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CrossMark
Abstract
We show and give the linear differential operators Effal of order
g =n*/4 4+ n+ 7/8 + (—=1)"/8, for the integrals I,(r) which appear in the
two-point correlation scaling function of Ising model
E(r)= limscanng./\/l;2 <000 oyn > = 2, I, (r). The integrals 1,(r) are
given in expansion around r = 0 in the basis of the formal solutions of E;C“l
with transcendental combination coefficients. We find that the expression
r!/* exp (r%/8) is a solution of the Painlevé VI equation in the scaling limit.
Combinations of the (analytic at r = 0) solutions of Eifal sum to exp (r2/8).
We show that the expression r!/* exp (r2/8) is the scaling limit of the cor-
relation function C (N, N) and C (N, N + 1). The differential Galois groups
of the factors occurring in the operators Ef;al are given.

Online supplementary data available from stacks.iop.org/jpa/48/115205/
mmedia

Keywords: scaling functions of Ising model, diagonal correlation functions,
diagonal form factors expansion, painlevé VI equation, multidimensional
integrals, modified Bessel functions, differential Galois group

1. Introduction

The scaling functions of the two-point correlation function of the square lattice Ising model
F. (r) have been obtained by Wu e al [1]. These scaling functions F, (r) are solutions of a
Painlevé like equation [1, 2]. Symmetrical forms of these scaling functions have been also
obtained by Palmer and Tracy [3, 4]
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E(r) = Z 1, )

where the I,’s are n-dimensional integrals.

The expressions of [} and I, are known in closed form. Note that the integrand in the
integrals 1, (see (13) below) is not algebraic in the variables but it is holonomic. Thus the
integrals I, must be solution of linear differential equations®. These linear differential
equations, annihilating the integrals I, are the main subject of this paper.

The paper is organized as follows. Section 2 contains recalls on the scaling function of
the two-point correlation function F; (r) and its symmetrical forms. Section 3 is a recall on
the £\, namely the form factors expansion of the diagonal correlation functions C (N, N)
on the square latticee. The linear differential operators £f1°al of order

g =n*4 +n+7/8 +(=1)/8, for these form factors at scaling have no direct sum

decomposition. The general solutions of f]f,“, f]flz) and £, at scaling, are given. Once the

observation that the scaling limits of f,fll) and f,f,z) are identical to I} and I, we show in
section 4, that the integrals I, are solutions of the linear differential operators Eifa]. The proof
is carried out by numerical methods, allowing to write the integrals /, as an expansion of
formal solutions of Lif]“al, where the combination coefficients are transcendental numbers.
Section 5 deals with the sigma form of Painlevé VI equation that annihilates C (N, N), as
well as its scaling limit. We seek, and find, four solutions to the scaled Painlevé equation. To
each solution, we identify the corresponding solution of the N-dependent sigma form of
Painlevé VI equation. In section 6, we show that x'"* exp (x?/32) is the scaling limit of
C (N, N), and, in section 7, we show that it is also the scaling limit of C(N, N + 1). We
show, in section 8, that the factors of the linear differential operators for the flg,”) (as well as
the corresponding operators in the scaling limit) have ‘special’ differential Galois groups. Our
conclusions are given in section 9.

2. Recalls on the scaling functions of the Ising model

The scaling functions are defined as [1]

F.(r) = lim M* - (000 om ), )

scaling

with M, = (1 — )8, where f is defined in section 3. The variable r is related to the

correlation length £ by & - r = VM? + N2.

The scaling functions obtained in [1] are, for T < T,

n=1

Fo(r) = exp( —Zﬁgz,,(r)], 3)

3 The integrals of a holonomic integrand are also holonomic.
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with

an(r) = % /; dyl 4/; dy2n'

2n exp (—”yj) . ﬁ (y23' - 1)’ 4)

. 2 172 :
j=1 (yj —1) (yj+yj+1) j=1

and for T > T.

F.(r) = X(r) - F_(n), (5)
where
o |
X(r) = ;O 1" S (0, (©6)
with

et exp ()
j=1 (yj2 - 1)1/2
12_[ (32 -1). )

It has been shown [1, 2] that the scaling functions F, are remarkably given by nonlinear
equations of Painlevé type:

_(siohp2)) 1 e 2 (d_l//)z _
F.(x) = (cosh (y/(r)/Z)) exp 1 [ [smh ) s sds, (8)

where  (r) verifies:

g2n+](r) = (_1)114/1‘ dy] ‘/; dy2n+1 ’

n

yj+] j=1

L () Lo
ar ( dr) 5 sinh 2y) = 0. )
Setting [1, 2]
d
=r—In(E), 10
£(r) ’dr“(—) (10)
the equation (8) becomes:
(r&? =4- ¢ -0 —4- )P ¢l -0+ )~ (11)
The scaling functions are also given in a symmetrical form in [3] (see also [4]).
Fo(r) = ) by (1), F_(r)y=1 + Y b, (12)
n=0 n=1

n

_ 1 © du1 © dlft,l (ul_ J)z r
[ = 4 o fo = I1 H (—5(u,+1/ul)). (13)

|
n. Jo i<j (u,+u) im1
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For n = 1, the computation of (13) is direct

1
L= — - Ky(r). (14)
T
For n = 2, the result is
L = Lz : ((% - 72) - Ko(r)* —r- Ko(r) - Ky(r) + r*- Kl(r)z), (15)
T

where K (respectively Kj) is the (respectively derivative of the) modified Bessel function
(see below). I, corresponds to the second term in the expansion of (3), i.e. g, (r) / 7 given in
(4). In section III.G.4 of [1], the authors obtained (15) by taking the second derivative of
& (r) / 7% which decouples the double integral

d%g (r) eXp( ry)
— / 1 / dy, exp (—ry,) 4y, — 1

= Ko(r) - 7 Kl(r) (16)

giving rise to an integral representation of Ky(r) and an integral representation of Kj(r).
Double derivation of I, verifies the result.

In terms of linear differential equations (ODE), I, is a solution of an order-3 ODE and
the corresponding linear differential operator is homomorphic to the symmetric square of an
order-2 operator. The ODE of this order-2 operator annihilates 1.

3. The linear ODE of the form factors and their scaling limit

The diagonal correlation functions C (N, N) of the square Ising model have a form factor
expansion [5]

CIN,N)= (1 - ). (1 + Zf;f")], T<T, (17)

with ¢ = (sinh (2E*[kyT) sinh QE" /kp T))_2 , and
C(N,N)= (1 —)i/+. Zf]£]2"+1), T>T, (18)

with 7 = ((sinh(2E¥/kpT) sinh(QE"/ksT))* , where E" and E’ = E" are the horizontal and
vertical interaction energies of the Ising model.

The diagonal correlation functions C (N, N) can be calculated from Toeplitz determi-
nants [6-8]. They are also solutions of Painlevé VI in its sigma form [9]. The diagonal
correlation functions C (N, N), as well as the form factors f, ) write as polynomials in the
complete elliptic integrals (see appendix A for some recalls).

The diagonal form factors flg,”) are n-dimensional integrals [5] and are annihilated by
linear ODEs whose corresponding linear differential operators factorize, with factors such that
the fy " are ‘embedded’ in the form factors fé,”“k)

Fefere (e o

k=1 k=0
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which means, for instance, that flg,l) and f]ff) are solutions of the linear ODEs:
L f\" =0, Ly- Ly f = 0. (20)

The expressions of these order-n linear differential operators L, have been obtained [5]
for generic values of N, and are given up to n = 10 in [5]). The operators L, are provided in
an online supplementary data file (available at stacks.iop.org/jpa/48/115205/mmedia). Being
obtained for generic values of N, the scaling limit of these linear differential operators has
been possible. The scaling limit amounts to taking both the limits # - land N — oo in
the linear differential operators. This is performed with the change of variable
x=(1—-1)- N, keeping the leading order of N.

In the scaling limit, the linear differential operators L, in the variable ¢ become linear
differential operators L:°* in the scaling variable x, and we have shown [5] that the factors
L solve as polynomial expressions of modified Bessel functions of homogeneous degree.
For some purposes in the sequel and easy references, we recall the factors Llscal, Lz‘“cal, L;Cal,
L3, L& and L& in appendix B.

Call By(x/2) and Ky(x/2) the (respectively analytical at x = 0, and logarithmic)
solutions of the modified Bessel differential operator (with D, the derivative* d/dx):

D3+l- Dx—l. (21)
X 4

We call B;(x/2) and K;(x/2) the first derivative of, respectively, 2 By(x/2) and —2 Ky (x/2).
Consider the linear differential operator L, - L, that annihilates the form factors £ (N)

and f@ (N), and denote by LS. L3 the corresponding linear differential operators in the
scaling limit.
The general solution of L5 reads (omitting the argument x/2)

sol(L;““) =c¢ - By +c- Ko (22)
The general solution of L ! reads
sol(Li)=cs- (Bj —x- B} Bl +Bo- B +x- B})
+cs- (K +x- K3 Ko + Ko+ K2 —x- K7)
+ o5 (1302. (3Ko +xK\) + B (Ko —3xK)
- 2By By (x Ko + K1)
+co- (K3 (3Bo—xB)+KZ- (Bo +3x- B)
- 2KoKi - (Bi - x By)),
and L% . L3 solves as

sol(LjCal : Lzscal) = sol(Lzscal)
—B,- fKO- sol (L) - x dx

+ K, - fBO- sol(L3) - x dx,

4 Similarly, we will also use, in this paper, the notations D, for d/d¢t and Dy for d/ds.
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i.e. the scaling limit of £V (N) 4+ f® (N) is not a polynomial expression of modified Bessel
functions.

Similarly, for T < T, consider the linear differential operator Lj3 - L, with the constant
and f@ (N) as solutions. In the scaling limit the operator Ls - L; becomes L3 . L
(with Llscal = D,), and its general solution reads:

sol( L{ - D,) = o + & - ((2 ~2%)- B} +2x- By- By +x7- BE)

+e ((2 ~2%) K¢ -2x Ko Ky +x2K12)

+oy- ((x Bo- Ky + x- B- Ky —x>- B, K

—(x* -2): B Ko). (23)
Note that L' - D, has a direct sum decomposition (see appendix B), but the operators (in
the scaling limit) of higher order have not.
4. Linear differential equations of the I, integrals (13)

If we compare [, given in (14) with (22), and I, given in (15) with (23), one remarks that the
integrals are, respectively, solution of the linear differential operator L5 and L;* - D,
once the correspondence r — x/2 has been made.

We now argue that the integrals I, (x) are solutions of the linear differential operator

£;cal — L;‘c'_all . L;iall Lzscal, g=m+ 2)2/4, 24)
for n odd, and
ﬁf}cal — Lnsfrall N M T e g=m+ D@n+ 3)/4, (25)

for n even.
This will be proved numerically for the first 7,(x), i.e. we show that:

L =0, (LF-Li™) b =0,
(Lj.cal . Lzscal) - L(x) = 0, (Lsscal . L3scal . Llscal) CL(x) = 0. (26)

In the sequel, we call S}”), j=1,2,.-,q the formal solutions of the differential
operator annihilating 7,(x) and we call c}”) the numerical constants that appear in the
calculations.

Let us show the method for the integrals [; (x) and L (x) which are known in closed form
expressions.

4.1. The integrals |1 (x) and I>(x)

With the formal solutions of L3 at x =0

2 4 2 4
SV = 8. In(x) — x_+3i + -, 52(1)=1+x_ +x_+...,
16 2048 16 1024
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we form the generic combination ¢" " + ¢f S5V that we evaluate numerically (and its
first derivative) at a fixed value of x = x¢. The integral /;(x) (and its first derivative) are
performed numerically for the same value of x.> Solving the system

(e s+ e sP) =K,
X=X X=X0
d d
(1) (1) (D (D —
— g’ S e’ S = —Lx , 27
dx(l 1 2 z)xzxo dxl()x:x0 (27)
in the constants ¢ and ¢i", one obtains
eV = -0.318 30, ciV = 0.257 53, (28)
which are easy to recognize, since [ (x) is known (and given in (14) with r = x/2), as
1 1
of) = ——, fl=—- @@ -y.
7 z

where y is Euler’s constant.
The same calculations are performed for L3 - D, with the formal solutions written as
5x? 9x* 29

5P =87 Inx? + | —+ + x
8 1024 221184

3x? x4 19 6
—_ —_— + _— + _ X + cee s
4 128 147 456
5x2 ox* 29 6
— + + X0 |
16 2048 442 368

6 +) In (x)

SP= SP. Inx) + (

x? x* x6

s@- 1 -2 X __*r L. S = 1. 29
3 8 512 36864 ¢ @9

Similarly, the combination cl(z) . Sl(z) + 62(2) . S2(2) + c3(2) . S3(2) + cf) - 8¢, and its first
three derivatives are evaluated numerically at a fixed value of x = x¢, and matched to the
integral I, (x) (and its first three derivatives) performed numerically. Solving in the constants
c}z), one obtains:

¢ = 0.050 6605, i = 0.0193443, P = 0.052507, P = 1078,

Here also, since L (x) is known (and given in (15) with r = x/2), the constants are easy
to recognize

1 1
(2) — 2 — - . —
o = Pyl ¢y = - (1 21n (2) + y),
1 1
2) _ 2 (2) _
7= —- (1 =2In2)+ypy) + —, c;” = 0. (30)
: 272 272 !

4.2. The integrals I3(x) and 14(x)

Now, we consider the integral /3 which should be a solution of L; . L}! whose local
exponents at x =0 are 0, 0,0, 0, 2, 2 (that we note 0% 22). The formal solutions are
written as:

5 One may also, obviously, compute the combination of solutions and /; (x), i.e. (27), at two values of x.

7
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21x? 87x4
S(3)=S(3).]nx3 + 13 - - 4+ .. .1nx2
| 4 () 3 048 (x)
9 0x2 81x* 3x2 75x*
+] = + = + + o @ + |3+ - —
2 128 8192 64 2048
2 4 2 27x4
SP=SP @R + 245 -2 4] mews | a3 L2
32 2048 2 128 8192
2 4 2 4
SP=sP mm+ |1+2 -2 g s e g
64 4096 16 1024
sV =5, S = sV, 31

Similar calculations are performed, namely evaluating numerically the linear combina-
tion Y. ] 0;3) S ;3) (and its five derivatives) matching with the integral I3(x) (and its five

derivatives) at a given value of x = xy. Solving in the constants ¢ ;3), one obtains:

¥ = —0.0322515/3!, ¢ = —0.018 4725/3!, i = —0.578 9545/3!,
cf¥ = 0.65939377/3!, ¢ =0.499 004 35/3!, ¥ =—0.1942198/3!.

The constant ¢ is easily recognized as —é and we may guess the constant c{> as
us

(=1 +21n(2) — y)/(273), but we have not attempted to recognize the other constants,
because the number of correct digits is rather low. Note however, that if we evaluate, again,
Lx) =Y j cf) N ;3) with the obtained constants ¢ ](3) and for other values of x(, one obtains
zero with the working accuracy.

Similar calculations are done for I4(x) with the basis of solutions at x =0 of
L3 Lyt L5 (whose local exponents at x = 0 are 0%, 23, 6) :

S@=8H . In(0* + (& _,_ﬂxz + 283 oy 5 .
3 12 1536 1024

(818 0, 19 I ) ey

3 192 12 288 204 912

( 334 5771 5 3829 4 6509
—_ +_ X — - X e —
9 1152 73 728 884 736

6 +) In (x)*

- x84+ ) In (x)

1549 21 505 2 466 273 4 102 762 373 6
LA L Cxt 26 g (32)
54 13 824 884 736 12 740 198 400
S = S§4)- In (x)> + (5 _2B x? - 247 x*
256 16 384
+ 15 . x6 + ...). ln(_x)2+ (2 _ﬂ x2
131 072 3 1536
+ 199 . x4 + ﬂ . x6 4+ e ) - In ()C)
98 304 1179 648
167 485, 37915, 8508 439 .

+ © X Xt - - X
18 18 432 1179 648 16 986 931 200
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223
S::E4)= S5(4). 111()6)2 + (? - ﬁ . )C2

_ 2 Cxt o+ > ‘x6+---)-ln(x)
24 576 65 536
32 473 199 4 103 027 6
+= - X%+ cxtt —— X ,
9 4608 294 912 4246 732 800
SH= S ) + 2 — 222 24 40981 6
3 768 49 152 707 788 800
S@ = se st x ¥ o
4 256 2304
Sé4) — Sl(Z)’ S7(4) — 52(2)’
5§ =8, RER S

The coefficients combination read

™ =0.0102659/4!, ¥ =0.0215279/4!, P = 0.423 376/4!,
cf? = —1.086 613/4!, i = 1.063 659/4!, P = —0.357 04/4!,

AP = —0.02156/4!, ¢ =1.05496/4!, P = —1.38534/4!.
Here also, the same numeric values of ¢ ](4) are obtained for any other value of x.
Let us remark that if one just wants to check that I, (x) is a solution of £ff"‘1, one may
proceed as follows. Call T, (x, u) the integrand of I,(x) and integrate numerically

L1, (x, ), (33)

for fixed n and various values of x, to get zero with the desired accuracy.
We claim that this continues for the higher I,, and conclude that the integrals I,(x) are
solutions of E;C*‘l, the scaling limit of the linear differential operator annihilating the form

factors f, 15,”) .

4.3. The expansion around x = 0 of the integrals 1,(x)

The integrals I, (x) write as linear combination of all the formal solutions at x = 0 of £Z°al
q
Lx)= Y e sy (34)
j=1

Note that the numerical values c}") do depend on the basis chosen for the formal solutions
S j(”) (see appendix C which gives the constants for 5 (x) with another combination
of formal solutions). However, as an expansion, I,(x) is obviously not dependent on
the basis. For instance, if we trust the guessed constants c1(3) and c2(3), the integral I (x)
reads:
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1 7 7
L(x)=—— - 1+—'x2+—«x4+---)'ln)c3
30 =23 ( 16 1024 2

T

+L. (3 : (21n(2)—y—2)+12—61- (1 +2In2) —p)- x>

673
3
+ —— (15 +28In(2) — 147) - x* + |- In(x)?
2048 ( (2 7)) X ) (x)
_ L (8.124485 + 6.974 855 x> +0.117 211 x* + ) In (x)
673
+ %- (—7.387 058 + 7.260 657 x> + 0.150 333 x* + ) (35)
JT

In front of In (x)°, there is the overall constant c1(3). For In (x)z, there is no overall constant,
because the series in front of In (x)? is a sum of two series with the combination coefficients
c1(3) and c2(3). The same occurs for the others series in front of In (x) and In (x)°.

For I,(x), the expansion reads:

1 5 5 1
Ii(x) = . 1—xz——x“——xﬁ+-~~)~lnx4
400 = ( 4 256 2304 2

P S (8.763 69 + 9.29539 x2 + 0.143 287 x*
2474
+0.00397265x° + - ) In(x)}
1 2 4
— (38.2792 —39.8374 x2 — 0.611 859 x
2474
— 0.017 6486 x® + --- ) In (x)2
1
24rx

+ 0.038 3979 x° + .- ) - 1n (x)

—+

i (89.0014 + 91.2468 x> + 1.303 55 x*

+ L (89.7926 — 88.8183 x2 — 0.942 513 x*
2474

— 0.030 7719 x° + --- ) (36)

Remark 1. In the numerical evaluation of the constants ¢ }") by linear systems like (27), the
issue of the numerical accuracy raises. For the left-hand side (27) it is straigthforward to have
the series S}") to any length. The difficulty is in the numerical evaluation of the multiple

integrals (13) which controls the number of digits of the constants c;”).
Remark 2. In the evaluation of the linear systems like (27), the matching point x = Xy is
used. The value of x( can be any positive number, since the integrals I, (x) are defined for the
positive r = x/2, and since the solutions § ;") are given by linear ODEs which have only
x=0and x = oo as singularities.

We now turn to the diagonal correlation functions C (N, N), which write as expansion
on the form factors flf,”). The linear differential equations that annihilate the C (N, N) are of

10
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order n + 1. Appendix D shows that we can find the coefficients for generic N, but to go
further, a recursion on these coefficients should be found. This seems hard to achieve.
Fortunatly, there is a way to produce the linear differential equation at scaling that should
contain the scaling limit of C (N, N).

5. Painlevé VI sigma form equation in the scaling limit

It is known that the diagonal correlation functions of the Ising model, Cy = C (N, N) verify
the Painlevé VI equation in its sigma form [9]

d262 do 1
[r- t-1)- F) +4- ((r—l)a —0—4)

-(t-d—a—o)-d—azNZ-((t—l)-d—a—a)z, (37)
dr dt dr
where:
o=1 -1 Tm(cy) - L, T <T, (38)
dt 4
(7=t-(t—1)~iln(CN)—l, T > T. (39)
dt 4

The scaling limit of this equation has been given by Jimbo and Miwa [9]. It is obtained by
simply performing the approriate change of variable, which amounts to changing to the
variable x = (1 — ¢t) - N in Painlevé VI sigma form, keeping the leading N term. This gives
the scaling equation (irrespective of the regime 7 < T, or T > T;)

2, \? 2
x2~[%] +(4x~(%)—x2—4u)-(%) —%x-(%)'(l—4ﬂ)
= % (1 = 4w, (40)
with:
U= x 4 In ( Cycar (x)). 41)
dx
To make the expressions closer to the sigma form, one may define

d

v=x I (Ca) - (42)

=

Equation (40) becomes
2 2 2
xz-(ﬂ) +4~(x~(y)—y—l)-(d—y) = (x~(d—y)—l/). (43)
dx? dx 4 dx dx

Remark 3. The form (38) is equation (32) in [9], and identifies with (11) on ¢ with
r = x/2. It seems that this identification between (11) and (43) (and thus equation (38) in [9])
has not been remarked.
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Remark 4. Recall that (43) is for C (N, N) while (11) is for C(M, N). The factor Mi in
(2) is taken care of by the —1/4 appearing in (42). Equation (43), which is the scaling limit of
the equation that annihilates C (N, N), (i.e. (37)) could also be the scaling limit of a
nonlinear equation (of the Painlevé type) for C (M, N), generalizing (37), if it exists.

5.1. Some solutions of the Painlevé VI sigma form equation in the scaling limit

In order to find some of the (non logarithmic) solution Ci, (x), we plug in (43) the form

Coa () = X%+ Day - xF, (44)

and solves, term by term, on the coefficients a;. For generic «, one obtains

Cda -1
Chi) = x- exp( "8 x)’ (45)

The value a = 1/4 pops out as particular. When fixed and plugging (44) in (43), one
obtains a one-parameter solution that reads:

ap - (ao - 8612)

Con)=x"*|ag+ay x2+2 . x4 ——~ 2. x6
scal( ) 0 2 64 4608 a0
a, - (Sao - 64a2) 8 as - (7a0 - 104a2) L0
2359 296 ay 471 859 200 ay
a- (2lag - 296apa; — 51247) N
Cx2 g ] (46)

27 190 899 200 ag

For the value ay = 0, the solution corresponds to (45) for @« = 1/4 + 2. For a, =0,
the solution is

CI (x) = x4, (47)

Now we want to find whether there are particular values of ajsaq for which the series
Cycal (x)/ x!/4 in (46) verifies a linear ODE. For this we use the methods developped in [10—
13] (see also section 6 in [14], section 3 in [15]) and consider the series (46) modulo a given
prime p. This way, as far as the coefficient a,/ay is rational, its value is restricted to the
interval [1, p]. We then let ayjaq varies over the whole interval [1, p ] until a linear ODE is
found. We have written the linear ODE in the (homogeneous) derivative x - D, the coef-
ficient-polynomials being of degree D, and searched for an ODE of order Q < 6, with
(O + 1)(D + 1) £ 220. In this range of Q and D, there are only the values ay/ap = 1/16
and ay/ap = 1/32 that are found, for which the series (46) is annihilated by a linear ODE.

For the particular value a, = ay/16, the linear ODE found is of order-2, with the non
logarithmic solution

ci @ =+ (3 (48)
For the particular value a, = a/32, the linear ODE is of order-1 and solves as:

x2
CW )= x4 exp[ 3—2] (49)
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5.2. Correspondence with solutions of PVI sigma form equation

In the scaling limit, we have obtained that Painlevé VI sigma form equation has the following
solutions:

da — 1
Cg(” x) = x% - ex +i x|, a 1/4,
Acal( ) P 3 77 ;é
i (x) = x4,
) 1/4 X v) 1/4 x?
Cscal x)=x . BO(E)s Cscal x)=x © eXp 3_2 . (50)

For the logarithmic solution of the Painlevé VI sigma form in the scaling limit, the first
terms are given in [2]. More terms are given in appendix E.

Now, we show the solutions of the Painlevé VI sigma form corresponding to these
scaling solutions, CY), (x), ---, CY%) (x). There is one solution to the Painlevé VI sigma form
which reads

C@t) = t“- (t — 1P, (5D
with (for T > T.)

b S

and (for T < T.)

1 1
(L) (s 4[5 _NZ), 53
a[2 Sﬁ)(ﬂ 5 (p-N?) (53)
In the scaling limit, the corresponding linear differential operator is (for both regimes)
644 x>- D} — 12882 - x- D, + (4 — 1)2- x> +64p%- (B + 1), (54)

with solutions

¢ - xP. exp[i 45\/_ﬁlx] + ¢ xP exp(—i 4 — lx], (55)

which are the solutions (45).
The same solution to the Painlevé VI sigma form can be seen as given with a being a
free parameter, i.e.

C@t) = t*- (t = 1P, (56)
with (for T > T.)

p = . (N2 —8a% —2a + (4a + 1) da? —Nz), (57

AN? 4+ 16a +4
and (for T < T)

p = m- (N2 — 8a? + 2a 120:\/(40:2 - 1)2 _4N2)' (58)
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In the scaling limit, the corresponding linear differential operator is (for both regimes)
16x%- D} +8x- D+ 1, (59)

with solutions
- XM+ x4 In (), (60)

giving the solution (47).
We have shown in [16] that any combination of the two solutions of (with D, the

derivative d/dr)
1 1 1 N2 1
L,= D*+|—-+———|- D, —-—+ ———— (6]
t 2@-=1 442 160 =172

actually satisfies the Painlevé VI sigma form (37). In the scaling limit, the two solutions are
- x4 Bo( %) +ope x4 Ko( g) (62)

i.e. the scaling solution (48). Note that x'* . Ky(x/2) is also a solution of (43), and L,
annihilates (1 — 0! - £".

6. Scaling limit of the diagonal correlation functions C(N, N)

Now, let us show that the scaling solution (49)

x2
CIY (x) = x4 exP[s_z]’ (63)

corresponds (up to x'/#) to an infinite sum of the scaling limit of the £, i.e. this is the scaling
solution (analytical at x = 0) of C(N, N).
We will consider fz(vl)’ flff) and £, which are solutions of respectively Ly, Ly - L,

and Lg- Ly - L,. These linear differential operators are given in [5], and we call L5,

(L3 L3y and (L& - L - L) the corresponding scaling operators.

The function C{Y (x) expands as:

avy 2 4 6 8 10 12
%=1+x—+x o b o — 4 (64)
X 322048 2163 0 2233 2315 2345
The identification will be done on the formal solutions of the scaling linear differential
operators.
With the first terms of the solution of L}
2 4 6
= 1 4k (65)

16 1024 147456
there is only the constant term which matches.

The analytical solution, at x = 0, of L . L5 reads:
_ 2B L 6
Spr= 1+4+a,  x +64 X +214.32 X
1 ay 3
+(220, 32 98, 3). SR (66)
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With the well suited combination (a; = 1/32), S becomes:

X2 x4 X6
Sp=1 +— + +— +
“ 32 2048 | 21432

(67)

We see that, up to x*, the coefficients are reproduced, i.e. up to x*, the solution Cs(c’;? (x) is
reproduced by the scaling limit of:

(=" (1D +£). (68)

Note that the next coefficients of C%) (x)/x!'**, and Sy, (i.e. at x°), are in the ratio 4/3.

Next, we consider the scaling of

a- t)1/4 . (f]i]l) +f1§/3) +f1§/5) ) (69)
This amounts to considering the solution of LS . L. L3l
as 49 as
S =1+a-x2+—~x4+a'x6+(—— )~x8
o 2 64 ° 64 2.3
+( 13616 _ aj ) ) xlo
215. 25 220.75
" 49616 _ 11(12 _ 1 . )Clz + o (70)
218 . 32, 52 22 . 34 .52 230, 34 . 52 ’

and obtaining the well suited combination (a; = 1/32, 1/a = 2' - 3)

)C2 )C4 xﬁ )C8 xlO 43 x12

Ssp=1 +— + + + + + + - (71
642 32 2048 216.3  02.3 928,15 | 3. 34,32 1)

which reproduces CY (x)/x'"* up to x'°, the ratio of the next coefficients 43/45 being

almost the unity.

With the first three form factors, we may infer that, for each f,f,z"“) form factor added to
C (N, N), the coefficients of the scaling function are reproduced up to x""+3,

Indeed, and as a last check, we consider the next form factor f]g) whose scaling limit is

given by Lg . L. Ll 15l and its analytical solution (at x = 0) which reads:

ar dag ar
S =1+a~x2+—x4+a~x6+(—— )'xg
s ? 64 ° 64 218.3
13
( dg _ as ) xlo + ap - Xlz
215. 25 22075

ap 33 as as 14
+|—= - + CxM g 72
(64 224.72.5 229.32.5.72) ( )

With the well suited combination a, = 1/32, 1/ag =2'°-3, 1/a;, = 2%* - 45, Ssesr
reproduces CY) (x)/x'"* up to x'8, and the next coefficients are in the ratio 1571/1575.

Note that we have the same results when we consider the scaling limits of f,f,") with n
even. For this, let us show the analytical solution, at x = 0, for L& . L% . L5 which
reads
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a; ae aj
S=1+a-x2,+—-x4+a-x6+(—— - x8
! ’ 64 ° 64 218.3
13 ag a 0 37 aq az 12
+(215.25 _220,75)')6 + o8 32 52 23 34 52 P+ e (73)

where we remark that this solution identifies with Ses2, up to x'°, i.e. for the same well suited

combination it reproduces CU%) (x)/x'* up to x'°. In other words the scaling limit of
f(l) + f(3) + -+ f(2"+1) identifies with the scaling limit of
L +fP + 0 4+ - + 2, up to x"@*+3. As far as the analytical solution at x = 0
of the scaling function is concerned, the scaling function is the same for both regimes (high
and low temperatures).

The scaling limit of C (N, N) is therefore:

2
lim (1-n"- Y 0@ = -exp[;c—z]. (74)

t—1,N
Thime n:odd,even

7. Scaling limit of the next-to-diagonal correlation functions C(N,N+1)

The non-diagonal correlation functions C (N, M) are given in terms of determinants (see [7]).
It has been shown in [17] that the next-to-diagonal correlation functions C (N, N + 1) have
the form of a bordered Toeplitz determinant. An iteration scheme of the diagonal and the
next-to-diagonal correlation functions is given by Witte [18].

Unlike the diagonal correlation functions C (N, N) which are annihilated by Painlevé VI
equation, there is no known (nonlinear) differential equation for C (N, N + 1) on which the
simple scaling limit + — 1, N — oo can be performed. However, these next-to-diagonal
correlation functions can be written as sum of the form factors [19], C® (N, N + 1). In
appendix F, we show that these next-to-diagonal form factors are annihilated by linear ODEs
that can be obtained for generic N. We give in appendix F the first three linear differential
operators and their corresponding linear differential operators in the scaling limit.

It appears that these linear differential operators, in the scaling limit, identify with the
operators for the diagonal f ) in the scaling limit. Therefore, we will expect the occurrence
of the same expression x!'* . exp (x2/32) as the scaling limit of C(N, N + 1).

Consider the first term C"(N, N + 1) whose scaling limit is given by the direct sum
L, seal gy Lfcal, which has the analytic solution at x = 0O:

ay +a2-x2+éa2-x4+92]—16a2-x6+235917296a2~x8+-~-. (75)
For ay =1 and a, = 1/32, there is matching with exp (x2/32) up to x*.

The two terms CV(WN, N+ 1) + C® WV, N + 1) are annihilated by the operator Vg
which solves C?(N, N + 1) as well. But we have shown in appendix F that in the scaling
limit, the operator Vo has the direct sum decomposition (F.14). This allows us to pick only
the operators L5 @ L; . L3 corresponding to the scaling limit of
COW,N+ 1) + COP(N, N + 1). The analytic solution at x = 0 expands as
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ap +a2-x2+La2-x4 +616-)66+(&—L)-x8
64 64 786 432
13
Y O N Cx0 4 (76)
102 400 78 643 200

and for ag = 1, a, = 1/32, ag = 1/196 608, matches with exp (x?/32) up to x'°.

Let us consider the whole solutions of the scaling limit of V3, which means that
we are matching exp (x2/32) to the scaling limit of COWN, N+ 1) + CP(WN, N + 1)+
CO(N,N + 1), ie. mixing both regimes. The analytic solution at x =0 of (F.14)
depends on four free coefficients, which when fixed to ap=1,a,=1/32,
ag = 1/196 608, aj; = 1/773 094 113 280, actually matches exp (x*/32) up to x'8.

Therefore, we have shown that

/ 2
lim s (1 - s4)1 t. Z CO(N,N+1) = x'*. exp(x—). (77)
s—=>1,N->oo . 32

n:odd,even

8. Differential Galois groups of the operators in the scaling limit

The equivalence of two properties, namely the homomorphism of the operator with its
adjoint, and either the occurrence of a rational solution for the symmetric (or exterior) square
of that operator, or the drop of order of these squares®, have been seen for many linear
differential operators [20].

The linear differential operators with these properties are such that their differential
Galois groups are included in the symplectic, or orthogonal, differential groups.

The solutions of the operators L,, when N is fixed to an integer, write as polynomials in
the complete elliptic integrals K and E. The operators are equivalent to some symmetric
power of Lg, the linear differential operator for the complete elliptic integral E. The
homomorphisms of the L, with their corresponding adjoint is, therefore, a straightforward
consequence of the homomorphism of Ly with its adjoint.

Furthermore, we forwarded, in a recent paper [21], a ‘canonical decomposition’ for those
operators whose differential Galois groups are included in symplectic or orthogonal groups.
These linear differential operators are homomorph to their adjoints, and a ‘canonical
decomposition’ of these linear differential operators can be written in terms of a ‘tower of
intertwiners’ [21].

The issue, we address in the sequel, is whether these properties hold for the operators L,
with a generic parameter N, and whether this is preserved in the scaling limit.

We find that the linear differential operators L, (given up to n = 10 in [5]) are
homomorphic to their respective adjoints for generic values of N. Their differential Galois
groups are in symplectic groups for n even, and in orthogonal groups for n odd. Their
exterior (for n even) and symmetric (for n odd) squares do annihilate a rational function. For
instance, the rational solution of the symmetric square of L3 reads

N2-t2—(21\/2—1)-t+N2

solR(symz(L3)) = ERTR , (78)

S The order of the symmetric (or exterior) of these operators is less than the order generically expected for these
squares. In terms of differential systems this corresponds, however, to rational solutions.

17
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and the rational solution of the exterior square of Ly is:

(N> =1) 2 —2N?- ¢+ (N? - 1)
solg(ext?(Ly)) = : (79)
£ 1-13
The operator L3 is the scaling limit of Ls, and is (non-trivially) homomorphic to its
adjoint. The rational solution of its symmetric square is

1 2
solg((sym? (L)) = =, (80)
: 2
which is the rational function (78) in the scaling limit.

Similarly, the operator LS (the scaling limit of L) is homomorphic to its adjoint, and

the rational solution of its exterior square reads

2

solR(extz(chal)) =2 ; 2, (81)
x

which, in the scaling limit, is the rational function (79).

The orthogonal (respectively symplectic) differential Galois groups admit an invariant
quadratic (respectively alternating) form. Here also, for instance for L3, one has the following
quadratic form, depending on N, Q (X, X;, X») = constant, where

0(Xo, X1, X,) = (ﬂ. (5-10r+47) - -n* Nz). X2
+<t2 (1 —t)2(4-— 17t + 16[2)—t2- (1 -1 NZ). X2
o A=t X = (20 A= DPNT 2 (1 - 1)
x (9= 276+ 161%) ) - Xo X,

483 (1 =13 X Xg +482- (1 =201 -1 X, X, (82)
which, in the scaling limit, becomes the quadratic form
0 (Xo, Xy, X2) = X¢ — % - (3 —x2)~ X2 —x*. x?
—4x* X1 X, +2x- Xo X, (83)

for L3 In (82), and (83), X, denotes any solution of the considered linear differential
operator, X; and X, being the first and second derivative of Xj.

The operators L ‘inheritate’ the differential Galois groups of the operators L,. For n
even (respectively n odd), the differential Galois group of L,fca] is included in Sp(n, C)
(respectively SO (n, C)). Recall that the solutions of the operators L, (respectively L,fcal)
write as polynomials in the complete elliptic integrals (respectively modified Bessel func-
tions), which means that the linear differential operators L, (respectively L) are homo-
morphic’ to the symmetric (n — 1) th power of L, (respectively L3;"). Thus, the differential
Galois group of L, and L is, in fact, the differential Galois group of L, (or L),
namely8 SL(2, O).

We have shown in [21] that the homomorphism of the operator with its adjoint implies a
‘canonical decomposition’ in terms of self-adjoint operators. This decomposition is obtained

7 L,, is homomorphic to the symmetric (n — 1) th power of L,, with N generic (not necessarily an integer).
8 sL (2, ©) is isomorphic to Sp(2, C), to Spin(3, C), and isomorphic, up to a 2-to-1 homomorphism, to
SO@3,C) ~ PSL(2,0).
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by a sequence of Euclidean right divisions (see [21] and section 9 in [15]). The operator L;
has the canonical decomposition (for generic N)

Ly = (0P uf - U + U+ UP) - A ), (84)

where 1® (x) is a rational function, and where U/, U and US> are order-1 self-adjoint

operators. In the scaling limit, one obtains for L3

Lt = (W wi e w w4+ W) ). (85)

Here also, 73> (x) is a rational function, and W,®, W§> and Wi are order-1 self-adjoint
operators.
Similarly, the operator L4 has the following canonical decomposition (for generic N)

Ly = (U U + 1) AV, (86)

where 7 (x) is a rational function, and where U{* and U:* are order-2 self-adjoint
operators. In the scaling limit, one obtains for L ;!

Ly = (W1<4>. W 4 1). 79 (x), (87)

where ¥ (x) is a rational function, and where W® and Wi* are order-2 self-adjoint
operators.

The ‘canonical’ decomposition occurring for the operators L, is preserved in the scaling
limit. In particular the self-adjoint operators of these ‘canonical’ decompositions [21] are all
of order-1 for the L, and L with n odd and are all of order-2 for the L, and L with
n even. The rational solutions of the symmetric, or exterior, squares of the LnScal are given in
the online supplementary data file stacks.iop.org/jpa/48/115205/mmedia.

9. Conclusion
To obtain the expression x'/* - exp (x2/32) as the scaling limit of the correlation functions
C (N, N), we have made a ‘matching’, in the scaling limit, of both hand-sides of:

CIN.N) =(1 = 3 . (88)
J

The left-hand side is taken as a particular solution that pops out from the sigma form of
Painlevé VI in the scaling limit. The right-hand side is a particular combination of the sum of
the (non logarithmic) formal solutions of the operators (annihilating f,f,”) at scaling.

For the next-to-diagonal correlation functions C (N, N + 1), there is no (nonlinear)
differential equation one can use, but we have obtained that the next-to-diagonal form factors
CY(N, N + 1) have, in the scaling limit, the same linear differential operators L. One
may conjecture that we will obtain the same linear differential operators at scaling for the j
-contributions CY(N, N + p), C?(N, p - N) with p > 1or CO(N, M).

Each time the discrete parameter N of the lattice appears explicitly in a differential
equation, the scaling limit can easily be performed. The correlation functions C (N, N) is a
solution of the sigma form of Painlevé VI (see (37)) which, itself, is a specialization of a more
general nonlinear differential equation [22, 23], also called sigma form of Painlevé VI, which
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depends on four parameters’. The scaling limit performed on (37) with (38) has given the
nonlinear equation (43) that identifies with (11) which concerns the scaling limit of the
correlation functions C (M, N). If one assumes that, similarly to C (N, N), the C(M, N)
also verify a nonlinear differential equation, generalizing (37), one possible scenario could be
that a two-parameter nonlinear equation for C (M, N) emerges as a subcase of the four-
parameter sigma form of Painlevé VI. Finding this two-parameter nonlinear equation for
C (M, N) essentially requires to generalize the definitions of o, namely (38), and to find the
constraints on the four parameters.

The square Ising model has shown an extremely rich structure illustrated by a large set of
exact results corresponding to highly selected linear differential equations of the n-particle
contribution to the magnetic susceptibility y", correlation functions C (N, M), form factors
CY(N, M), etc. For the linear ODE which have only the three'® regular singularities ¢ = 0,
t = 1and t = oo, the scaling limit leads to a confluence [25, 26] of the singularities, ending
in the regular x = 0 and the irregular x = oo points.

All the remarkable structures discovered in previous papers, on the square Ising model
(elliptic functions, modular forms, Calabi—Yau equations, ‘special’ differential Galois groups,
globally bounded series, diagonals of rational functions, ...) emerge in a framework related to
the (Yang—Baxter) integrability concept occurring on a lattice. In the scaling limit, with the
emergence of irregular singularities from the confluence of regular ones, many of these
structures actually disappear, or are less crystal clear. For instance, the property of global
nilpotence, occurring in all our linear ODEs, disappear in the scaling limit, but some struc-
tures still show up for the p-curvature (see section 10 in [27]). In contrast, we have seen that
the differential Galois group structures are more robust, being preserved by the scaling limit.

What happens in the scaling limit to al/l the remarkable holomic or non-holonomic
structures we have discovered in the last decade, on the square Ising model?
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Appendix A. Recall: C(N,N) and f\ as polynomials in K and E

The correlation functions C (N, N) are the analytical (at 0) solutions of linear ODE of order
N + 1. For N fixed to an integer, the correlation functions C (N, N) writes as polynomials
in the complete elliptic integrals of first and second kind K and E of homogeneous degree
N. With

K= ,F(1/72,1/2], [1],t), E= ,F([1/2, - 1/2], [1], 1), (A.1)

° The general Painlevé VI sigma form (equation (5) in [16]), deals with the function ¢ (f) and depends on four
parameters vy, -+, v4. Equation (37) for the C (N, N) is the subcase, 6 (1) = {(t) + N* - t/4 — 1/8,v) = vq = N/2,
v, =(1 —N)/2 and v3 = (1 + N)/2.

' This is at contrast with, for example, the case of the magnetic susceptibility of the Ising model which is an infinite
sum of contributions with large set of regular singularities that eventually densify the unit circle |s| = 1 yielding a
natural boundary. For the scaling function of the magnetic susceptibility y, see [24] and references therein.
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the form of C (N, N) reads

N
C(N.N)= Y Q. i, t)- KN7'. E, (A.2)
i=0

where Q (N, i, t) is a rational function. For instance C (2, 2) in the T > T, regime, writes:
3-¢t-C2,2) =3-(¢t—-1* K> +8- (t—-1)- K- E —(t-5)- E~ (A.3)

The form factors f { are the analytical (at 0) solutions of linear differential operators
with N as a parameter. With n and N fixed to integers, f,f,”) writes as a sum of polynomials
in K and E. The form of f"*" reads

n 2j+1
= YN PN, n, i ) - KA B (A.4)
j=0 i=0

with P(N, n, j, i, t) a rational function. In the expression of fli,z”“), the homogeneous
degrees of K and E occur as 1, 3, -+, 2n + 1. Recall [5] that the linear differential

operators annihilating the fjflz”“), have a direct sum structure when the parameter N is fixed

to an integer. The first two f1£,2”+1) contributing to the example of C (2, 2) are:

3-fV=t-@t+2- K -2t- t+ 1) E, (A.5)

18- fP==3. (2-2). K> +3- (22— 11r+2). K*- E
+36 - (t—1)- K- E* + 24F3
+7- @+2)- K —-14- (t+1): E. (A.6)

The expression (18) reproduced here for N = 2
C2,2) = (A—-n". Y b, (A7)
n=0

shows that an infinite sum of polynomials in K and E will give birth to the overall factor
(1 — #)~"* absent in (A.3). This situation has been encountered in the magnetic susceptibility
of Ising model at scaling (see section 7 in [28]). See also section 5.1 in [29], where a sum of
terms, each term being a polynomial expression of the complete elliptic integrals, reduces to
an algebraic expression.

Appendix B. Recall of the expressions of L3 n=1,2....6

The form factors f,fll) and f,ff) are annihilated by the order-6 operator L4 - L, which, in the
scaling limit, writes Lj! . L3, where:

Ly"= 4x- D] +4D, —x,
Li'=16x* - D} +160x% - D] — 8x-(5x2 - 46) - D}
-72. (x2 —2). D, + 9 x3. (B.1)

The form factor f]E,S) is annihilated by the order-12 linear differential operator

L¢- L4 - Lo, which, in the scaling limit, writes LS - L. L5 where L& reads:

21
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Li = 64x5- Df +2240x*. DI - 112x% - (5x% - 236) - D}
=322 (259x? = 3916) - D] +4x- (259x* - 7668 x> + 54128) - D}
+ 100 - (784 - 2362 + 27x4)- D, — 225x°. (B.2)

The form factor f]i,z) is annihilated by the order-4 operator Ls - L;, which, in the scaling
limit, writes L3 . LV where:

Llscal =D

- X
Ly = 2x3. D3 +8x2- D}?—2(x—-1)(x+1)- x- D, —2. (B.3)
Note that L3 - L has a direct sum decomposition L{" - L5 = L5 @ I:;ca], with
L =x?- D} +3x- D2 +(1-x%): D +x. (B.4)

The form factor flf;” is annihilated by the order-9 operator Ls - L3 - L;, which, in the

scaling limit, writes L& - L3 . L where L reads:

L= 2x°. D} +40x*- D}
—2x% . (522 - 113) - D]
—2x2- (3242 - 161) - D}

2x- (4x4—97—24x2)- D, +32x2 —256. (B.5)

Appendix C. I>(x) again
The choice of the basis of the formal solutions is arbitrary. Instead of the basis
(52, 812, §12, 5/2), one may take

&2
Sl()=

g2 2 39 o2 31 (2 g2 2 &2 2
$7= s + 2P - 2sP, &7 =52, §7=5P, (@€

SO +82 - 25?4+ 5P,

where the series begin, now, as constant + --- The combination coefficients 6;2) will appear
as

&% = 0.101 3211, &2 = —0.062 63, &> = 0.618 63, &{¥ = —0.532 96,

and in exact forms as:

{0 =L, =L 1 —am@ + 2,
71’2 71'2
<2 _ 1 2 1
&G7= — - (1 —4n@2) +2y)* +— - (23 +621In(2) — 31y),
472 82
&P = —8%2 - (17 4+ 621n(2) — 31y). (C.2)
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Appendix D. The C(N, N) correlation functions

The correlation functions C (N, N) are annihilated by a linear ODE of order N + 1. The
form of the linear differential operators is

Lyqi= Pyyis DD+ Py DY + -+ B, (D.1)
where, for generic N, the first polynomials Py_; (for N > k) read:
Py = xNto (x = DV,

Py = VN =DV NS N+ D) - (N=4) - x + (N +2)),

_ 1
6

1
Py_, = 260 N1 o= DN2. NN+ DN - DN - 2)

: (SN2 — 26N + 18)- x?
+(N+2)- (10N3 — 54N? + 62N —3)- X
+ (N + (5N +9N? - 32N + 3)) (D.2)

1
Py_,= - xN-2. - DV NWN+ DV -1
N-2= oo X (x =1 ( )( )

x ((N ~2)- (35N° = 37IN* + 1564N°

— 3676N? + 4320N — 2448) - x°
+3N=3)- (N+2) (35N4 — 280N?

+ T72N% — 920N + 135) -

+3- (N+2)- (35N5 — 175N* — 194N3
+ 2110N? — 2748N + 603) - x
+(N+2)- (35N5 + 11I9N* — 578N3

— 1175N? + 2682N — 954)).

Appendix E. Non analytical scaling of C(N, N)

Seeking a logarithmic solution of (43), one obtains two solutions that depend on the para-
meter e;

o k

Cyea1 (x) = constant - Z (xDF - S (xx) - ( + %m x) + el) . (E.1)
k=0

The matching with the first terms given in [2], fixes the parameter ¢; = In (2) — y/4.
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The first Sy (x) read:

_ 1 5 1 4 1 5 5 6 1 7 469 3
So(x)—l+6—4-x +F~x—?~x—221.3~x—§'x—234.3- s
— 1 3 1 4 ) 5 1 6 7 35
Sl(x)—x+a~x to5 X +F.x+ﬁ. 3 Tt o
I et 1 6 17 s S 9 19 10
Sz(x)——gx —W X —ﬁx +ﬁx —231.3' X + .-,
S(x)=—L- % _L. Xl - 37 13 _ 13 15 _ 13 164 .
3 226 232 24, 32 A 32 254 . 33 ’
Su) = 1 TI 1 18 65 . x20 6—7 X2 4o
252.32 258.32 271_32 277_33
Ss(x) = x4 L . x27 L 29 L x4+ (B2
290.34 296.34 2105.34.52 2111,35.52

x4+ ... Atthe order k%> + 2k, both the even

and the odd orders occur. In between x** and x**2%, only the coefficients of x¥*+2 occur
(exception of Sp). This scheme yields that Sy (x) writes as (with k > 1):

The series Sj (x) begin as Si(x) = Ay -

2P Y bR x| (E.3)

k
2
Se) = A - x|+ Yag)-
p=1 p=2k+1

From the first small series of Si(x) that we have produced, we infer the following
coefficients:

k
1
= (=R 9dk (k-1 o
A= D H ()
j=1
2
az(k)=L’ aik)= ﬂ, k> 1’
64 215 . k2
4 2
a= S FW s
221 . 3 . k2

@ _ 51 —58k* — 16k* + 32k6
ag =

Appendix F. The next-to-diagonal C‘D(N, N +1) Ising form factors

>

2.3 42 (k- 1)2

(E4)

The form factors C{)(N, M) for the anisotropic lattice, are given, in [19]. For the isotropic

case the result is
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, = dg I 1
1 1 J H
C(’)(M, N) = L / f |
itJz 2rm - 2z sinh 7,

2 j M j
x[ h,.k] (H an cos[N > 421], (F.1)
1<i<ksj n=1 n=1

S Hassani and J-M Maillard

with :

| ) 172
sinh y, = ((2— - cosgigl) - 1] ,
w

200" sin (¢ - 4)/2)

1 — x; x¢

hik , (F.2)

with w = s/2/(1 + s?), and where s denotes sinh (2 K).

F.1. The linear differential equations of CYNN*V i—1 23

We give the linear differential equations that annihilate the first next-to-diagonal
CY(N, N + 1) form factors (j = 1, 2, 3).
The first terms of CO(N, N 4 1) read (with x = w?)

22 +2N)
r'd+MNTIQ+N)

2
.(HM_X

CON,N+1) = KN+

2+ N
4 4(3 4+ 2N)(5 + 2N)? )
3+ N
8(3 + 2N) (5 + 2N)? (7 + 2N)? 3
32+ N)@ + N)

(F.3)

These series are annihilated by an order-3 ODE whose corresponding linear differential
operator reads for generic N (and written in the variable s, where Dy is the derivative d/ds)
V=V, -V, Wi = D,

1 — 4 6 _ 4 _ 2 _ 1
V= Ds2+ 5s D, + 3s s 3s _4N(N+1).

s(l - 54) $2. (1 _ 34)2 52

(F.4)
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The form factors C® (N, N + 1) expands as (with x = w?)
2+ NP (I'2N + 3))?
(r@ + Ny*
X(l L 20N +3) - QN +5?
2+ N)3 + N)
4(161\/3 + 148N? + 456N + 477) (2N + 3)
(3 +N)@4+N)
(8 (2N + 7 (16N* + 204 N® + 956N ]/
+ +1983N + 1521)(2N + 3) N + 5) Ealk (F.5)
33+N2Q2+N)@+N)5+N)

C(z)(N, N+1 = X2N+3 .

+

X

and are annihilated by an order-6 linear differential operator whose corresponding differential
operator reads

Vo = V- V- W, (F.6)
where:
4(1 - 5s4)
Vi=D] + ——= - D}
s(l - s4)
10558 — 165° — 178s* — 1652 =7 16NN + 1)
+ - - Dy
s2- (l - s4)2 s>
12 _ 10 _ 8 _ 6 4
|5 455 32s 199s 9§s +87s* +3 N 48N (1:]+ 1)) ‘ E7)
53 (1 - s4) s
The first terms of C®(N, N + 1) read (with x = w?)
264N 3. 643N
CON.N+1) = 3072 (3 + N)264N (I'(N + 5/2))* - x
732 (3 + 2N): - (F(N + 4))°
2 .
<1 +6(7+2N) 2+N)- x
(N+4) (3 +N)
5+ 2N)(4 N* + 56N3 + 287N2 + 636N + 507) - x?
+ 36 ,
B+ NN+ 4) (N +5)
(F.8)

and are solution of an order-10 ODE whose corresponding linear differential operator
factorizes as

Vo= Va- 3- -V, (F.9)
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with

—=.D}+ — - D, + —, (F.10)
Py P4 P4 P4

where:
Dy = st (1 —s4)3~ (1 +s2),
2

ps=10- 5 (1 =5*) (1 +5)- (1 =55,

S}

py==s2- (1 =5 (1 +5) (40(1 —s NS D)+ 17+ d0s?
+ 9985* + 40s° — 823s%),
=5 (1+5) (—8(1 — 54 (47 - 835%) - N (V1) - 175 - 7252
— 3243s* + 21125 + 16803s° + 96850 — 51935'2),
po=144- (1-5)(1+52) N* +288(1—5*)(1+52) N
— 144 (1= 5Y) (142 (5 28 —505* =28 +17s%) - N2
—288 - (1—s*)(1+52)- (3 —s> —26s* —5° +9s%)- N
+4852 - (6 + 10552 + 63s* + 170556 + 124758 — 1100 — 216 s12). (F.11)

Remark 5. Unlike what we have seen for the diagonal flf,j) = CY(N, N), one notes that the
linear differential equation Vs, which annihilates C® (N, N + 1), solves CV(N, N + 1) as
well. Also, the linear differential equation V), which annihilates CV(N, N 4+ 1) and
CO(N, N + 1), solves CA@(N, N + 1) as well.

F2. The linear differential equations in the scaling limit

The scaling limit is obtained by performing the variable change s = 1 — y/N, keeping the
leading terms in N. However, since for the diagonal form factors the variable change was
t=1 — x/N and since = s* we will take, for easy comparison, the following variable
change s =1 — x/(4N).

The scaling limit of V5 (corresponding to CV(N, N + 1)) has a direct sum factoriza-
tion:

(‘/2 . ‘/l)scal - Llscal @ Lzscal. (FIZ)

Note the linear differential operators at the right-hand side which are the operators given in
appendix B. L is the scaling limit of the operators of the diagonal f]fll).

The scaling limit of Vs (corresponding to C® (N, N + 1)) has also a direct sum
decomposition:

~ scal

(Vi Vo W = L e L3 @ L™ (F.13)
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~scal . . . . . .
Here also, L;  is the operator appearing in appendix B and corresponding to the scaling
limit of the operator for f;,z).

The scaling limit of V) (which corresponds to CO(N, N 4+ 1), CP (N, N + 1), and
C (N, N + 1)) factorizes as:

~ scal

(Vi- i Vo W = L@ L™ @ L3 L3, (F.14)

Again, in the scaling limit, the linear differential operator corresponding to the diagonal flff)
appears.
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