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Abstract
We show and give the linear differential operators q

scal of order

= + + + −q n n4 7 8 ( 1) 8n2 , for the integrals I r( )n which appear in the
two-point correlation scaling function of Ising model

 σ σ= < > = ∑± ±
−F r I r( ) lim ( )M N n nscaling

2
0,0 , . The integrals I r( )n are

given in expansion around =r 0 in the basis of the formal solutions of q
scal

with transcendental combination coefficients. We find that the expression
r rexp ( 8)1 4 2 is a solution of the Painlevé VI equation in the scaling limit.
Combinations of the (analytic at =r 0) solutions of q

scal sum to rexp ( 8)2 .

We show that the expression r rexp ( 8)1 4 2 is the scaling limit of the cor-
relation function C N N( , ) and +C N N( , 1). The differential Galois groups
of the factors occurring in the operators q

scal are given.

S Online supplementary data available from stacks.iop.org/jpa/48/115205/
mmedia

Keywords: scaling functions of Ising model, diagonal correlation functions,
diagonal form factors expansion, painlevé VI equation, multidimensional
integrals, modified Bessel functions, differential Galois group

1. Introduction

The scaling functions of the two-point correlation function of the square lattice Ising model

±F r( ) have been obtained by Wu et al [1]. These scaling functions ±F r( ) are solutions of a
Painlevé like equation [1, 2]. Symmetrical forms of these scaling functions have been also
obtained by Palmer and Tracy [3, 4]
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∑=±F r I( ) , (1)
n

n

where the Inʼs are n-dimensional integrals.
The expressions of I1 and I2 are known in closed form. Note that the integrand in the

integrals In (see (13) below) is not algebraic in the variables but it is holonomic. Thus the
integrals In must be solution of linear differential equations3. These linear differential
equations, annihilating the integrals In, are the main subject of this paper.

The paper is organized as follows. Section 2 contains recalls on the scaling function of
the two-point correlation function ±F r( ) and its symmetrical forms. Section 3 is a recall on

the fN
n( ) , namely the form factors expansion of the diagonal correlation functions C N N( , )

on the square lattice. The linear differential operators q
scal of order

= + + + −q n n4 7 8 ( 1) 8n2 , for these form factors at scaling have no direct sum
decomposition. The general solutions of fN

(1) , fN
(2) and fN

(3) , at scaling, are given. Once the

observation that the scaling limits of fN
(1) and fN

(2) are identical to I1 and I2, we show in

section 4, that the integrals In are solutions of the linear differential operators q
scal. The proof

is carried out by numerical methods, allowing to write the integrals In as an expansion of
formal solutions of q

scal, where the combination coefficients are transcendental numbers.
Section 5 deals with the sigma form of Painlevé VI equation that annihilates C N N( , ), as
well as its scaling limit. We seek, and find, four solutions to the scaled Painlevé equation. To
each solution, we identify the corresponding solution of the N -dependent sigma form of
Painlevé VI equation. In section 6, we show that x xexp ( 32)1 4 2 is the scaling limit of
C N N( , ), and, in section 7, we show that it is also the scaling limit of +C N N( , 1). We
show, in section 8, that the factors of the linear differential operators for the fN

n( ) (as well as
the corresponding operators in the scaling limit) have ‘special’ differential Galois groups. Our
conclusions are given in section 9.

2. Recalls on the scaling functions of the Ising model

The scaling functions are defined as [1]

 σ σ=± ±
−F r( ) lim · , (2)M N

scaling

2
0,0 ,

with  = −± t(1 )1 8, where t is defined in section 3. The variable r is related to the

correlation length ξ by ξ = +r M N· 2 2 .
The scaling functions obtained in [1] are, for <T Tc

∑
π

= −−
=

∞

F r g r( ) exp
1

( ) , (3)
n

n n
1

2 2

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

3 The integrals of a holonomic integrand are also holonomic.
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with

∫ ∫

∏ ∏

= ⋯

−

− +
−

− ∞ ∞

= + =

( )
( ) ( )

( )

g r y y

ry

y y y
y

( ) d d ·

exp

1
· 1 , (4)

n n n

j

n
j

j j j
j

n

j

2
( 1)

1
1

1
2

1

2

2 1 2

1 1
2
2

n

and for >T Tc

=+ −F r X r F r( ) ( ) · ( ), (5)

where

∑
π

=
=

∞

+ +X r g r( )
1

· ( ), (6)
n

n n
0

2 1 2 1

with

∫ ∫ ∏

∏ ∏

= − ⋯
−

−

×
+

−

+

∞ ∞

+
=

+

= + =

( )
( )

( )

g r y y
ry

y

y y
y

( ) ( 1) d d ·
exp

1

1
· 1 . (7)

n
n

n
j

n
j

j

j

n

j j j

n

j

2 1
1

1
1

2 1
1

2 1

2 1 2

1

2

1 1
2
2

It has been shown [1, 2] that the scaling functions ±F are remarkably given by nonlinear
equations of Painlevé type:

∫ψ
ψ

ψ ψ= −±
∞

F x
r

r s
s s( )

sinh ( ( ) 2)

cosh ( ( ) 2)
· exp

1

4
sinh ( )

d

d
· d , (8)

r

2
2

⎜ ⎟
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝
⎜⎜ ⎛

⎝
⎞
⎠

⎞
⎠
⎟⎟

where ψ r( ) verifies:

ψ ψ− =
r r

r
r

1 d

d

d

d

1

2
sinh (2 ) 0. (9)⎜ ⎟⎛

⎝
⎞
⎠

Setting [1, 2]

ζ = ±( )r r
r

F( )
d

d
ln , (10)

the equation (8) becomes:

ζ ζ ζ ζ ζ ζ ζ′′ = ′ − − ′ ′ − + ′r r r( ) 4 · ( ) 4 · ( ) · ( ) ( ) . (11)2 2 2 2

The scaling functions are also given in a symmetrical form in [3] (see also [4]).

∑ ∑= = ++
=

+ −
=

F r I r F r I r( ) ( ), ( ) 1 ( ), (12)
n

n

n

n

0

2 1

1

2

∫ ∫ ∏ ∏
π π

= ⋯
−

+
− +

∞ ∞

< =( )
( )I

n

u u u u

u u u

r
u u

1

!

d

2

d

2

( ) 1
exp

2
1 . (13)n

n

i j

i j

i j i

n

i
i i

0

1

0

2

2
1

⎜ ⎟
⎛
⎝

⎞
⎠
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For =n 1, the computation of (13) is direct

π
=I K r

1
· ( ). (14)1 0

For =n 2, the result is

π
= − − +I r K r r K r K r r K r

1
·

1

2
· ( ) · ( ) · ( ) · ( ) , (15)2 2

2
0

2
0 1

2
1

2⎜ ⎟
⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟

where K0 (respectively K1) is the (respectively derivative of the) modified Bessel function
(see below). I2 corresponds to the second term in the expansion of (3), i.e. πg r( )2

2 given in
(4). In section III.G.4 of [1], the authors obtained (15) by taking the second derivative of

πg r( )2
2 which decouples the double integral

∫ ∫=
−

−
− −

=

∞ ∞g r

r
y

ry

y
y ry y

K r K r

d ( )

d
d

exp ( )

1
· d exp ( ) 1

( ) · ( ) (16)
r

2
2

2 1
1

1

1
2 1

2 2 2
2

0
1

1

giving rise to an integral representation of K r( )0 and an integral representation of K r( )1 .
Double derivation of I2 verifies the result.

In terms of linear differential equations (ODE), I2 is a solution of an order-3 ODE and
the corresponding linear differential operator is homomorphic to the symmetric square of an
order-2 operator. The ODE of this order-2 operator annihilates I1.

3. The linear ODE of the form factors and their scaling limit

The diagonal correlation functions C N N( , ) of the square Ising model have a form factor
expansion [5]

∑= − + <
=

∞

C N N t f T T( , ) (1 ) · 1 , (17)
n

N
n

c
1 4

1

(2 )
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

with =
−( )t E k T E k Tsinh (2 ) sinh (2 )v

B
h

B
2
, and

∑= − >
=

∞
+C N N t f T T( , ) (1 ) · , (18)

n
N

n
c

1 4

0

(2 1)

with =t E k T E k T((sinh(2 ) sinh(2 ))v
B

h
B

2 , where Eh and =E Ev h are the horizontal and
vertical interaction energies of the Ising model.

The diagonal correlation functions C N N( , ) can be calculated from Toeplitz determi-
nants [6–8]. They are also solutions of Painlevé VI in its sigma form [9]. The diagonal
correlation functions C N N( , ), as well as the form factors fN

n( ) , write as polynomials in the
complete elliptic integrals (see appendix A for some recalls).

The diagonal form factors fN
n( ) are n-dimensional integrals [5] and are annihilated by

linear ODEs whose corresponding linear differential operators factorize, with factors such that
the fN

n( ) are ‘embedded’ in the form factors +fN
n k( 2 )

∏ ∏= =
=

−

=
+( ) ( )L f L f• 0, • 0, (19)

k

n

k N
n

k

n

k N
n

1

2
(2 1)

0

2 1
(2 )

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟
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which means, for instance, that fN
(1) and fN

(3) are solutions of the linear ODEs:

= =L f L L f0, · 0. (20)N N2
(1)

4 2
(3)

The expressions of these order-n linear differential operators Ln have been obtained [5]
for generic values of N , and are given up to =n 10 in [5]). The operators Ln are provided in
an online supplementary data file (available at stacks.iop.org/jpa/48/115205/mmedia). Being
obtained for generic values of N , the scaling limit of these linear differential operators has
been possible. The scaling limit amounts to taking both the limits →t 1 and → ∞N in
the linear differential operators. This is performed with the change of variable

= −x t N(1 ) · , keeping the leading order of N .
In the scaling limit, the linear differential operators Ln in the variable t become linear

differential operators Ln
scal in the scaling variable x, and we have shown [5] that the factors

Ln
scal solve as polynomial expressions of modified Bessel functions of homogeneous degree.

For some purposes in the sequel and easy references, we recall the factors L1
scal, L2

scal, L3
scal,

L4
scal, L5

scal and L6
scal in appendix B.

Call B x( 2)0 and K x( 2)0 the (respectively analytical at =x 0, and logarithmic)
solutions of the modified Bessel differential operator (with Dx the derivative4 xd d ):

+ −D
x

D
1

·
1

4
. (21)x x

2

We call B x( 2)1 and K x( 2)1 the first derivative of, respectively, B x2 ( 2)0 and − K x2 ( 2)0 .
Consider the linear differential operator L L·4 2 that annihilates the form factors f N( )(1)

and f N( )(3) , and denote by L L·4
scal

2
scal the corresponding linear differential operators in the

scaling limit.
The general solution of L2

scal reads (omitting the argument x 2)

= +( )L c B c Ksol · · . (22)2
scal

1 0 2 0

The general solution of L4
scal reads

= − + +

+ + + −

+ + + −

− +

+ − + +

− −

( ) ( )
( )
(

(
)

)

( ) ( )
( )

( ) ( )
( )

L c B x B B B B x B

c K x K K K K x K

c B K x K B K x K

B B x K K

c K B x B K B x B

K K B x B

sol · · · · ·

· · · · ·

· · 3 · 3

2 ·

· · 3 · 3 ·

2 · ,

4
scal

3 0
3

0
2

1 0 1
2

1
3

4 0
3

0
2

1 0 1
2

1
3

5 0
2

0 1 1
2

0 1

0 1 0 1

6 0
2

0 1 1
2

0 1

0 1 1 0

and L L·4
scal

2
scal solves as

∫
∫

=

−

+

( ) ( )
( )
( )

L L L

B K L x x

K B L x x

sol · sol

· · sol · d

· · sol · d ,

4
scal

2
scal

2
scal

0 0 4
scal

0 0 4
scal

4 Similarly, we will also use, in this paper, the notations Dt for td d and Ds for sd d .
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i.e. the scaling limit of +f N f N( ) ( )(1) (3) is not a polynomial expression of modified Bessel
functions.

Similarly, for <T Tc, consider the linear differential operator L L·3 1, with the constant
and f N( )(2) as solutions. In the scaling limit the operator L L·3 1 becomes L L·3

scal
1
scal

(with =L Dx1
scal ), and its general solution reads:

= + − + +

+ − − +

+ + −

− −

( )
( )
(

)

( ) ( )
( )
(

( )

L D c c x B x B B x B

c x K x K K x K

c x B K x B K x B K

x B K

sol · · 2 · 2 · · ·

· 2 · 2 · ·

· · · · · · ·

2 · · . (23)

x3
scal

0 1
2

0
2

0 1
2

1
2

2
2

0
2

0 1
2

1
2

3 0 1 1 0
2

1 1

2
0 0

Note that L D· x3
scal has a direct sum decomposition (see appendix B), but the operators (in

the scaling limit) of higher order have not.

4. Linear differential equations of the I n integrals (13)

If we compare I1 given in (14) with (22), and I2 given in (15) with (23), one remarks that the
integrals are, respectively, solution of the linear differential operator L2

scal and L D· x3
scal ,

once the correspondence →r x 2 has been made.
We now argue that the integrals I x( )n are solutions of the linear differential operator

 = ⋯ = ++ −L L L q n· , ( 2) 4, (24)q n n
scal

1
scal

1
scal

2
scal 2

for n odd, and

 = ⋯ = + ++ −L L L q n n· , ( 1)( 3) 4, (25)q n n
scal

1
scal

1
scal

1
scal

for n even.
This will be proved numerically for the first I x( )n , i.e. we show that:

= =

= =

( )
( ) ( )
L I x L L I x

L L I x L L L I x

· ( ) 0, · · ( ) 0,

· · ( ) 0, · · · ( ) 0. (26)

2
scal

1 3
scal

1
scal

2

4
scal

2
scal

3 5
scal

3
scal

1
scal

4

In the sequel, we call Sj
n( ) , = ⋯j q1, 2, , the formal solutions of the differential

operator annihilating I x( )n and we call cj
n( ) the numerical constants that appear in the

calculations.
Let us show the method for the integrals I x( )1 and I x( )2 which are known in closed form

expressions.

4.1. The integrals I1 xð Þ and I2 xð Þ

With the formal solutions of L2
scal at =x 0

= − + + ⋯ = + + + ⋯S S x
x x

S
x x

· ln ( )
16

3

2048
, 1

16 1024
,1

(1)
2
(1)

2 4

2
(1)

2 4⎛
⎝⎜

⎞
⎠⎟
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we form the generic combination +c S c S1
(1)

1
(1)

2
(1)

2
(1) that we evaluate numerically (and its

first derivative) at a fixed value of =x x0. The integral I x( )1 (and its first derivative) are
performed numerically for the same value of x.5 Solving the system

+ =

+ =

= =

= =

( )

( )

c S c S I x

x
c S c S

x
I x

· · ( ) ,

d

d
· ·

d

d
( ) , (27)

x x x x

x x x x

1
(1)

1
(1)

2
(1)

2
(1)

1

1
(1)

1
(1)

2
(1)

2
(1)

1

0 0

0 0

in the constants c1
(1) and c2

(1) , one obtains

= − =c c0.318 30, 0.257 53, (28)1
(1)

2
(1)

which are easy to recognize, since I x( )1 is known (and given in (14) with =r x 2), as

π π
γ= − = −c c

1
,

1
· (2 ln (2) ).1

(1)
2
(1)

where γ is Euler’s constant.
The same calculations are performed for L D· x3

scal with the formal solutions written as

= + + + + ⋯

− + + + ⋯

= + + + + ⋯

= − − − + ⋯ =

S S x
x x

x x

x x
x

S S x
x x

x

S
x x x

S

· ln ( )
5

8

9

1024

29

221 184
· ln ( )

3

4 128

19

147 456
· ,

· ln ( )
5

16

9

2048

29

442 368
,

1
8 512 36 864

, 1. (29)

1
(2)

3
(2) 2

2 4
6

2 4
6

2
(2)

3
(2)

2 4
6

3
(2)

2 4 6

4
(2)

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

Similarly, the combination + + +c S c S c S c S· · · ·1
(2)

1
(2)

2
(2)

2
(2)

3
(2)

3
(2)

4
(2)

4
(2) , and its first

three derivatives are evaluated numerically at a fixed value of =x x0, and matched to the
integral I x( )2 (and its first three derivatives) performed numerically. Solving in the constants
cj

(2) , one obtains:

= = = = −c c c c0.050 6605, 0.019 3443, 0.052 507, 10 .1
(2)

2
(2)

3
(2)

4
(2) 8

Here also, since I x( )2 is known (and given in (15) with =r x 2), the constants are easy
to recognize

π π
γ

π
γ

π

= = − +

= − + + =

c c

c c

1

2
,

1
· (1 2 ln (2) ),

1

2
· (1 2ln(2) )

1

2
, 0. (30)

1
(2)

2 2
(2)

2

3
(2)

2
2

2 4
(2)

4.2. The integrals I3 xð Þ and I4 xð Þ

Now, we consider the integral I3 which should be a solution of L L·4
scal

2
scal, whose local

exponents at =x 0 are 0, 0, 0, 0, 2, 2 (that we note 0 , 24 2). The formal solutions are
written as:

5 One may also, obviously, compute the combination of solutions and I x( )1 , i.e. (27), at two values of x.
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= + − − + ⋯

+ + + + ⋯ + + − + ⋯

= + + − + ⋯ + + + + ⋯

= + + − + ⋯ = + + + ⋯

= =

S S x
x x

x

x x
x

x x

S S x
x x

x
x x

S S x
x x

S
x x

S S S S

· ln ( ) 3
21

8

87

2048
· ln ( )

9

2

9

128

81

8192
· ln ( ) 3

3

64

75

2048
,

· ln ( ) 2
32 2048

· ln ( )
3

2

3

128

27

8192
,

· ln ( ) 1
64 4096

, 1
7

16

7

1024
,

, . (31)

1
(3)

4
(3) 3

2 4
2

2 4 2 4

2
(3)

4
(3) 2

2 4 2 4

3
(3)

4
(3)

2 4

4
(3)

2 4

5
(3)

1
(1)

6
(3)

2
(1)

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

Similar calculations are performed, namely evaluating numerically the linear combina-
tion ∑ c Sj j j

(3) (3) (and its five derivatives) matching with the integral I x( )3 (and its five

derivatives) at a given value of =x x0. Solving in the constants cj
(3) , one obtains:

= − = − = −
= = = −

c c c

c c c

0.032 2515 3!, 0.018 4725 3!, 0.578 9545 3!,

0.659 393 77 3!, 0.499 004 35 3!, 0.194 2198 3!.

1
(3)

2
(3)

3
(3)

4
(3)

5
(3)

6
(3)

The constant c1
(3) is easily recognized as −

π
1

6 3
and we may guess the constant c2

(3) as

γ π− + −( 1 2 ln (2) ) (2 )3 , but we have not attempted to recognize the other constants,
because the number of correct digits is rather low. Note however, that if we evaluate, again,

− ∑I x c S( ) j j j3
(3) (3) with the obtained constants cj

(3) and for other values of x0, one obtains
zero with the working accuracy.

Similar calculations are done for I x( )4 with the basis of solutions at =x 0 of
L L L· ·5

scal
3
scal

1
scal (whose local exponents at =x 0 are 0 , 2 , 6 )5 3 :

= + + + + + ⋯

+ + + − + ⋯

+ + − − + ⋯

+ + + + + ⋯

S S x x x x x

x x x x

x x x x

x x x

· ln ( )
20

3

143

12

283

1536

5

1024
· ln ( )

64

3

1765

192
·

1933

12 288
·

275

294 912
· · ln ( )

334

9

5771

1152
·

3829

73 728
·

6509

884 736
· · ln ( )

1549

54

21 505

13 824
·

466 273

884 736
·

102 762 373

12 740 198 400
· , (32)

1
(4)

5
(4) 4 2 4 6 3

2 4 6 2

2 4 6

2 4 6

⎜ ⎟

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

= + − −

+ + ⋯ + −

+ + + ⋯

+ + − − + ⋯

S S x x x

x x x

x x x

x x x

· ln ( ) 5
223

256
·

247

16 384
·

15

131 072
· · ln ( )

32

3

473

1536
·

199

98 304
·

659

1179 648
· · ln ( )

167

18

485

18 432
·

37 915

1179 648
·

8508 439

16 986 931 200
· ,

2
(4)

5
(4) 3 2 4

6 2 2

4 6

2 4 6

⎜

⎟ ⎜

⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠
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= + −

− + + ⋯

+ − + + + ⋯

= + − − − + ⋯

= − − − + ⋯

= =
= =

S S x x

x x x

x x x

S S x x x x

S
x x

S S S S

S S S S

· ln ( )
223

384
·

247

24 576
·

5

65 536
· · ln ( )

32

9

473

4608

199

294 912
·

103 027

4246 732 800
· ,

· ln ( )
5

3

223

768
·

247

49 152
·

30 931

707 788 800
· ,

1
5

256 2304
,

, ,

, .

x

3
(4)

5
(4) 2 10

3
2

4 6

2 4 6

4
(4)

5
(4) 2 4 6

5
(4) 5

4

4 6

6
(4)

1
(2)

7
(4)

2
(2)

8
(4)

3
(2)

9
(4)

4
(2)

2

⎜

⎟

⎛
⎝

⎞
⎠

The coefficients combination read

= = =
= − = = −

= − = = −

c c c

c c c

c c c

0.010 2659 4!, 0.021 5279 4!, 0.423 376 4!,

1.086 613 4!, 1.063 659 4!, 0.357 04 4!,

0.021 56 4!, 1.054 96 4!, 1.385 34 4!.

1
(4)

2
(4)

3
(4)

4
(4)

5
(4)

6
(4)

7
(4)

8
(4)

9
(4)

Here also, the same numeric values of cj
(4) are obtained for any other value of x0.

Let us remark that if one just wants to check that I x( )n is a solution of q
scal, one may

proceed as follows. Call  x u( , )n the integrand of I x( )n and integrate numerically

 ( )x u( , ) , (33)q n
scal

for fixed n and various values of x, to get zero with the desired accuracy.
We claim that this continues for the higher In, and conclude that the integrals I x( )n are

solutions of q
scal, the scaling limit of the linear differential operator annihilating the form

factors fN
n( ) .

4.3. The expansion around x ¼ 0 of the integrals In xð Þ

The integrals I x( )n write as linear combination of all the formal solutions at =x 0 of q
scal

∑=
=

I x c S( ) · . (34)n

j

q

j
n

j
n

1

( ) ( )

Note that the numerical values cj
n( ) do depend on the basis chosen for the formal solutions

Sj
n( ) (see appendix C which gives the constants for I x( )2 with another combination

of formal solutions). However, as an expansion, I x( )n is obviously not dependent on
the basis. For instance, if we trust the guessed constants c1

(3) and c2
(3) , the integral I x( )3

reads:
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π

π
γ γ

γ

π

π

= − + + + ⋯

+ − − + + −

+ + − + ⋯

− + + + ⋯

+ − + + + ⋯

( )

( )

I x x x x

x

x x

x x x

x x

( )
1

6
· 1

7

16
·

7

1024
· · ln ( )

1

6
· 3 · (2 ln (2) 2)

21

16
· (1 2 ln (2) ) ·

3

2048
· (15 28 ln (2) 14 ) · · ln ( )

1

6
· 8.124 485 6.974 855 0.117 211 · ln ( )

1

6
· 7.387 058 7.260 657 0.150 333 . (35)

3 3
2 4 3

3
2

4 2

3
2 4

3
2 4

⎜

⎟

⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

In front of xln ( )3, there is the overall constant c1
(3) . For xln ( )2, there is no overall constant,

because the series in front of xln ( )2 is a sum of two series with the combination coefficients
c1

(3) and c2
(3) . The same occurs for the others series in front of xln ( ) and xln ( )0.

For I x( )4 , the expansion reads:

π

π

π

π

π

= − − − + ⋯

+ + +

+ + ⋯

+ − −

− + ⋯

+ + +

+ + ⋯

+ − −

− + ⋯

(
)

(
)

(
)

(
)

I x x x x x

x x

x x

x x

x x

x x

x x

x x

x

( )
1

24
· 1

5

256

1

2304
· ln ( )

1

24
· 8.763 69 9.295 39 0.143 287

0.003 972 65 · ln ( )

1

24
· 38.2792 39.8374 0.611 859

0.017 6486 · ln ( )

1

24
· 89.0014 91.2468 1.303 55

0.038 3979 · ln ( )

1

24
· 89.7926 88.8183 0.942 513

0.030 7719 . (36)

4 4

5
4

2 4 6 4

4
2 4

6 3

4
2 4

6 2

4
2 4

6

4
2 4

6

⎜ ⎟⎛
⎝

⎞
⎠

Remark 1. In the numerical evaluation of the constants cj
n( ) by linear systems like (27), the

issue of the numerical accuracy raises. For the left-hand side (27) it is straigthforward to have
the series Sj

n( ) to any length. The difficulty is in the numerical evaluation of the multiple

integrals (13) which controls the number of digits of the constants cj
n( ) .

Remark 2. In the evaluation of the linear systems like (27), the matching point =x x0 is
used. The value of x0 can be any positive number, since the integrals I x( )n are defined for the
positive =r x 2, and since the solutions Sj

n( ) are given by linear ODEs which have only
=x 0 and = ∞x as singularities.

We now turn to the diagonal correlation functions C N N( , ), which write as expansion
on the form factors fN

n( ) . The linear differential equations that annihilate the C N N( , ) are of
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order +n 1. Appendix D shows that we can find the coefficients for generic N , but to go
further, a recursion on these coefficients should be found. This seems hard to achieve.
Fortunatly, there is a way to produce the linear differential equation at scaling that should
contain the scaling limit of C N N( , ).

5. Painlevé VI sigma form equation in the scaling limit

It is known that the diagonal correlation functions of the Ising model, =C C N N( , )N verify
the Painlevé VI equation in its sigma form [9]

σ σ σ

σ σ σ σ σ

− + − − −

− = − −

t t
t

t
t

t
t t

N t
t

· ( 1) ·
d

d
4 · ( 1)

d

d

· ·
d

d
·

d

d
· ( 1) ·

d

d
, (37)

2

2

2
1
4

2
2

⎜ ⎟

⎜ ⎟ ⎜ ⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

where:

σ = − − <( )t t
t

C
t

T T· ( 1) ·
d

d
ln

4
, , (38)N c

σ = − − >( )t t
t

C T T· ( 1) ·
d

d
ln

1

4
, . (39)N c

The scaling limit of this equation has been given by Jimbo and Miwa [9]. It is obtained by
simply performing the approriate change of variable, which amounts to changing to the
variable = −x t N(1 ) · in Painlevé VI sigma form, keeping the leading N term. This gives
the scaling equation (irrespective of the regime <T Tc or >T Tc)

μ μ μ μ μ μ

μ

+ − − − −

= −

x
x

x
x

x
x

x
x

·
d

d
4 ·

d

d
4 ·

d

d

1

2
·

d

d
· (1 4 )

1

16
(1 4 ) , (40)

2
2

2

2
2

2

2

⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

with:

μ = ( )x
x

C x
d

d
ln ( ) . (41)scal

To make the expressions closer to the sigma form, one may define

ν = −( )x
x

C x·
d

d
ln ( )

1

4
. (42)scal

Equation (40) becomes

ν ν ν ν ν ν+ − − = −x
x

x
x x

x
d

x
·

d

d
4 · ·

d

d

1

4
·

d

d
·

d
. (43)2

2

2

2 2 2

⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟

⎛
⎝

⎞
⎠

⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟

Remark 3. The form (38) is equation (32) in [9], and identifies with (11) on ζ with
=r x 2. It seems that this identification between (11) and (43) (and thus equation (38) in [9])

has not been remarked.
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Remark 4. Recall that (43) is for C N N( , ) while (11) is for C M N( , ). The factor ±
2 in

(2) is taken care of by the −1 4 appearing in (42). Equation (43), which is the scaling limit of
the equation that annihilates C N N( , ), (i.e. (37)) could also be the scaling limit of a
nonlinear equation (of the Painlevé type) for C M N( , ), generalizing (37), if it exists.

5.1. Some solutions of the Painlevé VI sigma form equation in the scaling limit

In order to find some of the (non logarithmic) solution C x( )scal , we plug in (43) the form

∑= αC x x a x( ) · · , (44)k
k

scal

and solves, term by term, on the coefficients ak. For generic α, one obtains

α
α

= ± −αC x x x( ) · exp i
4 1

8
· . (45)I

scal
( ) ⎛

⎝⎜
⎞
⎠⎟

The value α = 1 4 pops out as particular. When fixed and plugging (44) in (43), one
obtains a one-parameter solution that reads:

= + + +
−

+
−

+
−

+
− −

+ ⋯
( )

( )

( ) ( )

C x x a a x x
a a a

a
x

a a a

a
x

a a a

a
x

a a a a a

a
x

( ) · · ·
· 8

4608
·

· 5 64

2359 296
·

· 7 104

471 859 200
·

· 21 296 512

27 190 899 200
· . (46)

a
scal

1 4
0 2

2
64

4 2 0 2

0

6

2 0 2

0

8 2 0 2

0

10

2 0
2

0 2 2
2

0
2

12

2
⎛
⎝⎜

⎞

⎠
⎟⎟

For the value =a 00 , the solution corresponds to (45) for α = +1 4 2. For =a 02 ,
the solution is

=C x x( ) . (47)II
scal
( ) 1 4

Now we want to find whether there are particular values of a a2 0 for which the series
C x x( )scal

1 4 in (46) verifies a linear ODE. For this we use the methods developped in [10–
13] (see also section 6 in [14], section 3 in [15]) and consider the series (46) modulo a given
prime pr. This way, as far as the coefficient a a2 0 is rational, its value is restricted to the
interval p[1, ]r . We then let a a2 0 varies over the whole interval p[1, ]r until a linear ODE is
found. We have written the linear ODE in the (homogeneous) derivative x D· x, the coef-
ficient-polynomials being of degree D, and searched for an ODE of order ⩽Q 6, with

+ + ⩽Q D( 1)( 1) 220. In this range of Q and D, there are only the values =a a 1 162 0

and =a a 1 322 0 that are found, for which the series (46) is annihilated by a linear ODE.
For the particular value =a a 162 0 , the linear ODE found is of order-2, with the non

logarithmic solution

=C x x B
x

( ) ·
2

. (48)III
scal
( ) 1 4

0 ⎜ ⎟
⎛
⎝

⎞
⎠

For the particular value =a a 322 0 , the linear ODE is of order-1 and solves as:

=C x x
x

( ) · exp
32

. (49)IV
scal
( ) 1 4

2⎛
⎝⎜

⎞
⎠⎟
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5.2. Correspondence with solutions of PVI sigma form equation

In the scaling limit, we have obtained that Painlevé VI sigma form equation has the following
solutions:

α
α

α= ± − ≠

=

= =

α

( )

C x x x

C x x

C x x B C x x
x

( ) · exp i
4 1

8
, 1 4,

( ) ,

( ) · , ( ) · exp
32

. (50)

I

II

III x IV

scal
( )

scal
( ) 1 4

scal
( ) 1 4

0 2 scal
( ) 1 4

2

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

For the logarithmic solution of the Painlevé VI sigma form in the scaling limit, the first
terms are given in [2]. More terms are given in appendix E.

Now, we show the solutions of the Painlevé VI sigma form corresponding to these
scaling solutions, ⋯C x C x( ), , ( )I IV

scal
( )

scal
( ) . There is one solution to the Painlevé VI sigma form

which reads

= −α βC t t t( ) · ( 1) , (51)

with (for >T Tc)

α β β
β

β β= − − ± − −( )N
1

8

1

2

4 1

8
· · , (52)2

and (for <T Tc)

α
β

β β β= − − ± −( )( )N
1

2

1

8
· · . (53)2

⎛
⎝⎜

⎞
⎠⎟

In the scaling limit, the corresponding linear differential operator is (for both regimes)

β β β β β− + − + +x D x D x64 · · 128 · · (4 1) · 64 · ( 1), (54)x x
2 2 2 2 2 2

with solutions

β
β

β
β

− + − −β βc x x c x x· · exp i
4 1

8
· · exp i

4 1

8
, (55)1 2

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

which are the solutions (45).
The same solution to the Painlevé VI sigma form can be seen as given with α being a

free parameter, i.e.

= −α βC t t t( ) · ( 1) , (56)

with (for >T Tc)

β
α

α α α α=
+ +

− − ± + −( )N
N N

1

4 16 4
· 8 2 (4 1) · 4 , (57)

2
2 2 2 2

and (for <T Tc)

β
α

α α α α=
+

− + ± − −
( ) ( )

N
N N

1

4 · 4
· 8 2 2 4 1 4 . (58)

2
2 2 2 2 2

⎛
⎝⎜

⎞
⎠⎟
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In the scaling limit, the corresponding linear differential operator is (for both regimes)

+ +x D x D16 · 8 · 1, (59)x x
2 2

with solutions

+c x c x x· · · ln ( ), (60)1
1 4

2
1 4

giving the solution (47).
We have shown in [16] that any combination of the two solutions of (with Dt the

derivative td d )

= + +
−

− +
−

L D
t t

D
N

t t

1 1

2 ( 1)
·

1

4

1

16 ( 1)
, (61)h t t

2
2

2 2

⎛
⎝⎜

⎞
⎠⎟

actually satisfies the Painlevé VI sigma form (37). In the scaling limit, the two solutions are

+c x B
x

c x K
x

· ·
2

· ·
2

, (62)1
1 4

0 2
1 4

0⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

i.e. the scaling solution (48). Note that x K x· ( 2)1 4
0 is also a solution of (43), and Lh

annihilates − t f(1 ) · N
1 4 (1) .

6. Scaling limit of the diagonal correlation functions C N ;Nð Þ

Now, let us show that the scaling solution (49)

=C x x
x

( ) · exp
32

, (63)IV
scal
( ) 1 4

2⎛
⎝⎜

⎞
⎠⎟

corresponds (up to x1 4) to an infinite sum of the scaling limit of the fN
j( ) , i.e. this is the scaling

solution (analytical at =x 0) of C N N( , ).
We will consider fN

(1) , fN
(3) and fN

(5) , which are solutions of respectively L2, L L·4 2,

and L L L· ·6 4 2. These linear differential operators are given in [5], and we call L2
scal,

L L( · )4
scal

2
scal and L L L( · · )6

scal
4
scal

2
scal the corresponding scaling operators.

The function C x( )IV
scal
( ) expands as:

= + + + + + + + ⋯
C x

x

x x x x x x( )
1

32 2048 2 3 2 3 2 15 2 45
. (64)

IV
scal
( )

1 4

2 4 6

16

8

23

10

28

12

34

The identification will be done on the formal solutions of the scaling linear differential
operators.

With the first terms of the solution of L2
scal

= + + + + ⋯S
x x x

1
16 1024 147 456

, (65)2

2 4 6

there is only the constant term which matches.
The analytical solution, at =x 0, of L L·4

scal
2
scal reads:

= + + +

+ − + ⋯

S a x
a

x x

a
x

1 ·
64

·
1

2 · 3
·

1

2 · 3 2 · 3
· . (66)

42 2
2 2 4

14 2
6

20 2

2

18
8⎛

⎝⎜
⎞
⎠⎟
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With the well suited combination ( =a 1 322 ), S42 becomes:

= + + + + ⋯S
x x x

1
32 2048 2 3

. (67)42

2 4 6

14 2

We see that, up to x4, the coefficients are reproduced, i.e. up to x4, the solution C x( )IV
scal
( ) is

reproduced by the scaling limit of:

− +( )t f f(1 ) · . (68)N N
1 4 (1) (3)

Note that the next coefficients of C x x( )IV
scal
( ) 1 4, and S42 (i.e. at x6), are in the ratio 4 3.

Next, we consider the scaling of

− + +( )t f f f(1 ) · . (69)N N N
1 4 (1) (3) (5)

This amounts to considering the solution of L L L· ·6
scal

4
scal

2
scal

= + + + + −

+ −

+ − − + ⋯

S a x
a

x a x
a a

x

a a
x

a a
x

1 ·
64

· ·
64 2 · 3

·

13

2 · 25 2 · 75
·

49

2 · 3 · 5

11

2 · 3 · 5

1

2 · 3 · 5
· , (70)

642 2
2 2 4

6
6 6 2

18
8

6

15

2

20
10

6

18 2 2

2

26 4 2 30 4 2
12

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

and obtaining the well suited combination ( =a 1 322 , =a1 2 · 36
16 )

= + + + + + + + ⋯S
x x x x x x

1
32 2048 2 · 3 2 · 3 2 · 15

43

2 · 3 · 5
(71)642

2 4 6

16

8

23

10

28

12

34 4 2

which reproduces C x x( )IV
scal
( ) 1 4 up to x10, the ratio of the next coefficients 43 45 being

almost the unity.
With the first three form factors, we may infer that, for each +fN

n(2 1) form factor added to

C N N( , ), the coefficients of the scaling function are reproduced up to +xn n( 3).
Indeed, and as a last check, we consider the next form factor fN

(7) whose scaling limit is

given by L L L L· · ·8
scal

6
scal

4
scal

2
scal, and its analytical solution (at =x 0) which reads:

= + + + + −

+ − +

+ − + + ⋯

S a x
a

x a x
a a

x

a a
x a x

a a a
x

1 ·
64

·
64 2 · 3

·

13

2 · 25 2 · 75
· ·

64

33

2 · 7 · 5 2 · 3 · 5 · 7
· . (72)

8642 2
2 2 4

6
6 6 2

18
8

6

15

2

20
10

12
12

12 6

24 2

2

29 2 2
14

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

With the well suited combination =a 1 322 , =a1 2 · 36
16 , =a1 2 · 4512

34 , S8642

reproduces C x x( )IV
scal
( ) 1 4 up to x18, and the next coefficients are in the ratio 1571 1575.

Note that we have the same results when we consider the scaling limits of fN
n( ) with n

even. For this, let us show the analytical solution, at =x 0, for L L L· ·5
scal

3
scal

1
scal, which

reads

J. Phys. A: Math. Theor. 48 (2015) 115205 S Hassani and J-M Maillard

15



= + + + + −

+ − + − + ⋯

S a x
a

x a x
a a

x

a a
x

a a
x

1 · ,
64

· ·
64 2 · 3

·

13

2 · 25 2 · 75
·

37

2 · 3 · 5 2 · 3 · 5
· , (73)

531 2
2 2 4

6
6 6 2

18
8

6

15

2

20
10 6

18 2 2

2

23 4 2
12

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

where we remark that this solution identifies with S642, up to x10, i.e. for the same well suited
combination it reproduces C x x( )IV

scal
( ) 1 4 up to x10. In other words the scaling limit of

+ + ⋯ + +f f fN N N
n(1) (3) (2 1) identifies with the scaling limit of

+ + + ⋯ +f f f1 N N N
n(2) (4) (2 ) , up to +xn n( 3). As far as the analytical solution at =x 0

of the scaling function is concerned, the scaling function is the same for both regimes (high
and low temperatures).

The scaling limit of C N N( , ) is therefore:

∑− =
→ →∞

t f t x
x

lim (1 ) · ( ) · exp
32

. (74)
t N

n
N

n

1,

1 4

:odd,even

( ) 1 4
2⎛

⎝⎜
⎞
⎠⎟

7. Scaling limit of the next-to-diagonal correlation functions C N ;N +1ð Þ

The non-diagonal correlation functions C N M( , ) are given in terms of determinants (see [7]).
It has been shown in [17] that the next-to-diagonal correlation functions +C N N( , 1) have
the form of a bordered Toeplitz determinant. An iteration scheme of the diagonal and the
next-to-diagonal correlation functions is given by Witte [18].

Unlike the diagonal correlation functions C N N( , ) which are annihilated by Painlevé VI
equation, there is no known (nonlinear) differential equation for +C N N( , 1) on which the
simple scaling limit →t 1, → ∞N can be performed. However, these next-to-diagonal
correlation functions can be written as sum of the form factors [19], +C N N( , 1)n( ) . In
appendix F, we show that these next-to-diagonal form factors are annihilated by linear ODEs
that can be obtained for generic N . We give in appendix F the first three linear differential
operators and their corresponding linear differential operators in the scaling limit.

It appears that these linear differential operators, in the scaling limit, identify with the
operators for the diagonal fN

n( ) in the scaling limit. Therefore, we will expect the occurrence

of the same expression x x· exp ( 32)1 4 2 as the scaling limit of +C N N( , 1).
Consider the first term +C N N( , 1)(1) whose scaling limit is given by the direct sum

⊕L L2
scal

1
scal, which has the analytic solution at =x 0:

+ + + + + ⋯a a x a x a x a x·
1

64
·

1

9216
·

1

2359 296
· . (75)0 2

2
2

4
2

6
2

8

For =a 10 and =a 1 322 , there is matching with xexp ( 32)2 up to x4.
The two terms + + +C N N C N N( , 1) ( , 1)(1) (3) are annihilated by the operator 10

which solves +C N N( , 1)(2) as well. But we have shown in appendix F that in the scaling
limit, the operator 10 has the direct sum decomposition (F.14). This allows us to pick only
the operators ⊕L L L·1

scal
4
scal

2
scal corresponding to the scaling limit of

+ + +C N N C N N( , 1) ( , 1)(1) (3) . The analytic solution at =x 0 expands as
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+ + + + −

+ − + ⋯

a a x a x a x
a a

x

a a
x

·
1

64
· ·

64 786 432
·

13

102 400 78 643 200
· (76)

0 2
2

2
4

6
6 6 2 8

6 2 10

⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

and for = = =a a a1, 1 32, 1 196 6080 2 6 , matches with xexp ( 32)2 up to x10.
Let us consider the whole solutions of the scaling limit of 10, which means that

we are matching xexp ( 32)2 to the scaling limit of + + + +C N N C N N( , 1) ( , 1)(1) (2)

+C N N( , 1)(3) , i.e. mixing both regimes. The analytic solution at =x 0 of (F.14)
depends on four free coefficients, which when fixed to = =a a1, 1 32,0 2

= =a a1 196 608, 1 773 094 113 2806 12 , actually matches xexp ( 32)2 up to x18.
Therefore, we have shown that

∑− + =
→ →∞

− ( )s s C N N x
x

lim · 1 · ( , 1) · exp
32

. (77)
s N

n

n

1,

1 4 1 4

:odd,even

( ) 1 4
2⎛

⎝⎜
⎞
⎠⎟

8. Differential Galois groups of the operators in the scaling limit

The equivalence of two properties, namely the homomorphism of the operator with its
adjoint, and either the occurrence of a rational solution for the symmetric (or exterior) square
of that operator, or the drop of order of these squares6, have been seen for many linear
differential operators [20].

The linear differential operators with these properties are such that their differential
Galois groups are included in the symplectic, or orthogonal, differential groups.

The solutions of the operators Ln, when N is fixed to an integer, write as polynomials in
the complete elliptic integrals K and E . The operators are equivalent to some symmetric
power of LE , the linear differential operator for the complete elliptic integral E . The
homomorphisms of the Ln with their corresponding adjoint is, therefore, a straightforward
consequence of the homomorphism of LE with its adjoint.

Furthermore, we forwarded, in a recent paper [21], a ‘canonical decomposition’ for those
operators whose differential Galois groups are included in symplectic or orthogonal groups.
These linear differential operators are homomorph to their adjoints, and a ‘canonical
decomposition’ of these linear differential operators can be written in terms of a ‘tower of
intertwiners’ [21].

The issue, we address in the sequel, is whether these properties hold for the operators Ln

with a generic parameter N , and whether this is preserved in the scaling limit.
We find that the linear differential operators Ln (given up to =n 10 in [5]) are

homomorphic to their respective adjoints for generic values of N . Their differential Galois
groups are in symplectic groups for n even, and in orthogonal groups for n odd. Their
exterior (for n even) and symmetric (for n odd) squares do annihilate a rational function. For
instance, the rational solution of the symmetric square of L3 reads

=
− − +

−( ) ( )
( )L

N t N t N

t t
sol sym

· 2 1 ·

· (1 )
, (78)R

2
3

2 2 2 2

2 2

6 The order of the symmetric (or exterior) of these operators is less than the order generically expected for these
squares. In terms of differential systems this corresponds, however, to rational solutions.
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and the rational solution of the exterior square of L4 is:

=
− − + −

−
( ) ( ) ( )

( )L
N t N t N

t t
sol ext

1 · 2 · 1

· (1 )
. (79)R

2
4

2 2 2 2

5 3

The operator L3
scal is the scaling limit of L3, and is (non-trivially) homomorphic to its

adjoint. The rational solution of its symmetric square is

= +( )( )L
x

x
sol sym

1
, (80)R

2
3
scal

2

2

which is the rational function (78) in the scaling limit.
Similarly, the operator L4

scal (the scaling limit of L4) is homomorphic to its adjoint, and
the rational solution of its exterior square reads

= −( )( )L
x

x
sol ext

2
, (81)R

2
4
scal

2

3

which, in the scaling limit, is the rational function (79).
The orthogonal (respectively symplectic) differential Galois groups admit an invariant

quadratic (respectively alternating) form. Here also, for instance for L3, one has the following
quadratic form, depending on N , =Q X X X( , , ) constant0 1 2 , where

= − + − −

+ − − + − −

+ − − − + −

× − +

− − + − −

( )
( )

)

( )
( )

(
( )

( )Q X X X t t t t N X

t t t t t t N X

t t X t t N t t

t t X X

t t X X t t t X X

, , · 5 10 4 (1 ) · ·

(1 ) 4 17 16 · (1 ) · ·

· (1 ) · 2 · (1 ) · (1 )

9 27 16 ·

4 · (1 ) · 4 · (1 2 ) (1 ) · , (82)

0 1 2
2 2 4 2

0
2

2 2 2 2 4 2
1
2

4 4
2
4 4 2 2

2
0 1

3 3
2 0

3 3
2 1

which, in the scaling limit, becomes the quadratic form

= − − −

− +

( )( )Q X X X X x x X x X

x X X x X X

, , · 3 · ·

4 · 2 · , (83)

scal
0 1 2 0

2 2 2
1
2 4

2
2

3
1 2 0 1

for L3
scal. In (82), and (83), X0 denotes any solution of the considered linear differential

operator, X1 and X2 being the first and second derivative of X0.
The operators Ln

scal ‘inheritate’ the differential Galois groups of the operators Ln. For n
even (respectively n odd), the differential Galois group of Ln

scal is included in Sp n( , )
(respectively SO n( , )). Recall that the solutions of the operators Ln (respectively Ln

scal)
write as polynomials in the complete elliptic integrals (respectively modified Bessel func-
tions), which means that the linear differential operators Ln (respectively Ln

scal) are homo-
morphic7 to the symmetric −n( 1) th power of L2 (respectively L2

scal). Thus, the differential
Galois group of Ln and Ln

scal is, in fact, the differential Galois group of L2 (or L2
scal),

namely8 SL (2, ).
We have shown in [21] that the homomorphism of the operator with its adjoint implies a

‘canonical decomposition’ in terms of self-adjoint operators. This decomposition is obtained

7 Ln is homomorphic to the symmetric −n( 1) th power of L2, with N generic (not necessarily an integer).
8

SL (2, ) is isomorphic to Sp (2, ), to Spin (3, ), and isomorphic, up to a 2-to-1 homomorphism, to
≃ SO PSL(3, ) (2, ).
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by a sequence of Euclidean right divisions (see [21] and section 9 in [15]). The operator L3

has the canonical decomposition (for generic N )

= + +( )L U U U U U r x· · · ( ), (84)3 1
(3)

2
(3)

3
(3)

1
(3)

3
(3)

1
(3)

where r x( )1
(3) is a rational function, and where U1

(3) , U2
(3) and U3

(3) are order-1 self-adjoint
operators. In the scaling limit, one obtains for L3

scal:

= + + )(L W W W W W r x· · · ( ). (85)3
scal

1
(3)

2
(3)

3
(3)

1
(3)

3
(3)

2
(3)

Here also, r x( )2
(3) is a rational function, and W1

(3) , W2
(3) and W3

(3) are order-1 self-adjoint
operators.

Similarly, the operator L4 has the following canonical decomposition (for generic N )

= +( )L U U r x· 1 · ( ), (86)4 1
(4)

2
(4)

1
(4)

where r x( )1
(4) is a rational function, and where U1

(4) and U2
(4) are order-2 self-adjoint

operators. In the scaling limit, one obtains for L4
scal

= +( )L W W r x· 1 · ( ), (87)4
scal

1
(4)

2
(4)

2
(4)

where r x( )2
(4) is a rational function, and where W1

(4) and W2
(4) are order-2 self-adjoint

operators.
The ‘canonical’ decomposition occurring for the operators Ln, is preserved in the scaling

limit. In particular the self-adjoint operators of these ‘canonical’ decompositions [21] are all
of order-1 for the Ln and Ln

scal with n odd and are all of order-2 for the Ln and Ln
scal with

n even. The rational solutions of the symmetric, or exterior, squares of the Ln
scal are given in

the online supplementary data file stacks.iop.org/jpa/48/115205/mmedia.

9. Conclusion

To obtain the expression x x· exp ( 32)1 4 2 as the scaling limit of the correlation functions
C N N( , ), we have made a ‘matching’, in the scaling limit, of both hand-sides of:

∑= −C N N t f( , ) (1 ) · . (88)
j

N
j1 4 ( )

The left-hand side is taken as a particular solution that pops out from the sigma form of
Painlevé VI in the scaling limit. The right-hand side is a particular combination of the sum of
the (non logarithmic) formal solutions of the operators (annihilating fN

j( ) ) at scaling.
For the next-to-diagonal correlation functions +C N N( , 1), there is no (nonlinear)

differential equation one can use, but we have obtained that the next-to-diagonal form factors
+C N N( , 1)j( ) have, in the scaling limit, the same linear differential operators Ln

scal. One
may conjecture that we will obtain the same linear differential operators at scaling for the j
-contributions +C N N p( , )j( ) , C N p N( , · )j( ) with >p 1 or C N M( , )j( ) .

Each time the discrete parameter N of the lattice appears explicitly in a differential
equation, the scaling limit can easily be performed. The correlation functions C N N( , ) is a
solution of the sigma form of Painlevé VI (see (37)) which, itself, is a specialization of a more
general nonlinear differential equation [22, 23], also called sigma form of Painlevé VI, which
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depends on four parameters9. The scaling limit performed on (37) with (38) has given the
nonlinear equation (43) that identifies with (11) which concerns the scaling limit of the
correlation functions C M N( , ). If one assumes that, similarly to C N N( , ), the C M N( , )
also verify a nonlinear differential equation, generalizing (37), one possible scenario could be
that a two-parameter nonlinear equation for C M N( , ) emerges as a subcase of the four-
parameter sigma form of Painlevé VI. Finding this two-parameter nonlinear equation for
C M N( , ) essentially requires to generalize the definitions of σ , namely (38), and to find the
constraints on the four parameters.

The square Ising model has shown an extremely rich structure illustrated by a large set of
exact results corresponding to highly selected linear differential equations of the n-particle
contribution to the magnetic susceptibility χ n( ), correlation functions C N M( , ), form factors
C N M( , )j( ) , etc. For the linear ODE which have only the three10 regular singularities =t 0,

=t 1 and = ∞t , the scaling limit leads to a confluence [25, 26] of the singularities, ending
in the regular =x 0 and the irregular = ∞x points.

All the remarkable structures discovered in previous papers, on the square Ising model
(elliptic functions, modular forms, Calabi–Yau equations, ‘special’ differential Galois groups,
globally bounded series, diagonals of rational functions, ...) emerge in a framework related to
the (Yang–Baxter) integrability concept occurring on a lattice. In the scaling limit, with the
emergence of irregular singularities from the confluence of regular ones, many of these
structures actually disappear, or are less crystal clear. For instance, the property of global
nilpotence, occurring in all our linear ODEs, disappear in the scaling limit, but some struc-
tures still show up for the p-curvature (see section 10 in [27]). In contrast, we have seen that
the differential Galois group structures are more robust, being preserved by the scaling limit.

What happens in the scaling limit to all the remarkable holomic or non-holonomic
structures we have discovered in the last decade, on the square Ising model?
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Appendix A. Recall: C N ;Nð Þ and f nð Þ
N as polynomials in K and E

The correlation functions C N N( , ) are the analytical (at 0) solutions of linear ODE of order
+N 1. For N fixed to an integer, the correlation functions C N N( , ) writes as polynomials

in the complete elliptic integrals of first and second kind K and E of homogeneous degree
N . With

= = −K F t E F t([1 2, 1 2], [1], ), ([1 2, 1 2], [1], ), (A.1)2 1 2 1

9 The general Painlevé VI sigma form (equation (5) in [16]), deals with the function ζ t( ) and depends on four
parameters ⋯v v, ,1 4. Equation (37) for the C N N( , ) is the subcase, σ ζ= + −t t N t( ) ( ) · 4 1 82 , = =v v N 21 4 ,

= −v N(1 ) 22 and = +v N(1 ) 23 .
10 This is at contrast with, for example, the case of the magnetic susceptibility of the Ising model which is an infinite
sum of contributions with large set of regular singularities that eventually densify the unit circle ∣ ∣ =s 1 yielding a
natural boundary. For the scaling function of the magnetic susceptibility χ , see [24] and references therein.
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the form of C N N( , ) reads

∑=
=

−C N N Q N i t K E( , ) ( , , ) · · , (A.2)
i

N
N i i

0

where Q N i t( , , ) is a rational function. For instance C (2, 2) in the >T Tc regime, writes:

= − + − − −t C t K t K E t E3 · · (2, 2) 3 · ( 1) · 8 · ( 1) · · ( 5) · . (A.3)2 2 2

The form factors f N
n( ) are the analytical (at 0) solutions of linear differential operators

with N as a parameter. With n and N fixed to integers, fN
n( ) writes as a sum of polynomials

in K and E . The form of +fN
n(2 1) reads

∑ ∑=+

= =

+
+ −f P N n j i t K E( , , , , ) · · , (A.4)N

n

j

n

i

j
j i i(2 1)

0 0

2 1
2 1

with P N n j i t( , , , , ) a rational function. In the expression of +fN
n(2 1) , the homogeneous

degrees of K and E occur as ⋯ +n1, 3, , 2 1. Recall [5] that the linear differential
operators annihilating the +fN

n(2 1) , have a direct sum structure when the parameter N is fixed

to an integer. The first two +fN
n(2 1) contributing to the example of C (2, 2) are:

= + − +t f t t K t t E3 · · ( 2) · 2 · ( 1) · , (A.5)2
(1)

= − − + − +

+ − +
+ + − +

( ) ( )t f t K t t K E

t K E E
t K t E

18 · 3 · 2 · 3 · 2 11 2 · ·

36 · ( 1) · · 24
7 · ( 2) · 14 · ( 1) · . (A.6)

2
(3) 2 3 2 2

2 3

The expression (18) reproduced here for =N 2

∑= −
=

∞
+C t f(2, 2) (1 ) · , (A.7)

n

n1 4

0
2
(2 1)

shows that an infinite sum of polynomials in K and E will give birth to the overall factor
− −t(1 ) 1 4 absent in (A.3). This situation has been encountered in the magnetic susceptibility

of Ising model at scaling (see section 7 in [28]). See also section 5.1 in [29], where a sum of
terms, each term being a polynomial expression of the complete elliptic integrals, reduces to
an algebraic expression.

Appendix B. Recall of the expressions of Lscal
n , n ¼ 1;2;⋯;6

The form factors fN
(1) and fN

(3) are annihilated by the order-6 operator L L·4 2, which, in the

scaling limit, writes L L·4
scal

2
scal, where:

= + −

= + − −

− − +

( )
( )

L x D D x

L x D x D x x D

x D x

4 · 4 ,

16 · 160 · 8 · 5 46 ·

72 · 2 · 9 . (B.1)

x x

x x x

x

2
scal 2

4
scal 3 4 2 3 2 2

2 3

The form factor fN
(5) is annihilated by the order-12 linear differential operator

L L L· ·6 4 2, which, in the scaling limit, writes L L L· ·6
scal

4
scal

2
scal, where L6

scal reads:
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= + − −

− − + − +

+ − + −

( )
( ) ( )

( )

L x D x D x x D

x x D x x x D

x x D x

64 · 2240 · 112 · 5 236 ·

32 · 259 3916 · 4 · 259 7668 54 128 ·

100 · 784 236 27 · 225 . (B.2)

x x x

x x

x

6
scal 5 6 4 5 3 2 4

2 2 3 4 2 2

2 4 5

The form factor fN
(2) is annihilated by the order-4 operator L L·3 1, which, in the scaling

limit, writes L L·3
scal

1
scal, where:

=
= + − − + −

L D

L x D x D x x x D

,

2 · 8 · 2 ( 1) ( 1) · · 2. (B.3)

x

x x x

1
scal

3
scal 3 3 2 2

Note that L L·3
scal

1
scal has a direct sum decomposition = ⊕L L L L· ˜

3
scal

1
scal

1
scal

3
scal

, with

= + + − +( )L x D x D x D x˜ · 3 · 1 · . (B.4)x x x3
scal 2 3 2 2

The form factor fN
(4) is annihilated by the order-9 operator L L L· ·5 3 1, which, in the

scaling limit, writes L L L· ·5
scal

3
scal

1
scal, where L5

scal reads:

= +

− −

− −

− − + −

( )
( )

( )

L x D x D

x x D

x x D

x x x D x

2 · 40 ·

2 · 5 113 ·

2 · 32 161 ·

2 · 4 97 24 · 32 256. (B.5)

x x

x

x

x

5
scal 5 5 4 4

3 2 3

2 2 2

4 2 2

Appendix C. I2 xð Þ again

The choice of the basis of the formal solutions is arbitrary. Instead of the basis
S S S S( , , , )1

(2)
2
(2)

3
(2)

4
(2) , one may take

= + − +

= + − = =

S S S S S

S S S S S S S S

˜ ,

˜ , ˜ , ˜ , (C.1)

1
(2)

1
(2)

2
(2) 15

2 3
(2) 17

2 4
(2)

2
(2)

2
(2) 39

16 3
(2) 31

16 4
(2)

3
(2)

3
(2)

4
(2)

4
(2)

where the series begin, now, as + ⋯constant The combination coefficients c̃ j
(2) will appear

as

= = − = = −c c c c˜ 0.101 3211, ˜ 0.062 63, ˜ 0.618 63, ˜ 0.532 96,1
(2)

2
(2)

3
(2)

4
(2)

and in exact forms as:

π π
γ

π
γ

π
γ

π
γ

= = − +

= − + + + −

= − + −

c c

c

c

˜
1

, ˜
1

· (1 4 ln (2) 2 ),

˜
1

4
· (1 4ln(2) 2 )

1

8
· (23 62 ln (2) 31 ),

˜
1

8
· (17 62 ln (2) 31 ). (C.2)

1
(2)

2 2
(2)

2

3
(2)

2
2

2

4
(2)

2
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Appendix D. The C N ;Nð Þ correlation functions

The correlation functions C N N( , ) are annihilated by a linear ODE of order +N 1. The
form of the linear differential operators is

= + + ⋯ ++ +
+L P D P D P· · , (D.1)N N x

N
N x

N
1 1

1
0

where, for generic N , the first polynomials −PN k (for >N k) read:

= −

= − − + − + +

= − + − −

− +

+ + − + −

+ + + − +

+
+

−

−
− −

)

( )
( )

( )

P x x

P x x N N N x N

P x x N N N N

N N x

N N N N x

N N N N

· ( 1) ,

1

6
· ( 1) · · ( 1) · (( 4) · ( 2)),

1

260
· · ( 1) · ( 1)(( 1)( 2)

· 5 26 18 ·

( 2) · 10 54 62 3 ·

( 2) 5 9 32 3 , (D.2)

N
N N

N
N N

N
N N

1
1

1

1
1 2

2 2

3 2

3 2

= − + −

× − − +

− + −

+ − + −

+ − +

+ + − −

+ − +

+ + + −

− + −

−
− −

(

)

(

(

(

)
(

)

)

)

P x x N N N

N N N N

N N x

N N N N

N N x

N N N N

N N x

N N N N

N N

1

45 360
· · ( 1) · ( 1)( 1)

( 2) · 35 371 1564

3676 4320 2448 ·

3( 3) · ( 2) 35 280

772 929 135 ·

3 · ( 2) · 35 175 194

2110 2748 603 ·

( 2) · 35 119 578

1175 2682 954 .

N
N N

2
2 3

5 4 3

2 3

4 3

2 2

5 4 3

2

5 4 3

2

Appendix E. Non analytical scaling of C N ;Nð Þ

Seeking a logarithmic solution of (43), one obtains two solutions that depend on the para-
meter e1

∑= ± ± ± +
=

∞

C x S x x e( ) constant · ( 1) · ( ) ·
1

4
ln ( ) . (E.1)

k

k
k

k

scal

0

1⎜ ⎟⎛
⎝

⎞
⎠

The matching with the first terms given in [2], fixes the parameter γ= −e ln (2) 41 .
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The first S x( )k read:

= + + − − − − + ⋯

= + + + + + + + ⋯

= − − − + − + ⋯

= − − − − − + ⋯

= + + + + ⋯

= + + + + ⋯

S x x x x x x x

S x x x x x x x x

S x x x x x x

S x x x x x x

S x x x x x

S x x x x x

( ) 1
1

64
·

1

2
·

1

2
·

5

2 · 3
·

1

2
·

469

2 · 3
· ,

( )
1

64
·

1

2
·

5

2
·

1

2
·

7

2 · 3
·

35

2
,

( )
1

2
·

17

2

5

2

19

2 · 3
· ,

( )
1

2
·

1

2
·

37

2 · 3
·

13

2 · 3
·

13

2 · 3
· ,

( )
1

2 · 3
·

1

2 · 3

65

2 · 3
·

67

2 · 3
· ,

( )
1

2 · 3
·

1

2 · 3
·

101

2 · 3 · 5
·

103

2 · 3 · 5
· . (E.2)

0
2

15
4

17
5

21
6

23
7

34
8

1
3
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4

15
5

16
6

21
7

28
8

2 8
4 1

2
6

25
8

29
9
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3 26
9

32
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41 2
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15

54 3
16

4 52 2
16

58 2
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71 2
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77 3
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5 90 4
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96 4
27

105 4 2
29

111 5 2
31

14

The series S x( )k begin as = + ⋯S x A x( ) ·k k
k2

. At the order +k k22 , both the even

and the odd orders occur. In between xk2
and +xk k22

, only the coefficients of +xk p22
occur

(exception of S0). This scheme yields that S x( )k writes as (with ⩾k 1 ):

∑ ∑= + +
= = +

∞

S x A x a x b x( ) · · 1 · · . (E.3)k k
k

p

k

p
k p

p k
p
k p

1
2
( ) 2

2 1

( )2
⎛
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⎜⎜

⎞
⎠
⎟⎟

From the first small series of Sk(x) that we have produced, we infer the following
coefficients:

∏ Γ= −

= = + >

= + ⩾

= − − +

−
⩾

+ −

=

( )

A
j

a a
k

k
k

a
k

k
k

a
k k k

k k
k

1
( 1) · 2 · ( ) ,

1

64
,

1 4

2 ·
, 1,

3 4

2 · 3 ·
, 1,

51 58 16 32

2 · 3 · 1
, 2. (E.4)

k

k k k k

j

k

k k

k

k

( 3) 2 4 ( 1)

1

2

2
( )

4
( )

2

15 2

6
( )

2

21 2

8
( )

2 4 6

32 2 2 2

Appendix F. The next-to-diagonal C jð Þ N ;N +1ð Þ Ising form factors

The form factors C j N M)( , )( for the anisotropic lattice, are given, in [19]. For the isotropic
case the result is
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∫ ∫ ∏

∏ ∏ ∑

ϕ
π

ϕ

π γ

ϕ

= ⋯

×

π

π

π

π

− − =

⩽ ⩽ ⩽ = =
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j
j

j
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⎞
⎠
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⎞
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⎛
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⎞
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ϕ ϕ

γ ϕ

ϕ ϕ
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= − −

=
−

−
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x
w w

w

h
x x

x x

1

2
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1

2
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1

2
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2 ( ) sin 2

1
, (F.2)

n n n

n n

ik
i k i k
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2 1 2

2 1 2

1 2

⎜ ⎟

⎜ ⎟

⎛
⎝
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⎝
⎞
⎠

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜ ⎛

⎝
⎞
⎠

⎞
⎠
⎟⎟

with = +w s s2 (1 )2 , and where s denotes Ksinh (2 ).

F.1. The linear differential equations of C j N ;N +1ð Þð , j ¼ 1; 2; 3

We give the linear differential equations that annihilate the first next-to-diagonal
+C N N( , 1)j( ) form factors ( =j 1, 2, 3).

The first terms of +C N N( , 1)(1) read (with =x w2)

Γ
Γ Γ

+ = +
+ +

+ +
+

+ + +
+

+ + + +
+ +

+C N N
N

N N
x

N

N
x

N N

N
x

N N N

N N
x

( , 1)
2 (2 2 )

(1 ) (2 )
·

· 1
2(3 2 )

2
·

4(3 2 )(5 2 )

3
·

8(3 2 ) (5 2 ) (7 2 )

3(2 )(4 )
· . (F.3)

N(1) 1

2

2
2

2 2
3

⎛
⎝⎜

⎞
⎠⎟

These series are annihilated by an order-3 ODE whose corresponding linear differential
operator reads for generic N (and written in the variable s, where Ds is the derivative sd d )

 = =

= + −
−

+ − − −

−
− +

( ) ( )

V V V D

V D
s

s s
D

s s s

s s

N N

s

· , ,

1 5

1
·

3 7 3 1

· 1

4 ( 1)
. (F.4)

s

s s

3 2 1 1

2
2

4

4

6 4 2

2 4 2 2
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The form factors +C N N( , 1)(2) expands as (with =x w2)

Γ
Γ

+ = + +
+

× + + +
+ +

+
+ + + +

+ +

+
+ + +

+ + + +

+ + + +

+

( )

(

C N N x
N N

N

N N

N N
x

N N N N

N N
x

N N N N

N N N

N N N N

x

( , 1) ·
2(2 ) ( (2 3))

( (3 ))

1
2 (2 3) · (2 5)

(2 )(3 )
·

4 16 148 456 477 (2 3)

(3 ) (4 )
·

8 (2 7) 16 204 956

1983 1521)(2 3) (2 5)
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· , (F.5)
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⎜⎜

⎞
⎠
⎟⎟

⎞

⎠

⎟⎟⎟⎟

⎞

⎠

⎟⎟⎟⎟

and are annihilated by an order-6 linear differential operator whose corresponding differential
operator reads

 = V V V· · , (F.6)6 3 2 1

where:

= +
−

−

+ − − − −

−
− +

− − − − + +

−
+ +

( )
( )

( )

( )

V D
s
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s
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·
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·

3
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. (F.7)
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⎟⎟⎟

⎛
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⎜⎜⎜

⎞

⎠
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The first terms of +C N N( , 1)(3) read (with =x w2)

Γ
π Γ

+ = + +
+ +

× + + +
+ +

+
+ + + + +

+ + +

+

( )

C N N
N N x

N N

N N x

N N

N N N N N x

N N N

( , 1) 3072 ·
(3 ) 64 ( ( 5 2)) ·

(3 2 ) · ( ( 4))

1 6
(7 2 ) (2 ) ·

( 4) (3 )

36
(5 2 ) 4 56 287 636 507 ·

(3 )( 4) ( 5)
,

(F.8)

N N
(3)

2 3 6 3

3 2 2 3

2

4 3 2 2

⎛
⎝⎜

⎞

⎠
⎟⎟

and are solution of an order-10 ODE whose corresponding linear differential operator
factorizes as

 = V V V V· · · , (F.9)10 4 3 2 1
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with

= + + + +V D
p

p
D

p

p
D

p

p
D

p

p
· · · , (F.10)s s s s4

4 3

4

3 2

4
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4

where:

= − +

= − + −

= − − + − + + +

+ + −

= + − − − + − −

− + + + −

= − + + − +

− − + − − − +

− − + − − − +

+ + + + + − −

( ) ( )
( ) ( ) ( )
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p s s s s
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s s s

p s s s s N N s

s s s s s

p s s N s s N

s s s s s s N

s s s s s s N

s s s s s s s

· 1 · 1 ,

10 · · 1 · 1 · 1 5 ,

· 1 · 1 · 40 1 · · ( 1) 17 40

998 40 823 ,

· 1 · 8 1 47 83 · · ( 1) 175 72

3243 2112 16803 968 5193 ,

144 · 1 1 · 288 1 1 ·

144 · 1 1 · 5 2 50 2 17 ·

288 · 1 1 · 3 26 9 ·

48 · 6 105 63 1705 1247 110 216 . (F.11)

4
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3
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⎛
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⎛
⎝

Remark 5. Unlike what we have seen for the diagonal =f C N N( , )N
j j( ) ( ) , one notes that the

linear differential equation 6, which annihilates +C N N( , 1)(2) , solves +C N N( , 1)(1) as
well. Also, the linear differential equation 10 which annihilates +C N N( , 1)(1) and

+C N N( , 1)(3) , solves +C N N( , 1)(2) as well.

F.2. The linear differential equations in the scaling limit

The scaling limit is obtained by performing the variable change = −s y N1 , keeping the
leading terms in N . However, since for the diagonal form factors the variable change was

= −t x N1 and since =t s4, we will take, for easy comparison, the following variable
change = −s x N1 (4 ).

The scaling limit of 3 (corresponding to +C N N( , 1)(1) ) has a direct sum factoriza-
tion:

= ⊕( )V V L L· . (F.12)2 1
scal

1
scal

2
scal

Note the linear differential operators at the right-hand side which are the operators given in
appendix B. L2

scal is the scaling limit of the operators of the diagonal fN
(1) .

The scaling limit of 6 (corresponding to +C N N( , 1)(2) ) has also a direct sum
decomposition:

= ⊕ ⊕( )V V V L L L· · ˜ . (F.13)3 2 1
scal

1
scal

2
scal

3
scal
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Here also, L̃3
scal

is the operator appearing in appendix B and corresponding to the scaling
limit of the operator for fN

(2) .

The scaling limit of 10 (which corresponds to +C N N( , 1)(1) , +C N N( , 1)(2) , and
+C N N( , 1)(3) ) factorizes as:

= ⊕ ⊕( )V V V V L L L L· · · ˜ · . (F.14)4 3 2 1
scal

1
scal

3
scal

4
scal

2
scal

Again, in the scaling limit, the linear differential operator corresponding to the diagonal fN
(3)

appears.
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