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Abstract 

We study birational mappings generated by matrix inversion and permutation of the entries of 
q x q matrices. For q = 3 we have performed a systematic examination of all the permutations 
of 3 x 3 matrices in order to find integrable mappings (of three different kinds) and finite order 
mappings. This exhaustive analysis gives, among 30 462 classes of mappings, 27 (new) integrable 
classes of birational mappings and 36 classes yielding finite order recursions associated with 
these mappings. An exhaustive analysis (with a constraint on the diagonal entries) has also been 
performed for 4 x 4 matrices: we have found 8306 new classes of integrable mappings. All these 
new examples show that integrability can actually correspond to non-involutive permutations. 
The analysis of the integrable cases specific of a particular size of the matrix and a careful 
examination of the non-involutive permutations, could shed some light on integrability of such 
birational mappings. It seems that one has the following result: the non-involutive examples are 
specific of a given matrix size (3 x 3 matrix . . .) and the permutations which yield integrable 
mappings for arbitrary matrix size are always involutions. 

1. Introduction 

In previous papers birational mappings [ 1 - 3 ]  having their origin in the theory of  

exactly solvable models  in lattice statistical mechanics [ 4 - 9 ]  have been studied. They 

are generated by involutive transformations on matrices corresponding to two kinds 

o f  transformations on q x q matrices: the inversion o f  the q x q matrix and an (in- 

volutive) permutation o f  the entries of  the matrix. In these papers, permutations of" 

two entries [ 1 -3 ] ,  as well as permutations corresponding to discrete symmetries of  

lattice models o f  statistical mechanics [ 4 - 9 ]  were first analyzed. Several integrable 

mappings associated with permutations o f  q x q matrices, for  arbitrary q, have been 

found this way [ 1 -3] .  It has also been shown that the iteration o f  the associated bi- 

rational transformations presents some remarkable factorization properties [ 1,2]. These 
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factorization properties explain why the complexity of these iterations, instead of hav- 
ing the exponential growth one expects at first sight, may have a polynomial growth of 
the complexity [1,2, 10, 11]. It has also been shown that the polynomial factors occur- 
ring in these factorizations may satisfy noteworthy non-linear recursion relations and 
that some of these recursions were actually integrable, yielding elliptic curves [1,2]. In 
other papers we have also considered birational mappings associated with non-involutive 

permutations of matrix entries and we have also obtained remarkable factorization 

properties [12] but not integrability or even polynomial growth. 
We perform here a systematic examination of such birational mappings associated 

with all the permutations of entries of 3 x 3 matrices and (almost all) permutations 
of entries of 4 x 4 matrices as well. This analysis provides a set of new integrable 
mappings of various number of (homogeneous) variables (9, 16, arbitrary number). Our 
motivation is not only to accumulate as many new integrable mappings as possible, 
but also to better understand the structures associated with integrability. For instance, 
is the integrability of these birational mappings necessarily associated with involutive 
permutations? 

Recalls: 

Let us first denote ~qxq the set of permutations of the q2 (homogeneous) entries of 
a q x q matrix and let us also introduce the subset ~qZq (of ~qxq) which consists in 
a simple interchange of two entries. We consider the matrix iteration of an arbitrary 
q x q matrix Mo: 

~4 = KT(Mo), (l)  

where Kt = t.  I, I ( M )  = det(M). M - l  (homogeneous inverse) and t C ~q2q. Transfor- 
mation Kt is clearly a birational transformation on the entries of M0 since its inverse 
transformation, I • t -~, is also a rational transformation. Let us introduce the permu- 
tations of entries gi,j (0 <~i < j < q) which consist in the exchange of column i with 
column j followed by the exchange of row i with row j.  It is straightforward to see 
(with obvious notations) that 

Ka_,.t.y(Mo) = g-1 . Kt(Mo) " g. (2) 

This means that the equivalence relation, defined by t t = g - I .  t .  g, is compatible with 
iteration (1). Up to these row and columns relabeling equivalence relation, one can 
show that Cq2q corresponds to only six classes [1]: iteration (1) has to be analyzed 
for a only one representative in each class. The class denoted class I in [1] can be 
represented by the interchange of the two entries M0[1,2] and M012, 1]. Class I presents 
remarkable factorization properties at each step of iteration (1). The determinants of 
the iterated matrices do factorize and all the entries of an iterated matrix also fac- 
torize a common (homogeneous) polynomial. Thus, at the nth step of the iteration, 
one can introduce "reduced matrices" Mn's and introduce homogeneous polynomials 
denoted fn'S corresponding to these very factorizations. For class I iteration (1) thus 
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yields: 

K(M,)  det(M,) 
m n + l  f q_Zf l2  leq_ 4, f n + l -  leq_l F 3 ~3 ( 3 )  

n--2 n - - l J  n . l n - -2dn - - I .  n 

with fn = 1 for n~<0. Moreover, the degree of the .fn's grows polynomially with n 
(quadratic growth [1]). Remarkably, these homogeneous polynomials fn'S do satisfy, 
independently of q, a whole hierarchy of  non-linear recursion relations [1,2]. A simple 
recursion in this hierarchy is the (integrable) recursion: 

• 2 2 2 2 - fn-if~+2 - fn+3ft; ,[nfn+3 fn+4fn+l (4) i 

f n - l f n + 3 f n + 4  -- f , f , + l f , + 5  fn-2fn+2fn+3 - f , - l f ,  f ,+4  

This hierarchy is a hierarchy of recursions integrable or only compatible with an 
integrable recursion of the hierarchy [1,2]. Moreover, the orbit of Kt of an arbitrary 
matrix M0 is an elliptic curve in the parameter space of the q2 homogeneous entries 
of M0: the mapping Kt itself is integrable [1] for arbitrary values of  q. These two 
integrability properties are of course related [1]. 

Let us also define Kr = l'.t, where I" is the usual (inhomogeneous) matrix inverse, and 
l, = det(/£7(M0) ) and x, = l, • l,+l. The x, 's  variables also verify a whole hierarchy 
of  non-linear recursion relations [1,2] closely related to the existence of the recursions 
on the f , ' s  [1,2]. Let us give the simplest recursion of this hierarchy: 

Xn+ 2 --  1 Xn+ 1 --  l 
= • x . x . + 2 .  (5)  

Xn+lXn+2Xn+ 3 --  1 XnXn+lXn+ 2 --  1 

This recursion is integrable. In the following, we will use condition (5) as an integra- 
bility criterion ("class I-integrability"). 

Among the previously mentioned six classes, class denoted IV in [2, 3] also has 
interesting properties. Class IV can be represented by the interchange of the two entries 
M012, 1] and M012, 3]. Generically, the iterations of Kt are not integrable, however for 
"many" [3] different initial matrices M0, the orbits of Kt yield (transcendental [3]) 
curves. Such a highly regular situation corresponding to (very) weak chaos, has been 
called "almost integrable" [3]. Moreover there does exist a (codimension-one) algebraic 
condition, bearing on the entries of the matrix, for which the birational transformations 
Kt, associated with class IV, actually correspond to integrable mappings [2, 3]. This 
integrability condition has been written elsewhere [2]. The factorizations restricted to 
this integrable subcase I read for 4 x 4 matrices: 

M~,  K(M~") det(M~ m ) 
= 2 2 ' f,,+l = f 3  f2 f3 (6) 

f n f n - 2 f n - - 3 f n - 4  fn2 f n -1  n--2 n--3 n - 4  

where polynomials f , ' s  verify: 

f , ,+2 f .+vf .+9  - f . + 3 f . + s f . + 1 0  

f n + 3 f n + 7 f n + 8  - -  f n + 4 f n + 5 f n + 9  

= f n + l f n + 6 / n + 8  --  f n + 2 f n + 4 f n + 9  

f n + 2 f n + 6 f n + 7  --  f n + 3 f n + 4 f n + 8  ' 

t The factorizations are more involved in the general case [1]. 

(7) 
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This recursion is an i n t e g r a b l e  recursion on the fn's. The birational transformations 
of class IV yield, for this very integrable case (see (6)), the following (integrable) 
recursion on the xn's: 

Xn+ 2 - -  1 Xn+ 1 - -  1 XnXn+ 2 
- ( 8 )  

X n + l X n +  3 - -  1 XnXn+ 2 - -  1 Xn+ 1 

In general, the birational transformations of class IV only yield: 

Xn+ 3 - -  I Xn+j - 1 
• XnXn+ 3 . (9) 

X n + 2 X n +  4 - -  1 XnXn+2  - -  1 

Recursion (9) is n o t  an integrable recursion. Of course (8) implies (9)• 
Condition (8) cannot really be used as an integrability criterion since it is only 

verified on a (quite involved codimension-one) algebraic variety [1]. Practically, we 
will use (9) as an integrability criterion: when condition (9) is verified it is easy to 
find the (codimension-one) algebraic variety on which (8) is actually verified. Thus 
condition (9) can be seen as an integrability criterion though it is not an integrable 
recursion. In the following we will call "class IV-integrability" such a situation. 

Let us also mention a third example of integrable mapping corresponding to (in- 
finite discrete) symmetries of lattice models of statistical mechanics (vertex models 
[9, 11, 13]). Let us introduce permutation tl which exchanges 2 the two 2 x 2 off di- 
agonal sub-matrices of a 4 x 4 R-matrix (note that tl does not belong to ~ 4 2 4 ) .  The 
mapping Kt, = tl .I  corresponds to some non trivial non linear symmetry of the (4 × 4) 
R matrix of the sixteen vertex [13] model• 3 In that case the factorization scheme reads: 

Kt~ (Mn+l) det(Mn+l ) 
M.+Z -- F~ ' F~+2 -- F3 , 

K t , ( M n + 2 ) -  K t , ( M n + 2 )  __ M n +3  (10) 
det(Mn+2 ) Fn+ l F~+3 

Again one has a hierarchy of recursions integrable, or compatible with integrability [ 11 ]. 
In this last case the simplest recursion on the x, ' s  reads: 

Xn+2 - 1 Xn+l --  1 2 (11) ~_ . X n X n + l X n +  2 • 
Xn+lXn+2Xn+3 - 1 XnXn+lXn+ 2 - -  1 

This recursion is i n t e g r a b l e .  

Another example of permutation which originates from symmetry analysis of vertex 
models generalizes the previous permutation tl and corresponds to the following action 
on a 2m x 2m R-matrix [9, 11, 12]: 

tl : R = ~ t l ( R ) =  D ' 

2 Transformation tl is a geometrical symmetry of the square lattice [9]. 
3 The Baxter model is a Yang-Baxter integrable subcase of this model [9]. One should not confuse the 
integrability of  the s y m m e t r i e s  of  the parameter space of  the sixteen vertex model (namely the map- 
pings considered here) and the Yang-Baxter integrability [9]: the sixteen vertex model is not generically 
Yang -Baxter integrable. 
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where A,B, C and D are m x m matrices. This last permutation tl corresponds to the 

analysis o f  vertex models on a cubic (or hypercubic) lattice [ 11, 12] (m = 4, m = 2d-I  ), 
as well as monodromy matrices of  vertex models on a square lattice [11] (m = 2 N, 

N number of  sites in the monodromy matrix). The factorization scheme reads (with 

q = 2m): 

K(Mn)  = Mn+l " f q - 5 .  fsn_ I , -2  "'" , 

det(M.)  = f~+, . . . . . .  f f l -4  f~_,  fj2(q--4) fl 8 f2(_q4-4) £-58 .f2(q-4)n_6 n-2 n-3 " " " 

(13) 

It has been seen [11,12] that permutation (12) yields a polynomial growth of  the 
calculations, however, the f n ' s  do not verify any recursion relation like (5) or (8) (or 

(9))  or (11). In fact the orbits of  the associated mappings Kt, can be seen [11, 12] to 
(uniformly) densify an (abelian) algebraic variety of  dimension g. In principle one can 

write explicitly the evolution of  the points in terms of  theta functions of  g variables. 
One could call such a situation a "g-integrability". It would be interesting to find 

exhaustively, for 3 × 3 matrices, all the permutations yielding such "g-integrability" (or 

more simply yielding polynomial growth [11, 12]). Unfortunately, we do not have any 
simple criterion, or any quick and efficient algorithm, to perform such an exhaustive 

search. Therefore, we restrict in this paper to the "traditional" integrability (foliation 

of  the parameter space in elliptic, or rational, curves). 

In the previously mentioned papers [ 1-3, 11, 12] all the integrable birational map- 
pings have been seen to correspond to the occurrence of  one of  the three previous 
hierarchy of  recursions on the xn's represented by (5), (8) (or (9))  and (11). Actually 

we will, in the following, systematically seek for these three recursions as integrability 

criterion, and verify that the associated hierarchy of  recursions [1,2] are also verified. 

We will verify if one of  the three previous factorization schemes ((3), (6), (10)) is 

satisfied, or if  some new factorization scheme pops out, only when a permutation actu- 

ally verifies one of  the three recursions ((5), (8) or (11)). This is our strategy since the 

analysis of  the factorization schemes cannot be easily implemented as an algorithmic 

procedure: the factorization schemes are not checked directly for each permutation. 

Remark. It is possible to extend a permutation of  ~q×q to ~(q+l)×(q+l) by simply 
keeping fixed all the new entries. 4 A certain number of  results (occurrence of  integrable 

recursion, factorization schemes . . . )  do not depend on the actual size q of  the matrix but 
only on the permutation considered [1,2]. It is thus tempting to examine exhaustively 
all the permutations of  3 x 3 (resp. 4 x 4) matrices in order to f ind new integrable 

birational transformations independent of  q or, on the contrary, find integrable results 
apecific of  3 x 3 (resp. 4 x 4) matrices. To some extent this last situation could be of  
a greater interest to get some hint on the very "nature" of  integrability. 

4 These extensions have been called "straight" generalization in [11, 12]. 
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2. Integrability of  an arbitrary permutation of O°3x3 

In this section we extend the previous results to an a r b i t r a r y  permutation t of ~3x3. 
Let us first notice that since t is not necessarily an involution anymore, the action of the 
group, generated by t and I, on an initial matrix does no t  only reduce 5 to the iteration 
of t.  1. Transformation t p is just another element of 5P3×3 which is thus considered in 
a systematic analysis, however many (generically infinite order) transformations like 
t .  1 .  t p • I do occur. In this paper we do not analyze this group: we restrict ourself to 
the analysis and the classification of the mappings Kt = t .  I, where t is an arbitrary 
permutation of ~qP3x3. The equivalence relation (2) also holds here• The 9! = 362 880 
elements of 5P3x3 are grouped in 30462 classes (to be compared to the 6 classes of 
the previous paragraph). The number of elements in each class is shown in Table 1: 

Let us introduce some q-independent encoding of the permutations of entries of q x q 
matrices. The entries of a 3 x 3 (resp. q x q) matrix are labeled as follows: 

0 3 8 ( 38) 217  
1 7 , 6 5 4 
5 4 12 11 10 

1314159. ' " )  
(14) 

A 3 x 3 (resp. q x q) matrix will represent a permutation of the entries of the 3 x 3 
(resp. q x q) matrix. For instance: 

(2°i) Perm = 4 7 (15) 
5 1 

corresponds to the permutation which has the following decomposition in a 4-cycle 
and a 5-cycle: 

0 ~ 2 ~ 4 ~ 3 ~ 0  and 8 ~ 6 ~ 5 ~ 1 ~ 7 ~ 8 .  (16) 

For numerical purpose it is more convenient to study all permutations and check 
afterwards which of them are equivalent. This comes from the fact that it is (paradox- 
ically) easier to decide the (5) or (8) or (11)-integrability of a given mapping than to 
decide if two permutations are equivalent under (2). 

Table 1 

Number of elements 0 1 2 3 4 5 6 7 8 9 10 11 12 

Number of classes 0 2 12 14 34 0 354 0 0 0 0 0 30046 

5 Up to a semi-direct product by Z2. A group generated by two involutions, with no relations between them, 
is isomorphic to the infinite dihedral group [4, 5]. 
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Remark (Finite order recursions). It is important to make the following remark. Many 

(quite involved) permutations are seen to satisfy one of  the three previous recursions 
(5) or (8) or (11 ) for "pathological" reasons. Suppose, for instance, that a permutation 

satisfies the following simple recursion on the xn's: 

x~ .x~+l • x,,+2 = 1 . (17) 

It is straightforward to see that (17) implies that recursion (5) is verified. Recursions (5) 

or (8) or (11 ) may thus be verified, not because or a "true" integrability (foliation of  the 
parameter space in elliptic, or rational, curves) but because of  a simple recursion on the 

x,,'s like (17). Actually, it is easy to see that (17) yields xn = xn+3. It can be a strong 
indication that, not only the recursion on the x , ' s ,  but the birational transformation Kt 

itself, is a finite order mapping. Clearly such "trivial" integrability has to be considered 
separately. As far as such "finite order" integrability is concerned, we have generated 

all the permutations of  entries of  3 x 3 matrices and we have found 36 classes yielding 
finite order recursions on the x , ' s .  We have found first 72 permutations organized in 

16 classes (having 1 or 2 or 3 or 4 or 6 or 12 elements: all the divisors of  12) 

yielding xn = 4-1, and yielding finite order mappings of  order 1, 2, 4 or 6. One also 

has 144 permutations organized in 14 classes (of  6 or 12 elements) corresponding to 

x~x~+l = 1. Note that they do not yield finite orbits (there is no integer p such that 

KP(Mo) -- 2 .  M0). For recursion xnx~+lx~+2 = 1 there are 72 permutations organized 
in 6 classes having 12 elements each, however the examination of  the orbits of  the 

corresponding birational transformation K, shows that one does not have finite orbits 

in this case either. 
Let us remark that these permutations (corresponding to finite order recursions on 

the x , ' s )  are quite involved permutations. A list of  these ("finite order") permutations 

is given in Table 2. 
The factorization schemes of  the corresponding birational transformations Kt of  

Table 1 are trivial: only a finite number of  polynomials f , ' s  is necessary to describe 

the factorization scheme (for instance f l , f 2 ,  f3). An  example of  such a "trivial" fac- 
torization scheme is 

X(M2n) K(M2.+~) 
M2,+I - 1 ,  M2,+2 - 

f ( '  f~  

det(M2, ) det (M2,_ 1 ) 
f2n+l - f•n+l . f n  - 1, f z n -  f z n - ,  - 1. (18) 

2 f ~ "  2 

The expression of  the x , ' s ,  in terms of  these finite numbers of  f , ' s ,  are also very 
simple, for instance, 

f3 f ,  

f2 
X3p+3 = ~ ,  yielding: x, -X~+l .x,+l = 1 . (19) 
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Finite order 
recursion 
Xn = ±1 

Finite order 
recursion 
X n X n +  1 ~ 1 

Finite order 
recursion 
X n X n + l X n +  2 = l 

038 026 083 062 062 038 
217 [1] 315 [1] 645 [3] 847 [3] 351 [6] 654 
654 874 271 351 847 217 

153 127 260 217 271 206 
260 [12] 564 [12] 153 [4] 654 [4] 083 [6] 784 
748 308 748 038 645 135 

025 026 024 026 074 062 
316 [6] 314 [12] 316 [12] 814 [12] 326 [12] 347 
874 875 875 375 815 85l 

026 062 153 206 204 260 
351 [6] 851 [6] 260 [12] 134 [12] 136 [12] 531 
847 347 487 785 785 487 

047 136 163 150 260 206 
851 [12] 204 [12] 250 [12] 263 [12] 758 [12] 478 
362 785 748 748 143 513 

172 153 
[6] 546 [2] 748 [2] 

380 260 

546 531 
[6] 380 [2] 487 [2] 

172 602 

051 047 
[6] 347 [12] 351 [12] 

862 862 

[12] 

[12] 

The number in [bracket] near each permutation is the cardinality of the corresponding class. 

I f  the birational transformation Kt is a finite order one, one necessarily has such 

factorization schemes. When the birational transformation Kt is not a finite order trans- 

formation (14 + 6 classes: x, "xn+l = 1 and x , . x ,+ l  "x,+2 = 1) it would be interesting 

to analyze the orbits o f  the iteration of  Kt. 

2.1. "Genuine" integrability 

Now let us get rid o f  such "spurious" integrability and concentrate on "true" inte- 

grability. It is then straightforward to check exactly, for each selected permutation, i f  

the corresponding recursions (5) or (8)  (resp. (9))  or (11) hold and, in a second step, 

i f  factorizations (3)  or (6)  or (10) hold. 

We have found the following result: there are no permutation o f  entries o f  3 x 3 

matrices verifying recursion (11 ). This recursion can only be fulfilled for  q x q matrices 

for q~>4. 

We have then found 108 permutations verifying recursion (5)  (and also a whole 

hierarchy o f  recursions [1]) and the factorization scheme (3): all these permutations 

correspond to integrable mappings for q = 3 and can be grouped into 23 classes. 

More specifically three classes verify recursion (5)  and the factorization scheme (3) 

for arbitrary q, 21 classes verify recursion (5)  and the factorization scheme (3) but 

for q = 3 only. Three other classes (second colunm in Table 3) verify, for q = 3, 

recursion (5) and the factorization scheme (3), however, for q = 4, they only verify 

the factorization scheme (3) but not recursion (5)  anymore. Factorization scheme (3) 

corresponds to a polynomial growth of  the calculation, which is a strong indication 

o f  "y-integrabil i ty" [11]. Therefore, for q = 4, these last mappings are not integrable 

anymore but probably "g-integrable". 
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Table 3 

lntegrable Integrable 
for any q, for q = 3, 
fact. fact. 
scheme scheme 
for any q for q = 4 

Integrable only for q = 3 factorization scheme only for q = 3 

Class I 036 026 046 027 027 
217 [3,2] 317 [3,2] 315 [6,4] 318 [3,2] 315 [6,2] 
854 854 872 546 864 

037 078 026 026 086 
218 [3, 2] 513 [3, 2] 347 [3, 2] 345 [3, 2] 345 [6, 4] 
564 624 851 87l 271 

038 081 147 146 
247 [3, 2] 465 [6, 6] 308 [6, 6] 308 [6, 12] 
651 273 562 572 

128 013 021 
307 [3,2] 625 [6,6] 465 [6,6] 
654 478 873 

Class IV 037 083 083 127 
218 [6,2] 245 [6,2] 654 [12,4] 645 [12,9] 
654 671 172 803 

025 016 
854 [3, 2] 325 [6, 6] 
784 478 

083 062 
647 [3,2] 845 [3,2] 
251 371 

206 047 
384 [6,3] 315 [6,12] 
175 862 

The two numbers in [bracket] near each permutation are the cardinality of the corresponding class and the 
order of the permutation. 

Finally, for "class-IV integrabili ty" (see recursion (8)),  we have found 36 permuta- 

tions grouped into 4 classes: one class (class IV in [3]) is valid for arbitrary q and the 

three others are specific of  q = 3 .  

One representant o f  each of  these classes is given in Table 3. 

In Table 3 "integrable for Class IV" means that the mapping is integrable only for 

certain initial matrices M0 of  the iteration (codimension-one algebraic variety [1]). 

One remarks that a large number o f  integrable mappings specific of  3 x 3 matrices 

are not  involutions (12 classes among 20 classes). 

3. Integrability of permutations of 6~qxq for q>~4 

It is possible to extend a permutation o f  ~qxq to ~(q+l)x(q+l) by simply keeping 

fixed all the new entries ("straight generalization").  Labeling (14) o f  the entries has 

the advantage that it can be given without specifying q. The permutation which simply 

exchanges entry 2 and 3, for example,  has been shown to be integrable for arbitrary 

values o f  q ("class I-integrabili ty").  It is thus interesting to test, for each integrable 

permutation of  ~-q'°3x3, i f  it yields an integrable permutation of  ~qxq. The results are 

shown on Table 3, where we have distinguished the different possible cases. Note that 

the permutations that can be upgraded for arbitrary values o f  q are all involutions (first 

column of  Table 4). Beyond these involutive examples,  valid for arbitrary q, it would 
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Table 4 

Class I Class IV Class 16 vertex 

Permutations found 3 752 1567 5507 
Effective number 123098 4 3 1 4 0  223008 
Number of classes 2647 945 4714 

be interesting to find integrable mappings specific of 4 x 4 matrices or, on the contrary, 
that can be generalized to q × q matrices (with q >~ 5 but different from these upgraded 
3 x 3 involutive examples). This justifies performing the previous exhaustive analysis 
but for permutations of entries of 4 x 4 matrices. 

Since the number of permutations of ~4x4 is very large to explore (16! = 20 922 789 
888000) we have first investigated only 16!/4! --871 782912000 permutations corre- 
sponding to an ordering constraint on the diagonal entries. With the previous encoding 
of the permutations the diagonal symbols (namely 0, 1,4, 9) become, after transforma- 
tion by a permutation P: P(0), P(1) ,P(4) ,P(9) .  The constraint on the diagonal entries 
is the following: P(0)~<P(1)~<P(4)~<P(9). This constraint divides by 24 the computer 
time. It restricts the number of "integrable" permutations (almost by 24) but does not 
restrict drastically the number of classes since each class is likely to have a represen- 
tent which satisfies this constraint (this can be easily seen on the previous example of 
permutations of entries of 3 x 3 matrices). 

When a new permutation is found to verify one of the three previous recursions 
one checks if this permutation is, or is not, equivalent (up to relabeling (2)) to 
another one already found. For instance this reduces the 3752 permutations found 
for "class I-integrability" (see Table 4 above) into only 2647 non-equivalent permuta- 
tions (classes). For each class one can calculate the number of equivalent permutations 
(cardinality of the class). Summing these cardinalities for the previous 2647 classes 
one finds 123 098 permutations associated with "class I-integrability". 

The results are summarized in Table 4: 
Integrability can be seen to be a quite rare phenomenon: 123 098 + 43 140 + 223 008 

permutations among 16! permutations, that is a ratio of -~ 1.86 x 10 -8. This ratio has 
to be compared with the ratio emerging from the exhaustive analysis of 3 x 3 matrices: 
27 classes among 30462 classes that is a ratio of ~ 0.886 x 10 -4. 

The exhaustive list of permutations leading to an integrable iteration is available by 
ftp [15]. 

Also note that the s ix teen-ver tex  inteyrability (recursion (11 )) o f  these 4 x 4 per- 

mutat ions cannot be upgraded to 5 x 5 matrices: it cannot lead to a 5 x 5 "sixteen-vertex 
integrable" permutation using the "straight generalization" previously recalled [11, 12]. 
However, one can imagine that 5 x 5 "sixteen-vertex integrable" permutations could 
exist. An exhaustive examination of permutations of entries of 5 x 5 matrices would 
be necessary to get some hint on the specific character of the "sixteen-vertex integra- 
bility". Unfortunately, the number of permutations of 5 x 5 matrices is too large to 
envisage any exhaustive analysis. 
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4. Conclusions 

We hope that some understanding of  the very nature o f  integrability will emerge 

from these exhaustive lists o f  integrable mappings. The case o f  finite order recursions 

on the xn's, associated, or not, with finite orbits o f  the birational mappings, corre- 

sponds to miscellaneous quite involved permutations. Let us concentrate on the "true" 

integrability: we have seen that, among the permutations of  entries of  3 x 3 matrices 

yielding (class 1-, class IV-, sixteen-vertex-) integrability, the ones which can actually 

be upgraded for arbitrary q are all involutions. Conversely, it is important to note that 

integrability does not necessarily require the involutive character o f  the permutations. 

For instance, the two permutations o f  Table 3 ("class I-integrability" for q = 3 only): (046) (02 ) 
CI = 3 1 5 , C 2 =  3 1 (20) 

8 7 2 5 4 

can be decomposed in a 3-cycle and two 2-cycles. For instance, permutation Ci de- 

composes as follows: 3 ~ 4 ~ 2 ---+ 3, 6 ~-+ 8, 5 ,-, 7 and permutation C2 as: 

4 --, 6 ---+ 5 ~ 4, 7 ~-~ 8, 2 +--, 3. Another example is provided by the following 

permutation of  entries o f  4 x 4 matrices ("class 1-integrability"): 

C = 

3 7 15 1 

8 5 11 9 

14 10 6 2 

4 0 13 12 

(21) 

which can be decomposed in a 4-cycle, a 5-cycle and a 7-cycle: 0 ---+ 3 ~ 7 ~ 11 --~ 0, 

4 7-+ 6 - -+  14---~ 9---+ 12 --~ 4, and 1 --* 5 ~ 10---~ 13 ---, 2 ---* 8 --~ 15 --~ 1. 

In fact among the permutations of  entries of  3 x 3 matrices, a quite large number of  

classes (namely, 12 among 20) specific o f  3 x 3 matrices (see columns "integrable 

only for q = 3, factorization scheme only for q = 3 in Table 3) are not involutions 

but permutations o f  order 3 ,4 ,6 ,9 ,12,  respectively. We have a similar situation for 

permutations o f  entries of  4 x 4 matrices. Such examples are precious to understand 

the very nature o f  integrability: here we do not have a (birational) representation o f  the 

infinite dihedral group anymore [4]. For instance Cl (and C2) is a transformation of  

order six. Thus, besides the iteration of  K = C1. I, there exists a (hyperbolic) Coxeter 

group generated by a transformation of  order six and an involution (namely I )  which 
certainly deserves to be analyzed [14]. 

One also remarks that the "sixteen-vertex" integrability cannot be represented by an 
(even involved) permutation of  entries o f  3 x 3 matrices. Is it specific o f  4 x 4 matrices 

or can it be represented using permutations o f  entries of  q x q matrices q ~> 5? It seems 

to be specific o f  4 x 4 matrices. Let us recall that the generalization of  the "sixteen 
vertex integrability" to 2m x 2m matrices (see (13)) corresponds to "g-integrability". 
When the integrability of  a permutation o f  a q x q matrix cannot be "upgraded" to a 



134 N. Abarenkova et al./Physica A 237 (1997) 123-134 

larger value of q it would be interesting to systematically see if it is not changed into 
a "g-integrability". 

We have already started the analysis of permutations of entries of  5 x 5 matrices: 
of course this last analysis cannot be exhaustive (15 511 210 043 330 985 984 000 000 _~ 
1.55 x 10 z5 permutations to scan .. .) .  We do hope that the accumulation of results in 
such very large computer calculations will provide many more examples of non- 
involutive "integrable" permutations that will help to better understand the very 
structures associated with integrability. 
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