (r4r '2 + r'?r '4 + r 2 + r '2 ) + C3" (r 4 + r '4) + D3. (r3r '3 + r r ' )  + E3. (r3r ' + rr '3 ) + F3.r2r '2 = O. 

(26) 

Here ,43 . . . . .  /~'3 are polynomial expressions of  degree four in the homogeneous entries of  the R-matrix (14) (a, 
.... d3). The simplest expressions are 

A3 ( ¢ , d , - c 2 d 2 )  2 = q2, C3 (b, b2 - c 2 ) ( a b 3 - d  2) = i = = ~ ( P 3  + r 3 ) ( P 3  - r3). 

In fact, all the coefficients :|3 . . . . .  I"'3 can be expressed as quadratic expressions in the polynomials  invariant by 
the subgroup Fz of  F3o listed in (15) and (16). This shows that eq. (26) is invariant by this infinite group. 
Moreover, they verify the relation 

4A3. (F3 - 2A3 + 2C~ + 2E3) = (D3 + 2B3) 2 . 

Relation (27) is actually the condition for relation (26) to become, when r = r', the square of  

(27) 

(c2& - c ,d ,  ) ( ?  + i )  + ,21a&, + h,b3 - c~ - d 2 - ab ,  - bd,3 + c~ + d ~ ) .  (28)  

We recognize q3 in the coefficient of  r 4 + 1 and P2 - Pl ( 15 ) in the coefficient of  r 2. These coefficients are thus 
F3D-covariant polynomials.  

Of  course two similar el iminations can be performed on (2) yielding constraints between p and p '  (respectively 
q and q ' ) .  

To take into account the symmetry of  (26) by the exchanges r .-* r', r ~ I / r  and r '  ~ l/r', one may introduce 
the variables X = rr '  + 1/rr '  and Y = r / r '  + r'/r. Eq. (26) then becomes a conic: 

A3 X 2 + B3 XY + C3 y2 + D3 X + E3 Y + F'3 = 0,  (29) 

with/~3 = F3 - 2A3 - 2C3. 
An invariant Zproj is naturally associated to the conic (29), it is the determinant  of  the 3 × 3 matrix M [9]: 

f ½D3\ 
= / c3 . (3o) 

\ ½D3 ½E3 F3 

The value of  this invariant is (taking into account the relations between the entries of  M) :  2proj = -Z2/4A3, with 

Z = 2B~ + D3B 3 - 2E3A3 - 8 . - | 3 C 3 .  (31) 

2proj = 0 is a projectively invariant condit ion for the conic, meaning that it is the union of  two lines. Remark 
that this does not imply the existence of  a rational uniformization of  (26). A similar phenomenon happens in 

84 



Volume 314, number I PHYSICS LETTERS B 9 September 1993 

the Baxter model, for which the corresponding equation becomes linear in X and Y, but this does not provide 
the elliptic parametr izat ion.  

In order  to obtain a paramctr izat ion of  (26), we look at it as a polynomial  of  degree four in r, the coefficients 
being polynomials  in r': 

~ ( r ' ) r  4 + 4f l (r ' ) r  3 + 6 7 ( r ' ) r  2 + 4 f l ' ( r ' ) r  + ~, ' ( r ' )  = 0. 

Its discr iminant  reads [9,10] 

(32) 

d ( r ' )  = g 2 ( r ' )  3 - 27g3( r ' )  2, 

with 

(33) 

g2(r') = ¢~( r ' )~ ' ( r ' )  - 4f l ( r ' ) f l ' ( r ' )  + 3 7 0 " )  2 , 

and 

(34) 

g3(r ' )  = ~(r ' )7(r ' ) ,~ ' (r ' )  + 2 f l ( r ' ) 7 ( r ' ) f l ' ( r ' )  - (~ ( r ' ) f l ' ( r ' )  2- f l ( r ' )  ~ ' ( r ' )  - 7 ( r ' )  3. (35) 

For a general vertex model in three dimensions,  eq. (25) leads to an equation like ( 32 ) where ~ ( r ' ) ,  fl ( r ' ) ,  7 ( r ' ) ,  
/~ ' ( r ' ) ,  (~ '(r ' )  are polynomials  of  degree four in r'. The polynomials  g2(r ' ) ,  g3( r ' ) ,  and A ( r ' )  are polynomials  
of  degree 8, 12 and 24 respectively. For the general vertex model the hyperelliptic curve y2 = ~ ( r ' )  is a genus 
eleven curve. 

However, one verifies easily that, for the model/33D, A (r ' )  is a polynomial  of  degree twelve in r a. Moreover the 
polynomial  A (r ' ) / r  '~2 is symmetric under the inversion r '  ~ 1/r ' .  Hence, introducing the variable s '  = r ~2 + r ' - 2 ,  

A (r ' ) / r  '12 becomes a degree six polynomial  in s ' ,  denoted P6(s ') .  
I f / '6  (s ' )  were a generic polynomial  of  degree six, the hyperelliptic c u r v e  ) '2 = P6 ( s ' )  would be a genus two 

curve, meaning that, as far as parametr izat ion is concerned, one is obliged to deal with theta functions of  two 
variables (the Jacobian associated to the genus two curve [ 11 ] ) or automorphic  functions (see [ 12 ] and page 
455 of  [I 3] ). One can envisage a handy parametr izat ion when the hyperelliptic curves degenerate into elliptic 
ones, that is, when two roots of/°6 (s ~) coincide, or equivalently when the discr iminant  of  P6(s ')  vanishes ~ . 

It is important  to note that the model of  section 3, corresponds to such a situation where P6 ( s ' )  can be written as 

P6(s ')  = ( s ' -  s0) 2. P4(s ' ) ,  (36) 

where/ '4 (s ' )  is a polynomial  o f the  fourth degree in s', containing 289 monomials  of  degree eight in the coefficients 
,43 . . . . .  E3. Noticeably, So is a quite simple expression, 

D3 + 2 B 3 
s0 - 2 A3  ' ( 3 7 )  

which reads in terms of  the entries a . . . . .  d3 of R: 

( 4  - + d ,  - - ( a  - - 
So = (38) 

c'l d l -  c2 d2 

Expression (38) is invariant  under the group F3D (see eqs. (15) ). In eq. (26), index 3, and the equations similar 
to (26) relating p and p', or q and q',  lead to equations like (38), where 1, 2 and 3 are permuted. It would be 
interesting to look for condit ions on the entries of  the R such that these three elliptic curves identify. 

~*J One should note that this is just an auxiliary parametrization and not a uniformization of eq. (32). 
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Clearly, a part icular variety plays a special role: the subvariety in the space of  models where the three elliptic 
curves reduce to rational ones. This algebraic variety is a good candidate for being a set of  critical points (or 
disorder  points) for 133D though it is only a codimension-three subvaricty of  the codimension-one critical manifold 

we are looking for. 
To sum up, the three-dimensional vertex model 133D yiclds a generalization of the intertwining quadratic 

Frobenius relations in the form of  an intertwining of  three different elliptic curves by an R-matrix living on an 
algebraic variety of  dimension five given by the intersection of  five quadrics (cq. (15)) .  

4.3. Further analysis 

The polynomial  P4(s')  appearing in eq. (36) is worth analyzing. We sec that g2 and J = g3 _ 27g32 factorize: 

g2 = A] .  g~') . g~2,, g3 = .443 " g~') ,  J = A~.  Z~lZ12J3J4 J3 ,  

with 

(39) 

g~" = 3 E32A3 + 8 C3E3,13 + 16A]C3 - D~C3 - 16 C32A3 - E3B3D3 - 2B3E3 - 4B~A3 + 4C3B~,  

At = 2 E 3 A 3 - D 3 B 3 ,  ,J2 = 2B~ + D3B3 - 2 E 3 A 3 -  8A3C3,  

J3 = 4 B2A3 + 16 C32,43- 4 C3 B2 - D32C3 -F E32A3 + 8 C3E3.43 - 16 . , I ]C3-  4 C3B3D3 + 8 C3D3A3- 4 B3E3A3, 

J4 = 4 B2A3 + 16 C32.,13 - 4 C3B~ - D23C3 + E~,'I3 + 8 C3E3,'|3 -- 16,4~C 3 - -4  C39303 -- 8 C303A3 -+- 4 B3E3A 3 . 

The expressions g~2) and As arc polynomials  of  degree ten in the variables A3, B3, C3, D3 and E3 (for instance, 

g~2) contains 147 monomials) ,  g~t) is a polynomial  of  degree 20 in the same variables. Their  explicit expressions 

involve too many tcrms to be reproduced here. 
Expressing the coefficients .43 .. . . .  E 3 in terms of  the entries of  the R-matrix, one discovers further factorizations 

O) g2 = ( c l d ~ - c 2 d 2 ) ' G ~  l) ,  J2 = ( c l d l - c 2 d 2 ) ' 6 2 .  

,~13 = ( c l d l -  c2d2)2"~3,  J4 = ( ¢ l d l -  c2d2 )2 ' 64 ,  (40) 

where G~2 ~) is the sum of  1570 monomials  of  degree ten. 62 is the sum of  104 monomials  of  degree six, 63 and 64 
are the sum of  780 monomials  of  degree eight, and ,J~ is the sum of  256 monomials  of  degree eight in the entries 

of  the three-dimensional R-matrix. i.e. a . . . . .  d3. 
Let us note that J2 = 2 (see eq. (31)) ,  and is thus related to the projective invariant 2"pfoj o f t h c  conic (29). 

4.4. Subcases o f  B3o 

The three-dimensional  model 133o was built in such a way that it "projects" down to the two dimensional  
Baxter modcl, as defined in section 3. It is natural to consider the condit ions on 9133D obtained by writing that 
the three projections lie on the critical or disorder varieties of  the Baxter model. 

For example, writing the three disorder  condit ions aB + dt~ = b8 + cB [ 14] of  the Baxter model for the three 
projections (i = 1, 2, 3), yields a codimension-three subvariety of  the three-dimensional model parametr ized 

as follows: 

a = bl + b2 + b3 - 2=, cl = bl + dl - =, c2 = b2 + d2 - --, ¢3 = h3 + d3 - z .  (41) 
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On the subvariety (41), the discriminant of P4(s') vanishes, A2 = zJ4 : 0 ,  the conic (29) degenerates since 
Zproj = A2 = 0 and even more remarkably, P4(s') gets proportional to (s' - 2) 4. 

Similarly, the three criticality conditions as = bt~ + ce + ds [ 14] yield a codimension three subvariety: 

2dl = a + bl - b2 - b3 - 2c'l, 2d2 = a + b2 - b3 - bl - 2¢'2, 2d3 = a + b3 - hi - b2 - 2c3. (42) 

On the subvariety (42), the discriminant of P4(s') vanishes, ,J2 = J3 = 0, and now P4(s') gets proportional to 
(S' + 2) 4. This last codimension-three subvariety is particularly interesting, since it is F3D invariant. 

4. 5. A solvable case 

Another interesting model is obtained by setting d~ = d2 = d3 = 0. The projections yield six.vertex models 

[I 5 ]. The biquartic equation (26) becomes a homogeneous equation of degree 4 and the solution is the union 
of four lines r' = 2r. Remarkably, for this model the left-hand side of (26) factorizes for r' = - r :  

r 4 (ab2 + b~ b3 - c~ + ab~ + b2b3 - c'~ - 2ac3 - 2b3c3 + 2c~c2 ) (ab2 + b~ b 3 -  c~ + ab~ + b2b3 - c~ + 2ac3 + 2b3c3 - 2c~c2 ). 

(43) 

What is more interesting is that we can get the conditions for the existence of solutions to (2) in this case. In 
(2), there are two equations which fix uniquely some scale factors: 

a = it, a p q r  = ~ p ' q ' r ' .  (44) 

Using these informations, the six others components of (2) fall into three pairs of equations like 

, 1 1 1 1 
ap = blp + c3q + c2r, a-~7 = bt -~ + C3 q + c2-.r (45) 

In writing these equations, we discarded the trivial solution p = q = r = 0 which always exists in this case. 
Multiplying pairwise these equations, we obtain three linear equations for the variables Xp = q / r  + r /q ,  Xq = 

r ip  + p / r  and Xr = p / q  + q /p .  This system of equation can be easily solved. These three variables are not 
independent since they depend only on the ratios o f  p, q and r. They satisfy the relation 

. ¥ p X q X r  - ( X  2 -[- X2q -Jr- X2r ) "~- 4 = O.  (46) 

Rewritten in the homogeneous variables a, b~, b2, b3, c~, c2, c3, eq. (46) is a necessary condition for equation 
(2) to have non-trivial solutions. This is however not the end of the story since the relation pqr  = p 'q ' r '  yields 
another condition on R once we have solved for r /p  and q/p .  Note that the normalization of the variables p, q, 
r and p' ,  q' and r' remains free. 

A complete analysis therefore yields the existence of non-trivial solutions to (2) when R is on some co- 
dimension-two subvariety in the parameter space. 

5. Conclusion 

We have shown how to associate algebraic curvcs with three-dimensional vertex models. We have described 
a specific model for which the analysis of these curves is handable. We have introduced a generalization of 
the quadratic Frobenius relations (associated to elliptic functions). It corresponds to new intertwining relations 
of products of more than two algebraic curves by R-matrices living on algebraic varieties which are no longer 
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curves. In the example detailed in this paper, one has an in ter twining of  three curves by an R-matrix l iving on a 
h igher-dimensional  algebraic variety. We think that these equat ions  are a key ingredient  for the cons t ruct ion  ot 
the general izat ion of  the Bethe Ansatz in higher d imensions ,  thc quest of  solut ions of  the te t rahedron equat ions  
and more generally any cxact calculat ion ( invcrs ion trick [ 16 ], quest of  critical manifolds  [ 17 ] ) performed on 
higher d imens iona l  models. 
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