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Non-antisymmetric R-matrices which play a central role in the description of the Poisson structure of integrable models, are 
investigated. A wide class of such solutions is described. They are associated with the symmetric Lie algebras constructed from 
simple Lie algebras. This extends the classification of skew-symmetric matrices achieved by Belavin and Drinferd. 

I. Introduction 

Recent studies have enabled us to construct a num- 
ber of  examples of non-skew-symmetric solutions of  
the classical Yang-Baxter equation, describing the 
Poisson bracket structure of the Lax operator for an 
integrable classical model [ 1-3 ]. We recall that such 
models are described by a so-called Lax equation of 
motion [ 5 ] 

dL 
dt - [ L ' M ] '  (1) 

L, M belonging to a Lie algebra ~, for example sl (n, 
C) represented by n × n matrices. The Poisson alge- 
bra of L is described by an operator R living in ~q® 
and acting on a tensor product of vector spaces of  
representation 8® ¢ such that 

{L~'~@,L~2)}= [ R , L < ' ) ® I ] -  [R ~, I ® L  ~2)] , (2) 

where {L~l)@,L~Z)}k!={L<~)i k, L<2)/} and H is the 

permutation operator on f~® f¢: H(x®y) =y®x and 
RII-HRH. As a matter of fact, eq. (2) is equivalent 
to the integrability of eq. ( 1 ), see ref. [ 6 ]. When L 
lives in a loop algebra if®C[2, 2-1 ], 2 being the so- 
called spectral parameter of  the Lax pair, R depends 
on the two spectral parameters 2, # o f L  ~ ~ ) and L ~2), 
and of course, Rr/(2,/t)  =HR(It, 2)/7. 
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The Jacobi identity on the Poisson brackets in eq. 
(2) induces the classical Yang-Baxter equation on R 
as 

[RI2 , RI3 ] d- [RI2 , R23 ] + [R32 , RI3 ] + (terms) = 0 .  
(3) 

The (terms) in eq. (3) only appear when R depends 
on the dynamical variables of  the problem, as can be 
seen in refs. [6,7]. We shall not consider this case 
here, restricting ourselves to constant R-matrices. Of  
course, Yang-Baxter equations also appear with per- 
muted indexations of { 1, 2, 3}, but they are equiva- 
lent to eq. (3) under conjugation by the idempotent 
permutation operators /7o. As an example, taking 
H12 eq. (3) H~2, noting that (/~12)2=1 can be in- 
serted in the commutators, and /-IiERl3Hl2 •R23 , 

etc., eq. (3) is obtained with 1 ~ 2. When in addi- 
tion R is supposed to be antisymmetric: R~V= - R ,  the 
Yang-Baxter equation (3) can be rewritten as 

[RI2,RI3]+[RI2, R23]+[R13,R23]=O. (4) 

It has been thoroughly studied in a series of  papers 
by Belavin and Drinfel'd [8-10 ]. They showed that 
such an R could only depend on the difference ( 2 - # )  
[ 8], and that the classification of rational solutions 
to eq. (4) was essentially based on the classification 
of simple Lie algebras. The trigonometric and elliptic 
R-matrices could be obtained by suitably defined for- 
mal series of  rational solutions, given a so-called 
Coxeter automorphism of the associated simple Lie 
algebra [ 9,10 ]. 
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However, the antisymmetry condition is not such 
a natural one, as it was already emphasized in ref. 
[11] and more recently in refs. [7,6]. Indeed, we 
have already obtained a number of constant non-an- 
tisymmetric solutions associated with classically in- 
tegrable models (Neumann model [12] and Adler- 
van Moerbeke model [ 13 ] ), which we were later able 
to generalize [ 14 ] to a class of R-matrices of  the form 

cgt g(u)  ( cg~ _ ~gz)g(/x) 
R(2 ' l a )= f (2 ) - f ( i x  ) + f (2 )+f ( /x )  ' (5) 

where cg~ is the "Casimir" of the simple Lie algebra 
sl (n, C) constructed as cg~ = Za,oe~o ® e ~ ,  Cab being the 
generators of  sl(n, C) with the usual algebra 
[eab, ecd] ~-rbcead--Oadebc, and (~2 is the Casimir of  
the simple Lie suhalgehra so(n) or sp (n /2 )  con- 
structed similarly from suitably symmetrized com- 
binations of  the above generators eab. For any func- 
tions f, g and any n e ~  the expression in (5) is a 
solution of eq. (3) in a purely algebraic sense, hence 
any representation of sl(n, C) leads to a R-matrix. 

The form of eq. (5) now leads us to consider as a 
general ansatz for an R-matrix the following form: 

A B 
R =  ~ + 2+---~ ' (6) 

since in fact the multiplicative factor g(#)  describes 
an obvious functional dependence of R, associated 
with the possibility of renormalizing L (/t) in eq. ( 1 ) 
by an arbitrary function 1/g(p). Beware that this 
functional dependence appears not so trivial in the 
set-up of non-ultralocal integrable field theories, 
where g appears in the non-ultralocal supplementary 
term in eq. (2) ~gr' ( x - y ) .  Similarly f ( 2 )  corre- 
sponds to a redefinition of the spectral parameter and 
may therefore be forgotten. We shall now show that, 
given some assumptions on the structure of A and B, 
one can obtain a very interesting generalization of the 
Belavin-Drinfel 'd results in the non-antisymmetric 
case. 

2. Yang-Baxter equation for two-pole R-matrices 

We may consider that A and B are developed on a 
basis ea.b® ec,d of tensor products of sl (n, C) genera- 
tors; in fact this is not a restrictive assumption since 

one can always admit that L is represented as an n × n 
matrix, and then A and B are (n × n ) ® (n × n) matri- 
ces. In fact we can take (9 to be any Lie algebra having 
a non-degenerate invariant scalar product; in partic- 
ular any simple or semi-simple Lie algebra. This free- 
dom of choice will in fact enlarge the class of solu- 
tions which we shall describe. It is then possible to 
use the dualization formalism of ref. [ 1 1 ]. This pro- 
cedure identifies elements of ~® ~, where A and B 
live, with operators in f9® f¢*_ LP(if), by bijectively 
extending the application 

u ® w  ~® ~=~:X--+ (v, X)u , (7) 

or equivalently T.4:X~ (u, X)v such that (WAX, Y) 
= (X, .4Y). Here ( , )  is the aforementioned non-de- 
generate invariant scalar product on if, in particular 
the Killing form when (# is semi-simple. The inverse 
application to eq. (7) is defined as 

A~(~®~'=~Ae@®(~- Zgm'.,4(Iu)®I,, (8) 

where gU~= ( gu~ ) -  ~, gu, = ( Iu, I~ ). Now the Yang- 
Baxter equation for R in eq. (6) leads, looking at the 
poles in 21 + 22, to the following equations for A and 
B: 

[A12,AI3+A23]=O, [A12,BI3+B23]=O, 

[BI2, AI3 -B23]  = 0 ,  [Bl2, B |3 -A23]  = 0 .  (9) 

As usual Aij denotes the endomorphism in ~® (g® (~ 
acting as A on the tensor product ~ ®  ~ of represen- 
tation spaces of  if® (# and 1 on 6"k, {i, j, k } -  
{ 1, 2, 3 }. For example, ifA = u® v, then A32 = 1 ® v® 
u. The complete Yang-Baxter equation follows from 
eqs. (9) together with their other forms obtained by 
index permutations. Such permuted forms are of 
course equivalent to the initial one since they follow 
from successive conjugations of eqs. (9) by the 
idempotent space-permutation operator //o and 
therefore eqs. (9) are sufficient to ensure the validity 
of  the Yang-Baxter equation. 

We can now rewrite eq. (9) as a series of condi- 
tions on the dualized operators A and/~. Def in ing/ t  
as A - B  for more convenience, we get, now skipping 
the tilde notation, 

VX, Yc (~: 

A[X ,A(  Y) ] = [A(X) ,A(  Y) I , (10) 
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A [X, H(Y)  ] = [A (X), H(Y)  ] ,  

[(A-H)(X),A(Y)] 

= - ( A - H )  [X, ( A - H )  (Y )  ] ,  

[H(X) ,  H(Y)  ] =H[X, H(Y) ]. 

(11) 

(12) 

(13) 

Eqs. (10), ( 13 ) are the ordinary Yang-Baxter equa- 
tions obeyed by the residue A of a single-pole rational 
skew-symmetric constant R-matrix as derived in ref. 
[9]. Eqs. (11 ), (12) describe the coupling between 
the residues at 2 +/~ of R. 

We shall briefly recall some general properties im- 
plied by eqs. (10), ( 13 ) and then put our interest to 
particular subclasses of  solutions for A and H. The 
interest of  the dualized formalism here is that one 
considers linear operators on Lie algebras, instead of 
operators on tensorial products of vector spaces, 
thereby having at our disposal the powerful tools of  
Lie algebra theory. The following general properties 
of  a solution to eq. (10) are easily demonstrated. 

(i) Im A ~ f9 is a subalgebra. 
(ii) [KerA, ImA]  c KerA. 
(ii) f ~ ) - { X e  fg/(A-2)"X=O} is an ideal of 

Im A for 2 # 0, n integer. 
(iv) ~ =  ~ ~`2 with ~`2= U,  ~ , ) .  
In particular all eigenspaces ~ ~ ) are ideals of  Ira A, 

hence ifA is invertible and f¢ is a simple Lie algebra, 
A ~ 21, for some 2e C, is the only solution [ 9 ]. 

I fA is not invertible but diagonalizable, all eigen- 
spaces with non zero eigenvalues are mutually com- 
muting ideals of Im A, and Ker A is stabilized by 
ImA, i.e. the space G /K ,  where G = e x p ( f f ) ,  K =  
exp( ImA) ,  is a reductive homogeneous space 
[ 15,16 ]. Hence to any decomposition of the consid- 
ered Lie algebra f¢ as a homogeneous reductive alge- 
bra f¢= YFeJ/ ,  followed by any decomposition ofgff 
into a direct sum of ideals (at least one such sum ex- 
ists, i.e. 9ff¢ {0} ) is associated a set ofdiagonalizable 
A-matrices, having arbitrary eigenvalues in each of 
the ideals of the decomposition (see ref. [ 17 ] ). This 
is in particular the case when W is semi-simple and 
can be decomposed as a sum of its simple ideals. IfA 
is not diagonalizable the situation is more involved 
and we shall simply give here an example of  such a 
situation. 

We start from the semi-simple chiral Lie algebra 
i f= su (n) @ su (n),  which we decompose as a vector 

space into d @  @, 3f" being one of the su (n) algebras 
and ~ being the diagonal subalgebra with generators 
{I u + r u }. One then defines the operator A which sends 
~ t o  ~ through the canonical diagonal operation, and 

to 0. This A is nilpotent and verifies eq. (10), hence 
A/(2-p) is a non-diagonalizable solution of the 
Yang-Baxter equation. Any chiral Lie algebra Y@ 5e 
allows the same construction, but this is certainly not 
the sole class of such matrices. 

3. Analysis of the coupled equations 

Let us now study the relations between A and H 
induced by eqs. (11 ), (12). We shall restrict our- 
selves from now on to the case when A and H are si- 
multaneously diagonalizable but not necessarily in- 
vertible. This seems a rather restrictive requirement 
but nevertheless leads to a vast class of solutions with 
remarkable properties and a very simple classifica- 
tion which we shall now describe. 

Any solution (A, H)  of  simultaneously diagonal- 
izable operators corresponds to a decomposition of 
the algebra ff into a direct sum (as vector space) of 
eigenspaces denoted a s  (~¢~a,2h where •a, )~h are respec- 
tively the eigenvalues of A and H. 

~= ~ { ~,o e ~,`2¢ ~.2} 
,2#0 

~) ffao.̀ 2,, t~ ffo,`2h~ffo,o, (14) 
`2a,2h #0 2h#0 

where the following conditions are fulfilled: 
(i) f¢o,o is stabilized by adjoint action of all the 

other subspaces. 
(ii) ~0,Zh is an abelian subalgebra commuting with 

all other fC~a'~ h whenever 2 a # 0 or 2 h # 0. 
(iii) ffaa,Xh, with 2h # {0, 2a, 22a}, are abelian sub- 

algebras commuting with all other eigenspaces except 
~0,0. 

(iv) The particular eigenspaces fC~o,(o,~o,2̀ 2a} verify 
the following relations: 

( 1 ) [ f#o.o, ~o.o]  ~ ~o.2`2o, 

( 2 ) [ ~ a , 0  ~a,2Aa ] C ~a,O, 

(3)  [ ~o,2~o, ~a,2`2o] c ~o,2`2~. 
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(v) ~a,xo is an ideal o f l m A  and Im H, commut- 
ing with ~ , 0  and ~,2aa. 

(vi) [ff/l,,~, ff'~'"~]---0 whenever 21, 22~0 are 
different, or #t, #2 ~ 0 are different. 

These conditions follow from the general proper- 
ties which were emphasized in the previous section, 
concerning the commutation of two eigenvectors 
having non-zero distinct eigenvalues together with the 
following applications of the Yang-Baxter equations 
to conveniently chosen eigenvectors of A and H: 

(a~)Applying eq. (11) to X~fr°.°, y ~ _ ~  
[X, I m H ]  c K e r A .  

(a2) Applying eq. (12) to X~ if, Y~ (~--~ 
IX, Im A] c Ker H. This completes the proof of (i). 

(bt)  Applying eq. (12) to Xe(6 °'a*, y~ffao,o_~ 
[;C, r ]  =0.  

(bE) Applying eq. ( 11 ) to Xe ffx~.x*, Y~ (qo,ah_~ 
[X, Y] =0. 

(b3) Applying eqs. (11), (12) to X, y~ffo,xh~ 
[X, Y] =0. This completes the proof of (ii). 

(c) For 2h~0 and2a ~{0, ~h, ~h/2}, eq. (12) im- 
plies (iii). 

(d~) Application ofeq. (12) to Xand Y~ ffxa,o im- 
plies (iv) ( 1 ). 

(d2) Application of eqs. (10), (13) to X and 
y~ ff~,2ao obviously implies (iv) (2). 

(d3) Application of eq. (12) to X~ff a~,° and 
y~ ffXa,2a~ finally implies (iv) (3). 

(e) Application of eq. (12) to X~ff x",~ and 
Ye ffa~,o together with the general properties of ei- 
genvectors implies (v).  

( f )  The same general properties immediately im- 
ply (vi). 

Let us now comment on these results. First of all 
the common kernel ffo,o is the tangent space to a re- 
ductive homogeneous space obtained by taking the 
quotient of the original group G by a subgroup K, the 
Lie algebra of K being the sum of all other eigen- 
spaces which we shall denote from now on Im ~¢~. 
The decomposition if= ff°,°~Im ~f rep resen t s  the 
first step in the construction of a general R-matrix 
with A and B diagonalizable. Remember now that the 
R-matrix is obtained from the operators A and H by 
inversion of the dualization procedure described in 
(8). It follows that each eigenspace in Im ~¢~gives 
rise to a term in the R-matrix, of the form 

~ a , ~  g ~ • 

(15) 

It follows that the decomposition (14) gives rise to 
three types of terms. 

( 1 ) The spaces (qo,~h and (~o,~h (without relations 
between 2a and 2h) generate almost trivial contribu- 
tions to the R-matrix. 

Indeed they correspond to the possibility of adding 
an arbitrary term containing only generators in the 
center of the algebra Im d ~ ,  and do not exist at all if 
this algebra is semi-simple, as it is the case for in- 
stance when the complete algebra ff is semi-simple 
and ~o,o vanishes. 

(2) The eigenspaces of the form ~o.xa give rise to 
more interesting contributions: they generate a term 
in the R-matrix of the form H / ( 2 -  #) where His  the 
Casimir operator of a subalgebra of Im ~4~, the gen- 
erators of which commute with the remaining eigen- 
spaces in Im d ~ .  
Obvious examples of such an occurrence are the skew- 
symmetric rational constant R-matrices in ref. [ 9]; 
more generally if Im d~gfis semi-simple, each simple 
factor in it may give rise to such a term with an arbi- 
trary weight as in the previous section. 

(3) The last terms in the decomposition (14) are 
the subalgebras defined as 

ff~_ ff~,o~ ~.2~, (16) 

with the commutation relations described by the 
property (iv) beforehand. 
This is the new contribution to the general R-matri- 
ces and we shall comment on it in some detail. 

One identifies (16) with the canonical decompo- 
sition of a symmetric Lie algebra into respectively a 
Lie subalgebra ~.2~ and the tangent space to the sym- 
metric space ~.o (see refs. [15,16] ). In particular, 
given a simple Lie algebra if, any symmetric Lie al- 
gebra constructed from ff will give rise to a double- 
pole R-matrix. These Lie algebras are classified in refs. 
[ 15,16 ]. The previously constructed examples [ 14 ] 
corresponded to the Cartan series A 1 and A2, respec- 
tively SU (N) / SO (N) and SU (2N) / Sp (N). 
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4. Conclusion Acknowledgement 

To sum up our conclusions, it follows that  all dou- 
ble-pole ( 2 =  + / l )  constant  skew-symmetric  diagon- 
alizable R-matr ices  are combinat ions  o f  (abel ian 
contr ibut ions)  plus (s imple-pole  contr ibut ions  of  
simple Lie algebras ~ la Belavin and Dr infe l 'd )  plus 
(double-pole  contr ibut ions  o f  symmetr ic  Lie alge- 
bras) .  It then follows that  the symmetr ic  Lie algebras 
play the same role o f " f u n d a m e n t a l  e lements"  o f  this 
class of  double-pole R-matrices,  as the s imple Lie al- 
gebras in the case of  skew-symmetr ic  constant  Lie 
algebras. 

Open quest ions now are: 
- To identify the integrable models  corresponding 

to this vast  new set o f  R-matr ices  and the l ink be- 
tween the structure o f  these models  and  the symmet-  
ric Lie algebras associated with the R-matrices.  

- To obta in  t r igonometr ic  and elliptic R-matr ices  
by a procedure  ~t la Faddeev  and Reshet ikhin [ 18 ], 
an example of  which is given in ref. [ 14 ]. In part ic-  
ular one should determine which generalization o f  the 
Coxeter  au tomorphisms  (used in the s tandard  re- 
summat ion  construct ion [ 18 ] ) is to be taken here. 

- To investigate the more complicated cases o fnon-  
diagonalizable or  non-s imultaneously diagonal izable  
operators  A and H. Even in the single-pole case this 
is a difficult quest ion to which we have al luded in the 
beginning. 

- To unders tand bet ter  the possible pole structures 
for non-skew-symmetr ic  R-matrices,  generalizing the 
theorem of  Belavin and Dr infe l 'd  [8 ]. 

We hope to address  these quest ions in further 
studies. 

We wish to thank O. Babelon, M. Bellon and C.M. 
Viallet for fruitful discussions and suggestions. 
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