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On the phase diagram of the chiral Potts model 
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Abstract. We study the phase diagram of the isotropic three-state chiral Potts model. 
Monte Carlo simulations performed on twisted square lattices with different sizes up to 
64x64 indicate different types of critical curves. In particular, a floating phase seems to 
occur. Finite-size scaling analyses are performed at some specific critical points. The phase 
diagram we propose is discussed using exact results. 

The N-state chiral Potts model can describe systems that exhibit commensurate- 
incommensurate transitions (for a review see Selke 1988). Some chiral Potts models 
have been studied using the Migdal-Kadanoff approach (Huse 1981), Monte Carlo 
simulations (Selke and Yeomans 1982), free fermion analysis (Ostlund 1981) and 
transfer matrix calculations (Everts and Roder 1989). Some associated quantum 
Hamiltonians have also been considered (von Gehlen and Rittenberg 1985, Hoeger et 
a1 1985, den Nijs 1988). Recently Au Yang et a1 discovered integrable cases for the 
N-state chiral Potts model (Au Yang et a1 1987, McCoy et a1 1987) which happened 
to be the first solvable model with genus greater than one parametrisation (see, for 
instance, Baxter et a1 1988, Baxter 1988). These breakthroughs renewed interest in 
these models as they exhibit rich phase diagrams and interesting physical properties. 

In this paper we consider the isotropic three-state chiral Potts model. On the basis 
of Monte Carlo simulations we show that the model exhibits a rich phase structure. 
The locations of the critical boundaries of the different phases is discussed and finite-size 
scaling analyses are performed. This leads to an estimation of the critical exponents. 

The partition function of the isotropic three-state chiral Potts model on a square 
lattice is 

the first (second) product concerns all oriented horizontal (vertical) bonds on the 
square lattice. The spins belong to Z3 and the parameter set consists of three 
homogeneous variables w ( O ) ,  w (  l ) ,  w(2). The correspondance between these 
homogeneous variables and more standard ones is simple: w ( n ) =  
exp{-pJ c o s [ 2 ~ / 3 (  n +A)]} where J is the nearest-neighbour coupling constant, A is 
the chirality of the model and p is the inverse of the temperature: p = 1/ kT. However, 
in our analysis some particular limits of the parameters of the model are useful. In 
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these limits the standard parametrisation ( P J ,  A )  may be misleading while this is not 
the case for the homogeneous one (see below). 

For the square lattice, in the thermodynamic limit, the model has some obvious 
symmetries which correspond to the following permutations of the w( i ) :  

T :  w(O)+ w ( l ) +  w ( 2 ) +  w(0)  

s :  w ( 1 ) o  w(2) .  
and 

A duality transformation can be defined for this model by (Wu and Wang 1976) 
2 

D: $ ( n )  = wnPw( p )  
p = o  

(3) 

where w is a cube root of unity, w 3  = 1. D is a transformation of order four. As a 
particular case of Au Yang et a1 (1987) and Baxter et a1 (1988), the model satisfies a 
star-triangle relation provided a homogeneous algebraic relation between the w ( i )  is 
satisfied: 

w(0) w( 1 )  w(2)4+ w( 1 )  w( 2) w(0)4 + w(0) w (2)  w( 1)4 + 3 w(o)2w( 1)2 w(2)' 

- 2 w(0)3w ( 1)3 - 2 w( 1)3w( 2)3 - 2 w(0)3 w(2)3 = 0. (4) 

As a consequence of a more general conjecture of Baxter et a1 (1988) and confirmed 
by Baxter (1988) about the critical variety of the integrable anisotropic N-state chiral 
Potts model, there is only one critical point when one restricts the parameter space to 
the algebraic variety defined by (4). This point is nothing but the critical ferromagnetic 
point of the standard scalar Potts model (Baxter 1 9 8 2 a )  (point H in figure l ( a ) )  which 
actually lies on (4). Other sets of points are relevant to the study of the isotropic 
model presented here: 

( a )  the line where the model reduces to the scalar Potts model w(1)  = w(2) 

Figure 1 (4) Phase diagram of the three-state chiral Potts model in the (4, b )  plane where 
a and b are defined by ( 6 ) .  The inside of the triangle corresponds to the physical domain. 
On line A 0  the chiral model reduces to the standard scalar Potts model. Line HE is the 
self-dual line ( 5 ) .  Curve Y corresponds to the star triangle condition (4). ( b )  Sector I of 
the physical triangle. Region O H F D  corresponds to the disordered phase while region 
HAG corresponds to an ordered one. Region G M F  could be a new phase. The chain lines 
correspond to the sweeps for 4 = 0.20 and 4 = 0.35. 
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( b )  the line globally invariant under the duality transformation (self-dual line) 

&W(O) = w(0) + w (  1) + w(2) ( 5 )  

and its transforms by T and T 2 .  

( 2 4  b ) ,  to parametrise the model in the two reduced variables defined by 
The w( i )  are homogeneous variables, so it is convenient because of the symmetries 

a = ( W ( O ) - ~ W ( I ) +  w ( ~ ) ) / & ( w ( o ) +  w ( l ) +  w(2)) 

b = ( ~ ( 0 )  - ~ ( 2 ) ) / J j l (  ~ ( 0 )  + W (  1) + ~ ( 2 ) ) .  
(6) 

In the ( a ,  b )  plane the physical domain is restricted to the triangle drawn on figure 
l (a ) ,  where we have also drawn the standard scalar Potts line, the self-dual line ( 5 ) ,  
their transformations by T and T 2  and curve (4). Because of the symmetries (2a, b )  one 
restricts the study of the phase diagram to the triangle AOD (sector I ) .  The edges 
(AO), (OD), (DA) of this triangle correspond, respectively, to the isotropic three-state 
ferromagnetic standard scalar Potts model ( w ( 0 )  > w (  1) = w(2)), to the isotropic three- 
state antiferromagnetic standard scalar Potts model (w(1) < w(0) = w(2)) and to a limit 
where the chiral model can be mapped in the thermodynamic limit onto a six-vertex 
model in direct fields. Point A (w(1) = w(2) = 0) corresponds to a completely ordered 
state while point 0 corresponds to the completely disordered one. Point D is the 
completely ordered limit of the antiferromagnetic scalar Potts model. 

Kardar (1982) has considered an N-state isotropic helical Potts model with Hamil- 
tonian: 

- PH = J S (  c7, - (T,) + WS( (T, - (T, + 1) (7) 
(11) 

where belongs to ZN and S denotes the Kronecker symbol. For N = 3 this is another 
way to define the chiral Potts model. Kardar made the remark that, when oriented 
neighbouring spin pairs are either in the same state ( i ,  i )  or with spins differing by 1 
( i ,  i +  l ) ,  this N-state helical Potts model can be mapped onto a six-vertex model in 
direct equal horizontal and vertical fields (figure 1 of Kardar (1982)). He got this 
situation by taking the limit J - ,  CO, W -, CD. This limit of the model corresponds (in 
sector I )  to the two points, D: a = l/&, b = 0 (w(0) = w(2), w (  1) = 0) and A: a = l/&, 
b = l / A ( w (  1) = w(2) = 0). We note that this mapping may be extended (even for the 
N-state chiral Potts model) to the whole boundary a = l/& (i.e. w(1) = 0 ) .  This 
mapping onto the six-vertex model can be made rigorous (especially for finite-size 
systems) by taking care of the boundary conditions. Recalling the analysis of the 
six-vertex model in a direct field performed by Sutherland er a1 (1967) and Yang 
(1967), one locates a critical point on this w( 1) = 0 limit (ice point) for w(0)/2w(2) = 1. 
This corresponds to b = 1 / 3 A =  0.235. Note that this point (G in figure l ( a ,  b ) )  is 
rather far from the self-dual line (5) (point E). Another known result concerns point 
D which corresponds to the critical antiferromagnetic scalar Potts model for N = 3: 
(e’ + 1)’ = 4 - N (Baxter 1982b). At this point the order-disorder transition is of infinite 
order (Kosterlitz-Thouless type) (den Nijs er a1 1982). No other point is expected to 
be critical on the OD boundary. 

Often, for isotropic models in two dimensions, criticality, integrability and self- 
duality are notions having some overlap. Examples are the scalar Potts model, Ashkin- 
Teller models or Z, models (Baxter 1982a, Zamolodchikov and Monarstirskii 1979, 
Zamolodchikov and Fateev 1985). So the first question addressed below concerns the 
criticality of the model on condition (4). 
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Using (14) of Kardar (1982) one can argue that there should exist at least a phase 
boundary close to point H given in the neighbourhood of H by 

J - w / 2  = In ( 1  + 8). (8) 
Written in the homogeneous variables w ( i ) ,  (8) simply means that the critical curve 
is orthogonal to the line AO. Indeed, this is related to the ~ ( 1 ) -  w(2) symmetry (if 
point H is regular). Note that such a critical curve is therefore tangent to the self-dual 
line ( 5 ) .  Hence a question is of interest: is there a critical curve connecting the two 
critical points H and G? 

To investigate these questions we have performed Monte Carlo simulations on a 
parallel computer build in the Centre de Recherche sur les trks basses temphratures, 
Grenoble (CRTBT). This computer allows us to average the results over a rather large 
number of samples. We now describe the method used. We study L x L square lattices 
with helical boundary conditions. As already noticed above, in the equilibrium 
configuration at point A all the spins are of the same colour. So one can expect that, 
starting a Monte Carlo run not too far from A with all the spins of the lattice of the 
same colour, the equilibrium will be reached after a short time (note that it is no longer 
the case on the w(1)  = 0 boundary where the local Monte Carlo algorithm cannot 
work). One can check that the system has reached the equilibrium making use of the 
fluctuation-dissipation theorem. For most of the simulations presented here we start 
from a point (a, ,  bo) which lies not too far from A. Then to sample the equilibrium 
for a point ( a ,  b )  near (a , ,  bo) we use a standard Metropolis method (Metropolis er 
a1 1953): a spin U, is randomly chosen, and its colour is updated to a new colour k 
with probability 

(9) 
where z ensures the normalisation of P. 

Because of the length of the simulations performed here (> lo"  updates in some 
runs) the random number generation can become important (Barber er a1 1985). The 
random number generator we use here is the XOR generator (Pearson et a1 1983) with 
parameters 607 and 297. Moreover, the architecture of our computer allows us to 
perform completely independent runs, each of them using its own random number 
sequence. 

u , - ~ ,  u , - ~  are the four nearest neighbours of uI. The first steps are discarded, as a 
transient regime to the equilibrium. Then we compute the 'internal energy' e of a 
configuration of spins defined as 

where the sum is performed over all oriented bonds and P,, = N,/2L2, N,, being the 
number of bonds for which the oriented neighbouring spin pairs correspond to (U! ,  (T, + 
v )  and L denotes the linear size of the square sample. The fluctuations of this quantity 
are similar to a 'specific heat', and this allows us to obtain a criterion to localise the 
critical points. We also compute a magnetisation and its fluctuation. 

The lattices considered here have different sizes L x L: L = 4,8,  16,32,64. Typically 
the sweeps in the (a ,  b )  plane considered in this paper correspond to keeping constant 
the value of a and to decrement b by steps of 2.5 x A measure of ( e )  and ( e 2 )  is 
performed for all ten Monte Carlo steps (MCS) per spins. For instance, in the case 
L = 6 4  (16) 5 0 0 0 ~ ~ s  per spins are discarded to (to thermalise the system) and 10' 
(4 x 10') values are averaged. For the L = 64 case, for instance, it represents 4 x 10" 

P( U, = k )  = w ( U,+ L - k )  w ( U,+ 1 - k )  W( k - U,- 1) W( k - u, -L ) /  z 

With the helical boundary conditions the spins are indexed such that vrtL, 

e = - C  ~ , 1 n [ w ( v ) / ( w ( O ) + w ( l ) + w ( 2 ) ) ]  (10) 
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updates and it took three weeks (for a given value of a )  on the parallel computer of 
the CRTBT, which consists of 46 M68000 working in parallel (the total number of 
updates corresponding to all the simulations performed in this work is 5 x 10l2). The 
program written in assembly language needs about 50 instructions, representing 400 
clock periods, for a single update. 

To check the validity of our program and also the relevance of the internal energy 
(10) and of the temperature-like variable b we have performed different runs (for 
L = 8, 16, 32) along trajectories in the parameter space corresponding to the standard 
scalar Potts model ( b  = f i  a, A 0  in figure l ( a ) )  as well as a sweep for a given value 
of a ( a  = aH = (f i -  1 ) / 6 4 ) ,  some with our variables and others with conventional 
variables. The finite-size scaling analysis in the two cases leads to the same conclusions, 
namely that the determination of the critical point is good, but that the exponents are 
more difficult to extract. More precisely, despite the fact that we discard the few points 
out of equilibrium (using the criterion previously mentioned) we have found b,- 0.150, 
1/ v - 1.0 and a /  v - 0.5, while the exact values are b, = 0.149, l / v  = 1.2 and a /  v = 0.4. 
These discrepancies in the value of exponents are due to important corrections to 
scaling, as already mentioned by Barber (1988). 

To investigate the criticality of the integrability curve (4) we have performed sweeps 
for a = 0.20 and different values of L (L = 4, 8,  16, 32, 64). The same calculations have 
also been performed for a = 0.25 with similar results. The results are shown in the 
insert of figure 3: c(b) presents a maximum which becomes sharper with increasing 
values of L. We found that the susceptibility also exhibits a sharp maximum. The 
system seems to undergo a second-order phase transition between an ordered and a 
disordered phase. The size effects are characteristic of such a transition and this is 
confirmed by a representative spin configuration just above the transition (see figure 
2( a) ) .  Moreover, the value of b corresponding to the integrability curve bin,( a = 0.20) = 
0.275 is clearly to be discarded as well as the self-dual value bsd( a = 0.20) = 0.2296, 
while the maxima of the specific heat are found to range from b(L=4)=0.2250 to 
b( L = 64) = 0.2375. This shows that the simplicity argument, which would have iden- 
tified the critical curve with the self-dual line, fails. This also shows that curve (4), if 
critical for the chiral three-state Potts model, corresponds to a very weak singularity. 
One could think of a connection between this curve and a wetting transition curve 
(compare, up to the change of variables, curve (4) in figure 1 and figure 1 of Huse et 
a1 (1983)). On the other hand, these results suggest that the critical curve is located 
close to the self-dual line near a = 0.20. A finite-size scaling analysis of our results 
(see figure 3) leads to the following values: b,(a = 0.20) - 0.240, 1/ v - 1 and a /  v - 0.5. 
As in the standard scalar Potts model these exponents are not very reliable (in particular 
they violate the hyperscaling relation dv = 2 - a). The close similarity of these results 
with the one obtained along the OA boundary (standard scalar Potts model) does not 
allow one to rule out a transition (at least near this value of a )  in the same universality 
class as the standard scalar Potts model. 

In order to follow this transition for larger values of a, Monte Carlo simulations 
were carried out for L = 16 and a = 0.35. The situation now seems more involved. 
Indeed, as shown in figure 4, c(b) exhibits two maxima. The first one occurs for 
bl=0.1474 while the second one occurs for bz=0.214. These numbers are to be 
compared with bSd(a = 0.35) = 0.143. b2 is rather far from bsd and indicates a critical 
phase boundary going up to point G. For L = 3 2  we get then three maxima with 
increasing amplitudes with b. For L = 6 4  we get six maxima, also with increasing 
amplitudes as b increases. These striking results indicate a rather involved phase 
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Figure 2. ( a )  Snapshot for a = 0.20 and b = 0.230. 
( b )  Snapshot for a =0.35 and b=0.200. ( c )  Snap- 

i c  I shot for a = 0.35 and b = 0.185. 

structure for a = 0.35 in a certain range {bmin, b,,,} in b. A difference between the 
order breaking mechanism of the system (as b is decreased) also appears while 
comparing the snapshots of the spin configurations of the system for a < 0.2 and for 
a > 0.2. For example, typical snapshots are given in figure 2(a ,  b, c)  for a = 0.20 and 
a = 0.35. For a = 0.20 this breaking takes place through flips of isolated clusters of 
spins. For sectors I and I1 the ordered phase (greatest values of b )  corresponds to a 
ferromagnetic state, while for sector I11 and IV (V and VI) it corresponds to an helical 
state (Kardar 1982) (. . . 0 1 2 . .  .) ((. . . 0 2 1 . .  .)). For a =0.35 a very large number of 
spins organised in walls running diagonally through the lattice are involved. This is 
reminiscent of a floating phase. With our choice of boundary conditions the number 
of walls must be divisible by three. The values of b corresponding to a maximum of 
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Figure 3. Finite-size scaling for c ( b )  for a =0.20 and L =  8(A) ,  16(V), 3 2 ( 0 ) ,  64(+)  with 
l / v  = 1 and a/ v = 0.5. The insert shows the original data. 

c( b )  are precisely the ones for which the number of walls increases by three. Moreover, 
in this phase the setting of the equilibrium seems to be slower. It has been verified 
for trajectories in the parameter space allowing an easy use of the fluctuation-dissipa- 
tion theorem which corresponds to a given chirality A = -0.42 (Angles d'Auriac et a1 
1989). Note that the run performed for L = 16 already gave a reliable estimation of 
the extension of this 'new phase'. With the aim to precisely determine the extension 
of this 'new phase' in the phase diagram, sweeps for a = 0.26, 0.265, 0.270, 0.275, 0.30, 
0.37, have been carried out for L =  16. All these simulations indicate two maxima 
which must trace the location of {b,,,, bmJ. As shown in figure l (b) ,  they confirm 
that, at least for a > 0.25, such a phase could occur. 

Let us now discuss the results presented in this paper. From exact results we have 
located certain critical points of the isotropic three-state chiral Potts model. We have 
shown, using a Monte Carlo simulation, that these points are, in fact, connected by 
continuous phase boundaries which define, in the phase diagram, ordered phases and 
a domain where the phase structure is involved and reminiscent of a floating phase. 
We have verified that increasing the size of the lattice from L = 16 up to L = 64, this 
phase structure persists. This seems to exclude a metastability leading to spurious 
behaviour for the specific heat. Two possibilities are consistent with the evidence we 
have obtained. 

( a )  The floating phase begins at a value a = aM - 0.2 (see figure l ( b ) ) .  For a < aM 
there is a only one order-disorder transition which could be in the standard scalar 
Potts universality class. 
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Figure 4. c ( b )  for different values of L. 

( b )  The critical ferromagnetic standard scalar Potts point H is, in fact, a multicritical 
point. In this case the two critical curves originated at point H are hardly distinguishable 
up to aM (of course, such a situation should lead to some anomalies in the finite-size 
scaling analysis). 

The last situation seems to be the most likely. On the other hand, a certain ambiguity 
remains on the precise localisation of point F. This ambiguity is difficult to clarify 
since the local Monte Carlo algorithm fails in the neighbourhood of the AD line. It 
is not proved that point F is definitely different from point E or even D. 

One must remember that the very existence of modulated or floating phases in 
two-dimensional isotropic models is still a matter of controversy (Oitmaa and Velgakis 
1988, Velgakis and Oitmaa 1988). Hence other studies are necessary to have a better 
understanding of this intermediate phase. A simulation for a 128 x 128 lattice is in 
progress (Anglbs d'Auriac et a1 1989). 

To conclude, the finite-size scaling analysis has shown that the self-dual line is not 
critical. The criticality of self-dual lines was natural for B ,  models (Zamolodchikov 
and Monastirskii 1979, Zamolodchikov and Fateev 1985) because these lines are not 
only globally invariant by duality but each of their points are invariant: this is no 
longer the case for chiral models. However, let us emphasise that the algebraic nature 
of critical boundaries is often a consequence of an integrability (for instance, the 
identification of the self-dual line with a critical curve should have had its origin in 
an integrability of the self-dual line). Critical curve(s) have been located with accuracy 
for a < 0.2. The analysis performed to get the exponents v and (Y does not allow us 
to rule out at the present moment the fact that the isotropic three-state chiral Potts 
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model could be, near point H, in the same universality class as the standard scalar 
Potts model. On the other hand, the precise extension of the ‘floating phase’ is more 
difficult to estimate. 

Finally let us note that it would be of some interest to study other chiral Potts 
models for N > 3 .  Especially for N = 4 one can see that the phase diagram is very 
involved by inspecting different limits which correspond to exactly known results 
(Ashkin-Teller limit, six-vertex model in direct fields). 
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