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Abstract 

Simple solutions of modified tetrahedron equation are given. These solutions are related to the known solutions of the 
tetrahedron equation. Each R-matrix contains one (or two) “spectral” parameter(s). Using these simple solutions one 
gets two (resp. four) parameters commuting sets of two-layer transfer matrices, the whole number of parameters in each 
two-layer transfer matrix being five (resp. ten). @ 1997 Elsevier Science B.V. 

PAW 05.50; 02.10; 02.20 
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1. Introduction 

The subject of this paper is the modified tetrahedron equation in the vertex form [ 1,2] : 

(1) 

where the tildes mean that the parameters in the R-matrices in the left and right hand sides differ. 
As it is known, with the help of the modified tetrahedron equation, one can actually construct a family of 

commuti_ng transfer matrices, which Boltzmann weights are combinations of at least eight “primary” weights R 

and/or R. This is explained in detail for the W-form of weights in Refs. [ l-31, where solutions of the modified 
tetrahedron equation of the W-type were given. Those soIutions are related to the Zamolodchikov-Bazhanov- 
Baxter model [ 4,5]. 

Recently a vertex formulation of the Zamolodchikov-Bazhanov-Baxter model has been obtained [ 61, and 
the duality between W and vertex weights has been established with the help of three-dimensional analogue 
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of the Baxter’s ?-vectors (Baxter’s vertex-IRF correspondence) [7]. An advantage of the vertex approach 
is that the R-matrix, being an operator, can be written in a basis-independent form in terms of so-called 
quantum dilogarithms [ 8-101, so that the proof of the tetrahedron equation reduces to applying several times 
the pentagon relation for the quantum dilogarithms [ 11,121. Moreover, in the operator approach, the modified 
tetrahedron equation appears naturally. This observation will be used in the following. 

In the operator approach it also appeared that some hierarchy of solutions of tetrahedron equations naturally 
emerges. This hierarchy consists of the complete R-matrix as the “parent” and several of its limits as the 

“descendants”. These descendants correspond to the Hietarinta-type R-matrix [ 13,151, and to the L-operator of 
Ref. [ 71. The investigations of the descendants are much more simple than the investigation of the parent. In 
this paper we will only deal with the descendants, leaving the complete case for a separate paper. 

These limits of the complete R-matrix (or W-weight) have not been investigated in Refs. [ 2,3], so the results 

of this very paper are new. 
In this paper we use the quantum dilogarithms and operator solutions of the tetrahedron equations rather as 

a useful trick to simplify some tedious calculations that would appear if we take N finite. 
The paper is organized as follows. In Section 2 the hierarchy of the operator solutions is recalled and a 

method of derivation of jinite-dimensional modified tetrahedron equations is described. In Section 3 the explicit 
forms of the functional transformations responsible for the parameters of finite-dimensional R-matrices are given 
and useful parameterizations of simple R-matrices for the modi$ed tetrahedron equation are written. Section 
3 contains the final results: “transmutation-permutation” relations for transfer matrices and construction of a 

commuting set of two-layers transfer matrices. 

2. Operator solutions 

Let W be the Weyl algebra over C generated by invertible elements iii, Di such that 

,? n . L 
Ui Vi = 4 ’ Vi Ui, 

iii, Di and ii.i, V,j commute when i # j. Introduce also the notation: 

(2) 

def 
+ = -q -l/2 * * 

Ui Vie 

Denote the set of monomials of W as WO: 

Wo={..:D~~Q~*...}, Q,miE Z. (4) 

Note that the map iii --) iii’, Oi + O,‘, for all i, simultaneously, is an obvious isomorphism of W. 

Further denote w^ a completion of this Weyl algebra (see [lo-121 for details3 , in particular Eqs. ( 1.15), 

( 1.16), ( 1.17) in [ 121) . In general, functions in % are defined by their permutation relations with the elements 

of WO. Note that for any &, R E Wo, BR = qf . i 2. Let us introduce two important functions in w^: At first, let 

a function @(ii) be defined as 

f+%(;i) R = R ($‘%;q);’ $(B), 

where 

(5) 

3 The reader interested in the precise formulation of operator product in a purely algebraic setting can refer to the theory of vertex operator 

algebra [ 141. 
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The function @(a) has a universal realization as q-exponent: 

gI/(&) = (q1’2&;q)oo. (7) 

$(a) is often called “quantum dilogarithm function” 4 , and its main property is the pentagon relation [ 1 l] : 

$,(:I $(ii> = tcl(fi> a+) Icl(O>. (8) 

The other element is the function P (8,6), 

P(2J) = P(2-‘&‘) = P(&lr’) = P(qLwJ) = . . . , P(a,&y = 1, (9) 

where~,gEWo,Bg=~.~g.Let~EWobesuchthataR=qfa.~~andi,~=qfb.fg.ThenP(h,~) is 
defined via its permutation relation: 

P(&&) a=qfaf~a~f~&-f~lp(~,g). f 10) 

Note that the permutation operator of spaces i, j is a particular case of the P function: 

P(iriFICj,iiiii,‘) = Pi,j. (11) 

Realization of P, necessary for our purposes, will be given below. 

Define now 

Pi23 = P(D,D,1D3,D,fi2ii31), 

and similarly for any Pijk 5 . 

(12) 

Then one has the following list of solutions of the tetrahedron equation (up to the above-mentioned isomor- 
phism and some other isomorphisms) 

Table 1 of R-matrices: 

(0) 623, 

(9 q23 = $(+;‘$3) Pl23, 

(ii) c23 = Pl23 @($,11ii3)-1, 

(iii) *23 = s -1 
+(*;‘fi3) Pl23$((+3) ) 9 

(iv> @23 = 4093) 49(@fi3) Pl,23q((“i1u3 ) 
---I -1 ~(t;2~31>-l~ 

In this table E = &l and the superscript c in 2 means “complete”. 
In the qN + 1 limit, 

q=qo*w, qo = exp{-r/N2}, uN = 1, (13) 

it is useful to “split” each operator in W into “finite - and infinite - dimensional parts”. For each 2 E W, one 

can write 

G=aA, where AN = 1, (14) 

4 The reader interested in the precise definitions of the quantum dilogarithm as a pure mathematical object can refer to [ 121 and also [ lo]. 
5 The notations for the indices of 0, D, S, as well as for the indices of R-matrices, are not crucial. In this section the indices will take the 

values 1,. . ,6, which is conventional for the tetrahedron equation. Later, constructing transfer matrices, one deals with large number of 

spaces, so it will be necessary to change the numerical notations for the indices to more “symbolic” notations. 
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where A and a can be seen as commuting elements, so that, if Zi & = qf b 2, then a b = qof b a and A B = wf B A. 
Note that aN = aN, etc., are the key relations for the extracting a from 8, etc. Obviously, a and b become 
numbers when qN -+ 1. 

The functions @ and &s also split, for the leading l/r-term, into product ofjinite and injinite dimensional 

parts (see [ 121 for more details), namely, 

@(a> =exP{-Li2(,aN)}.d(aA). (I+o(Q-)), 

where 

N-l 

d(x) = ( 1 + XN) (N--I)PN . n ( 1 _ &+1/2,4--k/N. 

k=l 

The matrix elements of the function d, in any finite 6 dimensional basis, can be easily calculated via 

d(u) = A(x) 
1 - CN-X 

. d(x) , 

where 

Any formal expansion like f(X) means 

f(X) = c f(d) . W-nn’ . X”” . (19) 
i?,??lEZN 

The pre-exponent 7 in ( 15) yields functjonal transformations (Poisson action see Eqs. (2.6)) (2.7)) (2.8) 

in [ 121 for details). Actually, for any a,& E W, such that ir i; = qf h 2, one gets, for the l/r-leading term * 

Am = 1 +xN, 

(15) 

(16) 

(17) 

(18) 

Liz( -aN) 
exp{- ~ } . f(b) . exp{ Li2(iaN) } = f(b(1 + aN)-flN) ~fexp{-Li~(-aN)} of(b). (20) 

One also has the decomposition 

823 = P123 rl23r 

where 

pi23 = x Omnrn. 1 Ill 
(V*V2-‘V3>” ’ (V~u2u~ 1 9 

n,nzEzN 

(21) 

(22) 

and where, fixing notations for the decomposition of ii, D, 2, 

iii = Ui Uj 3 iri = ui K ) Gi = Wi Wj 9 Ui -----f Wi/Zli. (23) 

6 A finite-dimensional basis for U V = o V U is, for instance, V 1 j) = cd lj) and U I$ = ]j - 1) . F ormula ( 18) is just a way of calculating 
d(z) = d(xX) without roots (and up to some multipliers), in a finite-dimensional basis.: (il d(xX) lj) = c d(xwn) meEn* (ijX”]j) 
7 For 1 = xX one has (see [ 121 for such a leading-term-splitting relation for functions like the quantum dilogatithm) f(a) = 

exp(4(x)/r). F(xX) (1+ O(r)). We call the “pre-exponent”such a exp(+(x)) term. 
8 The adjoint action is denoted by a circle. 
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ww2 UlU3 MU2 WlW2 
~123°f(Ul,U2,U3,W1,W2,W3) =f(---$--$--&-, --_,w3,w2). 

w3 
(24) 

Let us now consider the tetrahedron equation for any R-operator deduced from Table 1 above 

h h h h h h h 4 
R123 * Rl45 * R246 . R356 = R356 . R246 . Rl45 . R123. (25) 

Each R splits into product of two factors, the finite-dimensional R, depending on some parameters, and the 
“functional-map part” E 

R^=Rd=. (26) 

The 3’s obey the “functional tetrahedron equation”‘, so they can be quicked out from (25). The finite- 

dimensional tetrahedron equation lo remains l1 

R123(Fl23 0 R145) c&23 0 Fl45 o R246) (Fl23 o &45 o 7246 o R356) 

= R356(-T356 0 R246) (3356 o 3246 o R145) (3356 o fi46 o 3145 o R123). (27) 

Obviously, this equation is not the tetrahedron equation, but the mod$ed tetrahedron equation [ 1,2]. More- 
over, one obtains, at once, a rational parameterization of the modified tetrahedron equation (because exp{ -Liz} 

and v act rationally on the N-th powers of the parameters). 

3. Functional maps and finite-dimensional equations 

Now let us see how 3 and R look like. For this purpose let us introduce the independent operators on which 
8123 generally depends. They read 

8 = *;‘IC3 ) f&q-Iii,, e=$qlfi3, (28) 

and similarly a’, @,P for R145, a”, 6”,~?~ for R246, and &“l, b”‘,E”’ for Rss356. Generically there are eight 
independent operators (and hence eight independent variables for the finite-dimensional tetrahedron equation, 
at least for the case (iv)), because there are four angle-like relations for these twelve a#, b#, c# : 

art = a’ a”’ , b’ = b b” , c” = a c”’ , cl = c b”’ . (29) 

Let 

3123Of(Ul,U2,U3,WlrW2,W3) =f<u’,,u~,u~,w’,,w~,W~>. 

Then one obtains for (i) 

(30) 

4fi31 d _ A(c) .u; bA(c) 

ut a ’ WI 
-- $_ c 

a ’ u:! -iz$ 
$_ a 
w2-a(c>’ &=c9 

!&l 
w3 a’ 

(31) 

g Note, that such solutions for the functional tetrahedron equation have already been described in Ref. [ 161 for the cases (i), (ii) and 

(iii), with E = 1. 
lo More details can be found in [ 81. Heuristically the functional tetrahedron equation for the F’s can be seen (at the leading l/r order) 

as the tetrahedron equation for &jk for N = 1 . 
I1 The adjoint action is denoted by a circle: FRF-’ = (F o R). The finite-dimensional tetrahedron Fq. (28) corresponds to a 

rewriting of the LHS and RHS of the tetrahedron equation (namely for the LHS: R123 F17.3 R145 F145 Rm F246 R356 F356 becomes 

RI23 Fl23 R145 F,;; Fl23 F145 . .). 
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and for (ii) 

ti _ Atab> b 4 Atab) 
--9 

WiJ $5 !!&=a 
WI a ’ u2 b ’ w2 ’ 

!I&=- _=- 

u1 a u3 c ’ wg a ’ (32) 

and for (iii) 

$ _ A((ab)E)E 4 A(c) -=-) &_ c -- $_ a w$ A( (a b)E)E 
A(c) b ’ 

-- 4 _ A(c) b 
a ’ w1 

-- 
Ul a u2 w2 A(c) ’ us c ’ & = a ’ 

(33) 

for (iv) 

u:- b 3 _ A(cA(a)) u:- c 

Ul - A(aA(b)) ’ WI - a ’ 242 - A(bA(c)) ’ 

EL a 4 _ Ah(bA(c)) !.4- b 
w2-A(cA(a))’ u3- c ’ wg-A(aA(b))’ 

(34) 

The R’s read (Table 2) 

(0) pl,23 = c o-“~. A”. (BC-‘)” , 
il,iWSZN 

(i) rT23 = d(cC) p1,23 v 

(ii> YL23 = Pl,23 d(a bC)-’ , 

(iii) R;23 = d(cC) pt,23 d( (abC)‘)-’ , 

A(aA(b)) 
(iv) R;,, =d(aA) d(cA(a) c> p1,23 d(g c-l)-’ &bA(cAcaj) A-‘) -* . 

In the finite-dimensional-R-matrices case simpler expressions can be obtained from the more complicated. 
Namely, taking the limit when a + 0, a b and c being fixed, one obtains, from the “parent” Rc-matrix (iv), 
the R--matrix (iii). In the limit l/ab -+ 0, c being fixed, R- becomes r+, and in the limit c --+ 0, l/ab 

being fixed, RE becomes r- (up to isomorphism W above-mentioned). 
Let us now consider case (i) in details. One sees, from Table 2 above, that the only parameter in Y+ is c. It 

is thus convenient to express this dependence as 

I+ = r+(A(c)). (35) 

Let us see what happens for the four c# when one cancels functional parts. Then the (modified) tetrahedron 
equation one obtains (the calculations are simple but cumbersome) is 

y:23(A(c)) &( 
A ( CA (ub”‘) ) A(c)A(ab”‘A(c”‘)) 

A(c) 
) &j(A\(c”‘A(c))) r&6( 

A(cA(ab”‘)) 
) 

= r& (A (c”‘) ) & (A (ab”‘A (c”‘) ) ) & ( A (;‘;:4,i;) ) ) ‘&3( 

A ( c”‘) A (CA ( ab”‘) ) 
A(c”‘A(c)) 

) (36) 

This is the first, and the last time, parameterization of the modified tetrahedron equation in terms of a#, d, c# 
is written out. 

IQ. (36) can more nicely be parameterized by 

Am = ta, A(c”‘)~ = 
z;(tcr- 1) 

t(aii- 1) ’ 
A(ab”‘)N = s. (37) 
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It is convenient to use N-th powers of A(c) as the parameter of I+: 

61 

r+(A(c)) - ~+(A(c)~). (38) 

Such parameterization will be used everywhere below. To avoid all the problems concerning the branches of 
N-th power roots when one restores c and A(c) for given r+ (x) , x = A(c) N = 1+ cN, one will consider c and 
A(c) as positive real numbers. 

Thus I$. (36) can be written as 

The parameterization of modified tetrahedron equation for r- looks similar, as well as that for RE. Let us 
parameterize RE as follows: 

Rf23(A(c)N,A((ab)E)N) =d(cC) 91,23d((abC)‘)-‘. 

Then the parameterization of the modified tetrahedron equation reads 

(40) 

For RE one can easily see that the parameterization is just two copies of the pararneterization of r+. Switching 
off one of the two copies, one obtains r+ or r-. So only the case r+ will be considered for simplicity, but all 
formulae will be valid for r- and R’ as well. 

4. Transmutation relation for transfer matrices 

In the modified tetrahedron equation we shall interpret R246 and R356 as the elements of transfer matrices, 
and R123 and Rr45 as the intertwiners. K x L transfer matrix is thus defined as 

Tlci j)({zi,j)) =Tra~e{~~),{b~} n n Ru,,bj,c,j(zi~i)~ 
j i 

(42) 

wherei=l,..., K, j=l,. . . , L, and “Trace” implies that cyclic boundary conditions are imposed: a~+1 = at, 
bt+l = bl . For a graphical interpretation of the transfer matrix see Fig. 1. 

Now the spaces are marked by the letters ai, bj, Ci,j, instead of numbers, (see the footnote in Section 2)) 
and the “permutation-transmutation” relation for two transfer matrices, namely 

T{c,,j> <{zi,j>> . T~c,,j)({w~,j)) = TYci,,j)({wi,jI) . T{ci,j)({Z,j)) (43) 

is provided by the system of the modified tetrahedron relations, 

R o a. a!(xij) ‘Ro 9 f3 I , J, :(Yi._i) *R,i,bj,ci,j(Zi,j) ’ Ra:,b;,cij(wi3j) b. b. 

=R ai, b:, ci j (%j) * Rai, bj, ci,,i (zj) ’ R,, bj b(i (Yi+l,j) . R,, ai, a! (Xi,j+l) 3 
I 

(44) 

where o is the auxiliary space, periodic boundary conditions being assumed. 
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al 
Cl1 

a2 
c21 

Fig. 1. Fragment of the transfer matrix. 

Parameterization (39)) (41) is well-suited for the solution of Eqs. (44) because the parameters of 
intertwiners are the independent variables. However, finally, one has to exclude them, and the final system 

{ zi,j, Wi,j 9 z,j 3 iGi,j} one obtains reads 

the 
for 

_ _ 
Zi,j . Wi+l,j = Wi,j ’ Zi+l,j. (45) 

For the construction of an integrable lattice statistical model it is convenient to consider the case when 
ZQ = zi+z,j = z~,,J+z and similarly for the other transfer matrices. Then the number of independent variables in 
each transfer matrix reduces to four, namely zll,z12,221,222. Parameterizing them as follows: 

zll = (1 +m21m1 _g (1 +m21m1 1+m1 (1 +m2)(k+mz)ml 

ml--m2 ’ 
222 = ~ - 

ml - ~2 ml - m2 g( ml --m2)(k+ml)m2 ’ 

ktmn 
212 = -- +g 

_1 (1 +ml)(k+ml)mz 

(ml - m2> Cl+ m2>m ’ 

z21 = _(k+ml)mz 
(ml - m2)k +g-’ if2:::27: ’ 

(46) 
ml - m2 

and simply denoting the corresponding transfer matrix by T( k, ml, m2, g) , one obtains the following form for 
relation (43) : 

T(k,ml,m2,g) -T(kmz,w,f> =T(k,m~,m.f-~) .T(k,mn,ml,g-‘). (47) 

The two-layers transfer matrices are to be defined as 

T2(k,ml,m2,a,b) =T(kml,mz,a) .T(k,~,ml,b), (48) 

They actually form a two-parameters commuting family: 

[fi(k,ml,mz,a,b), G(kml,mz,a’,b’)l =O. (49) 

All these relations for the transfer matrices simplify in the “nice” limit ~11 = 222 = ~1, 212 = 221 = 22 (this 
limit corresponds to k = ml m2 = 1) and similarly for other one-layer transfer matrices. In this case the relation 

T(z1,z2) .T(w1,~2) =T(w~>w) .T(z2,z1) (50) 
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is verified provided that 

1 - q-1 1 -w;’ 
-=-. 
1 -Q-l 1-w;’ 

(51) 

Note that the two-layer transfer matrices (48) also obey the “transmutation” relation (43). This fact is 
actually the very condition for integrability: this “transmutation” relation l2 can be regarded as Baxter’s local 

condition of the integrability, known also as the “Star-Star relation” [5,17,18] and corresponding to the spatial 
symmetry of three-dimensional models with the body-centered-cube structure [ 191. 
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