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of integrability has been found for some of these transformations, opening the question whether this integrabilityproperty is related to an underlying statistial mehanis model or not. To answer this question a wide lass ofbirational mapping has been introdued moving the point of view from statistial mehanis to disrete dynamialsystem.These mappings are generated by two kinds of transformations on q�q matries: the inversion of the q�q matrix anda permutation of the entries of the matrix. Permutations of two entries [7{9℄, as well as permutations orrespondingto disrete symmetries of lattie models of statistial mehanis [1{6℄ were �rst analysed. Several integrable mappingsassoiated with permutations of q � q matries, for arbitrary q, have been found [7{9℄.These birational symmetries approah provides very powerful tools to solve Yang-Baxter equations or their higherdimensional generalizations1 (tetrahedron equations ...). They atually provide a fantasti short-ut for these highlyoverdetermined set equations giving immediately the uniformization of the Yang-Baxter equations whatever it is,whatever ompliated it may be [16℄ (ellipti urves, abelian surfaes, higher dimensional abelian varieties). Thisapproah provides the solution of the so-alled Baxterization problem2. It is also important to underline that thesetools an be used beyond the \narrow" framework of Yang-Baxter integrability.A. Birational automorphisms of Yang-Baxter equationsLet us �rst onsider the quite general vertex model where one diretion, denoted diretion (1), is singled out.Pitorially this an be interpreted as follows : kJLi (1) (1)where i and k (orresponding to diretion (1)) an take q values while J and L take m values. One an de�ne a\partial" transposition on diretion (1) denoted t1. The ation of t1 on the R-matrix is given by [6℄ :(t1R)iJkL = RkJiL (2)The R-matrix is a (q m)� (q m) matrix whih an be seen as q2 bloks whih are m�m matries :R = 0BBBB�A[1; 1℄ A[1; 2℄ A[1; 3℄ � � � A[1; q℄A[2; 1℄ A[2; 2℄ A[2; 3℄ � � � A[2; q℄A[3; 1℄ A[3; 2℄ A[3; 3℄ � � � A[3; q℄... ... ... . . . ...A[q; 1℄ A[q; 2℄ A[q; 3℄ � � � A[q; q℄1CCCCA (3)where A[1; 1℄, A[1; 2℄, ..., A[q; q℄ are m �m matries. With these notations the partial transposition t1 amounts topermuting all the blok matries A[�; �℄ and A[�; �℄. We use the same notations as in [7{9℄, that is, we introdue thefollowing transformations, the matrix inverse bI and the homogeneous matrix inverse I :bI : R �! R�1 ; or : I : R �! det(R) �R�1 (4)The homogeneous inverse I is a homogeneous polynomial transformation on eah of the entries of R-matrix, whihassoiates, with eah entry, its orresponding ofator. The two transformations t1 and bI are involutions and I2 =(det(R))q m�2 � Id where Id denotes the identity transformation. We also introdue the (generially in�nite order)transformations : K = t1 � I and bK = t1 � bI (5)Transformation bK is learly a birational transformation on the entries of the R-matrix, sine its inverse transformation,whih is bI � t1, is obviously a rational transformation. K is a homogeneous polynomial transformation on the entries1They are birational automorphisms of the Yang-Baxter equations or of the tetrahedron equations [3,4℄.2Far beyond the simple linear, or rational, interpolations of knot, or graph, theory.2



of the R-matrix. This general framework enables to take into aount the analysis of N -site monodromy matries [16℄(take m = qN ) of two-dimensional models, as well as the analysis of d-dimensional qd-state vertex models (takem = qd�1). Let us just give here a pitorial representation of the two sites (N = 2) monodromy matrix of atwo-dimensional model and of a three-dimensional vertex model :kj1l1 j2l2i �����lj kmni R (6)For a three-dimensional ubi vertex model, the \partial" transposition t1 assoiated with one of the three diretionsof the ubi lattie reads [4,5℄ : (t1R)i1i2i3j1j2j3 = Rj1i2i3i1j2j3 (7)Suh a situation orresponds to m = q2. Let us restrit to q = 2. The analysis of the fatorizations [14,16℄ assoiatedwith the iterations of transformation K = t1 �I , ating on an initial R-matrixM0 orresponding to a general 64-statethree-dimensional model (generi 8� 8 matrix), gives the following fatorizations :M1 = K(M0); f1 = det(M0); f2 = det(M1)f41 ; M2 = K(M1)f31 ; f3 = det(M2)f71 � f42 ; � � � (8)and, for arbitrary n, the following \string-like" fatorizations :K(Mn) = Mn+1 � f3n � f5n�1 � �fn�2 � fn�3 � � � f1�6 (9)det(Mn) = fn+1 � f4n � f7n�1 � �fn�2 � fn�3 � fn�4 � � � f1�8 (10)where the fn's are homogeneous polynomial expressions of the entries of M0. Suh fatorization shemes ourfor a large set of birational transformations orresponding to lattie statistial mehanis and even beyond thisframework [14,16℄. For all these various birational transformations [7{9,14,16℄ the fatorization relations take thefollowing general3 form at the n-th step of the iterations :det(Mn) = fn+1 � f�1n � f�2n�1 � f�3n�2 � f�4n�3 � f�5n�4 � � � f�n1 (11)K(Mn) = Mn+1 � f�0n � f�1n�1 � f�2n�2 � f�3n�3 � f�4n�4 � � � f�n�11 (12)det(Mn) �Mn+1 = �f�0n+1 � f�1n � f�2n�1 � f�3n�2 � f�4n�3 � � � f�n1 � �K(Mn) (13)the exponents �n's, �n's and �n's being positive integers. We will denote �n the degree of the determinant of matrixMn, and �n the degree of polynomial fn and �(x), �(x), �(x), �(x) and �(x), the generating funtions of the degrees�n's, �n's, and of the exponents �n's, �n's and �n's in the fatorization shemes :�(x) = 1Xn=0�n � xn; �(x) = 1Xn=0�n � xn; �(x) = 1Xn=0 �n � xn; �(x) = 1Xn=0�n � xn; �(x) = 1Xn=0 �n � xnFrom fatorizations (9), (10), one easily gets the generating funtions �(x) and �(x) :�(x) = 8 (1 + x)3(1� x)4 ; �(x) = 8x(1� x)3 (14)This shows that (11) and (12) orrespond to a polynomial growth of the degrees �n and �n. These results an beompared with the ones assoiated with the analysis of the symmetries of the sixteen vertex model [6℄ for whih onegets the simple fatorization sheme [6℄ :3It should be notied that slightly more involved, but still stable, fatorization sheme may our where the exponents �n'sand �'s depend on the parity of n, or, more generally, on n mod. p : in that ase on has p sets of exponents �n's and �n's inorder to desribe these fatorization shemes [28,29℄. Some examples are given in Appendix A.3



Mn+2 = K(Mn+1)f2n ; fn+2 = det(Mn+1)f3n ; K(Mn+2)det(Mn+2) = Mn+3fn+1fn+3 (15)and one has a hierarhy of integrable reursions [16℄ :fn f2n+3 � fn+4 f2n+1fn�1 fn+3 fn+4 � fn fn+1 fn+5 = fn+1 f2n+4 � fn+5 f2n+2fn fn+4 fn+5 � fn+1 fn+2 fn+6 (16)The generating funtions �(x) and �(x) read :�(x) = 4 � (1 + 3x2)(1� x)3 ; �(x) = 4 � x(1� x)3 (17)Again one has a polynomial growth of the alulations, onsequene of the integrability of the mapping itself [6℄.From these two examples one should not infer that the birational transformations orresponding to lattie statistialmehanis always yield polynomial growth. Vertex models studied by Stroganov or Perk and Shultz orresponding toq 6= 2 provide examples of exponential growth of the omplexity [16℄ : this is the generi situation for lattie statistialmehanis. Exponential growth rules out the existene of solutions of the Yang-Baxter equations.We have used the methods introdued in [7{9℄ on various examples of vertex models of lattie statistial mehanis.In partiular, we have analyzed the fatorization properties of disrete symmetries of the parameter spae of theselattie models, represented as birational transformations. Di�erent features have emerged from suh studies, namelythe polynomial growth of the omplexity of the iterations of these birational transformations [13℄, the existene ofreursion relations bearing on the fatorized polynomials fn. The relation between these properties, or more generalstrutures like the \quasi-integrability" [6℄, and the integrability of these lattie models of statistial mehanis, hasbeen studied. The analysis of the fatorizations orresponding to a spei� two-dimensional vertex model has shownhow the generi exponential growth of the alulations does redue to a polynomial growth when the model beomesYang-Baxter integrable [16℄. This gives a �rst example of the fat that the searh for polynomial growth4 of theassoiated iterations provides a new way to analyse vertex models [4,5,15℄.B. Birational transformations assoiated with general permutations of entries of q � q matriesThese lattie statistial mehanis birational transformations orrespond to ombining the inversion of a matrixtogether with various permutations of the entries of the R-matrix representing geometrial symmetries of variouseulidean d-dimensional lattie. This is a motivation for onsidering the following problem [14,16℄ onsisting inanalyzing the transformations Kq = t Æ I , ating on a q � q matries M , for arbitrary permutation t of the entries.This is a quite large set of transformations : for 3� 3 matries one has 362880 suh (birational) transformationsto study, and for 4� 4 matries, 20922789888000 transformations have to be studied. A systemati study of theselarge sets of (birational) transformations is performed elsewhere [28℄. Let us �rst onentrate, in the �rst part ofthis paper, on a simple, but very interesting (and tutorial), example of permutation, namely the transposition of thetwo entries M1;2 with M3;2 and its assoiated bi-polynomial transformation K. This transformation has also beenanalysed in detail in [9℄. For q � q matries (q � 3) the fatorizations orresponding to the iterations of K read :f1 = det(M0) ; M1 = K(M0) ; f2 = det(M1)fq�21 ; M2 = K(M1)fq�31 ; f3 = det(M2)f1 � fq�32 ; M3 = K(M2)fq�32 ;f4 = det(M3)fq�11 � f2 � fq�23 ; M4 = K(M3)fq�21 � fq�33 ; f5 = det(M4)f21 � fq�12 � f3 � fq�24 ; � � � (18)and for arbitrary n :det(Mn) = fn+1 � (fq�2n � fn�1 � fq�1n�2 � f2n�3) � (fq�2n�4 � fn�5 � fq�1n�6 � f2n�7) � � � fÆn1 ; (19)K(Mn) = Mn+1 � (fq�3n � fq�2n�2 � fn�3) � (fq�3n�4 � fq�2n�6 � fn�7) � � � f�n1 (20)4In fat, the polynomial growth of the alulations [8℄ orrespond to shift on an abelian variety Cn=�.4



where �n = q � 3 for n = 1 (mod 4), �n = 0 for n = 2 (mod 4), �n = q � 2 for n = 3 (mod 4) and �n = 1 for n = 0(mod 4) and Æn also depends on the trunation. The exat expressions of the generating funtions �(x) and �(x)read [9℄ : �(x) = q1 + x + q2 � x � �1 + x2�(1� x)(1 + x)(1� x� x3) ; �(x) = q � x � �1 + x2�1� x� x3 (21)It is lear that one has an exponential growth of the degrees �n's, �n's : these oeÆients grow like �n where� � 1:465 � � �. This displays the \generi" fatorization sheme. However, on various subvarieties (like the odimensionone subvariety � = 0 see below) the fatorization sheme an be modi�ed as a onsequene of additional fatorizationsourring at eah iteration step, thus yielding a smaller value for the omplexity � .This transformation an be seen to restrit to a two-parameter family of mapping of two variables (see (22) below).We now onsider this two-parameter family of mapping of two variables, for whih muh an be said. In partiular, wewill onjeture an exat algebrai value for the (exponential of the) topologial entropy and for the Arnold omplexity5.Furthermore, these two measures of omplexity will be found to be equal for all the values of the two parameters,generi or not (the notion of "generiity" is explained below). Note that a fundamental distintion must be madebetween the various \omplexity measures" aording to their invariane under ertain lasses of transformations.One should distinguish, at least, two di�erent sets of omplexity measures, the ones whih are invariant under thelarger lasses of variables transformations, like the topologial entropy or the Arnold omplexity [22℄, and the othermeasures of omplexity whih also have invariane properties, but under a \less large" set of transformations, and aretherefore more sensitive to the details of the mapping (they may depend on the metri like, for instane, the metrientropy [19,20℄). C. A two parameters family of birational transformationLet us onsider K2 instead of K (whih is just a simple hange for the omplexity � into �2 ). Transformation K2an atually be redued [9℄ to a two parameters family of birational transformations k�;� :k�;� : (un+1 ; vn+1) = �1� un + un=vn ; �+ vn � vn=un + � � (1� un + un=vn)� (22)whih an also be written projetively :un+1 = (vntn � unvn + untn) � unvn+1 = � � un � vn � tn + (un � tn) � v2n + � � (vntn � unvn + untn) � untn+1 = un � vn � tn (23)As far as omplexity alulations are onerned, the � = 0 ase is singled out [26℄. In that ase, it is onvenient touse a hange of variables to get the very simple form k� :k� : (yn+1 ; zn+1) = �zn + 1� � ; yn � zn � �zn + 1� (24)or on its homogeneous ounterpart :(yn+1 ; zn+1 ; tn+1) = �zn + tn � � � tn) � (zn + tn) ; yn � (zn � � � tn) ; tn � (zn + tn)� (25)
5To study the omplexity of ontinuous, or disrete, dynamial systems, a large number of onepts have been introdued[17,18℄. A non exhaustive list inludes the Kolmogorov-Sinai metri entropy [19,20℄, the Adler-Konheim-MAndrew topologialentropy [21℄, the Arnold omplexity [22℄, the Lyapounov harateristi exponents, the various fratal dimensions [23,24℄, � � � .
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II. THE COMPLEXITY GROWTHThe orrespondene [9℄ between transformations Kq and k�;�, more spei�ally between K2q and k�;�, is givenin [29℄. It is shown below that, beyond this orrespondene, K2q and k�;� share properties onerning the omplexity.Transformation Kq is homogeneous and of degree (q � 1) in the q2 homogeneous entries. When performing the nthiterate one expets a growth of the degree of eah entries as (q � 1)n. It turns out that, at eah step of the iteration,some fatorization of all the entries ours. The ommon fator an be fatorized out in eah entry leading to a\redued" matrix Mn, whih is taken as the representent of the nth iterate point in the projetive spae. Due tothese fatorizations the growth of the alulation is not (q � 1)n but rather �n where � is generially the largest rootof 1 + �2 � �3 = 0 (i.e. 1.46557123 < q � 1 [9,13℄, see also (21)). We all � the omplexity growth, or simply, theomplexity. This result is a onsequene of a stable fatorization sheme (see (19), (20)), from whih two generatingfuntions6 �(x) and �(x) an be onstruted. Generating funtion �(x) keeps trak respetively of the degrees of thedeterminants of the suessive \redued" matries and �(x) of the degrees of the suessive ommon fators. Theatual value of � is the inverse of the pole of �(x) (or �(x)) of smallest modulus. The algebraiity of the omplexityis, in fat, a straight onsequene of the rationality of funtions �(x) and �(x) with integer oeÆients [13℄. Thesame alulations have also been performed on transformations (22) and (23). In that ase fatorizations also our,at eah step, and generating funtions an be alulated. These generating funtions are, of ourse, di�erent from thegenerating funtions for K2q (see [13℄) but they have the same poles, and onsequently the same omplexity growth.One sees that, remarkably, the omplexity � does not depend on the birational representation onsidered : K2q for anyvalue of q, k�;� or the homogeneous transformation (23). It will be useful to de�ne some degree generating funtionsG(x) : G(x) = Xn dn � xn (26)where dn is the degree of some quantities we look at, at eah iteration step (numerators or denominators of the twoomponents of kn, degree of the entries of the \redued" matries Mn's, degree of polynomials fn's extrated in thefatorization shemes). The omplexity growth � is the inverse of the pole of smallest modulus (if G(x) is rational)of any of these degree generating funtions G(x) :log� = limm!1 log dmm (27)A. Complexity growth for � = 0In the � = 0 ase, whih orresponds to a odimension one variety of the parameter spae [26,29℄, additionalfatorizations our reduing further the growth of the omplexity. The generating funtions are modi�ed and thenew omplexity is given, for Kq, by equation 1� �2 � �4 = 0; i.e. � ' 1:27202 � � � . For k�, whih orresponds toK2q , the equation reads : 1� �� �2 = 0 (28)leading to the omplexity � ' 1:61803 � � � ' (1:27202 � � �)2. Not surprisingly, the omplexity of the mappings k�;�for � = 0 (see (22)) and the one of mapping k� (see (24)), are the same: omplexity � orresponds to the asymptotibehavior of the degree of the suessive quantities enountered in the iteration (see (27)). Clearly, this behaviorremains unhanged under simple hanges of variables. Note that this omplexity growth analysis an be performeddiretly on transformation k�, or on its homogeneous ounterpart (25). The number of generating funtions in thetwo ases is not the same, but all these funtions lead to the same omplexity. In fat omplexity � is nothing butthe Arnold omplexity [22℄, known to be invariant under transformations orresponding to a hange of variables likethe hange of variables from (22), for � = 0, to (24) (or to (25)). Let us also reall that the Arnold omplexity6The generating funtion �(x) should not be onfused with the parameter �.6



ounts the number of intersetion between a �xed line7 and its nth iterate, whih learly goes as �n. Conversely, allthese growth alulation evaluations an be seen as a \handy" way of alulating the Arnold omplexity.All these onsiderations allow us to design a semi-numerial method to get the value of the omplexity growth � forany value of the parameter �. The idea is to iterate, with (24) (or (22)), a generi rational initial point (y0; z0) andto follow the magnitude of the suessive numerators and denominators. During the �rst few steps some aidentalsimpli�ations may our, but, after this transient regime, the integer denominators (for instane) grow like �n wheren is the number of iterations. Typially a best �t of the logarithm of the numerator as a linear funtion of n, betweenn = 10 and n = 20, gives the value of � within an auray of 0:1%. An integrable mapping yields a polynomial growthof the alulations [13℄ : the value of the omplexity � has to be numerially very lose to 1 . Fig. 1 shows the valuesof the omplexity as a funtion of the parameter �. The alulations have been performed using an in�nite-preisionC-library [25℄.For most of the values of � we have found � ' 1:618, in exellent agreement with the value predited in (28). In [26℄,it has been shown that the simple rational values � = �1; 0; 1=3; 1=2; 1 yield integrable mappings. For these speialvalues one gets � � 1 orresponding to a polynomial growth [26℄. In addition, Fig. 1 singles out two sets of valuesf1=4; 1=5; 1=6; � � � ; 1=13g and f3=5; 2=3 ; 5=7g, suggesting two in�nite sequenes � = 1=n and8 � = (m � 1)=(m+ 3)for n and m integers suh that n � 4 and m � 7 and m odd. We all \non-generi" the values of � of one of the twoforms above (together with the integrable values), and \generi" the others. To on�rm these suggestions of Fig. 1,we go bak to (the matrix) transformation Kq, for q = 3, to get a generating funtion of the degrees of the fn'sextrated at eah step of iteration, namely, with the notations of [9,14,16℄, funtion �(x). From now on, we will givebelow, instead of �(x), the expression of the following omplexity generating funtion de�ned, for q� q matries, as :G�� (q; x) = �(x)q � x (29)In the following the alulations are often displayed for 3� 3 matries and G�� (q; x) will simply be denoted G�� (x) .Let us reall that the value of the omplexity � is the inverse of the root of smallest modulus of the denominatorof this rational funtion. Examples of these alulations, in order to get the orresponding fatorization sheme anddedue the generating funtion �(x), or G�� (x), are given in Appendix A. Choosing an initial � = 0 matrix to iterate,we have �rst obtained the generating funtion G�(x) in the generi ase9 for � = 0 (see (A4) in Appendix A) :G�(x) = 1 + x+ x31� x2 � x4 (30)We also got the generating funtion G�(x) for the di�erent \non-generi" ases :G1=m(x) = 1 + x+ x3 � x2m+1 � x2m+31� x2 � x4 + x2m+4 ; with m � 4 (31)G(m�1)=(m+3)(x) = 1 + x+ x3 � x2m+61� x2 � x4 + x2m+4 ; with m � 7 m odd (32)and : Gint(x) = 1 + x+ x3 + x4 + x8 + x121� x2 � x6 + x8 � x10 + x12 + x16 � x18 (33)= 1 + x � (1 + x2) + x4 � (1 + x4 + x8)1� x2 � (1 � x12) � x6 � (1� x2 + x4 � x6 + x8 � x10 + x12)for � = 1=2 and � = 1=3. For � = 1=m (m � 4) and � = (m � 1)=(m + 3) (m � 7 and m odd), the orrespondingomplexities are the inverse of the roots of smallest modulus of polynomial :7Or the intersetion of the n-th iterate of any �xed algebrai urve together with any other possibly di�erent but �xed algebraiurve.8Note that m ! (m+ 3)=(m� 1) is an involution.9It is worth notiing that these results are not spei� to 3 � 3 matries, for example relation (30) is atually valid simplyreplaing G�� (x) by G�� (q; x) . 7



1� x2 � x4 � x2m+4 = 0 (34)in agreement10 with the values of Fig. 1. This semi-numerial method ats as an `integrability detetor' and, further,provides a simple and eÆient way to determine the omplexity of an algebrai mapping. Applied to mappings (22),Kq = t � I , or (24), it shows that the omplexity is, generially, a universal quantity, independent of the value of theparameter �, exept for the four integrable points, and for two denombrable sets of points.
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FIG. 1. Complexity for � = 0. Complexity �, for k�, as a funtion of �.B. Complexity growth for � 6= 0These omplexity growth alulations an straightforwardly be generalized to � 6= 0. As seen in setion (I B) (see(21)), the \generi" generating funtion is : G��(x) = 1 + x21 � x � x3 (35)The pole of smallest modulus of (35) gives 1:46557 � � � for the value of the omplexity for the matrix transformationK.The omplexity for the transformation k�� is the square of this value: � = 2:14790 � � � . Fig. 2 shows, for � = 1=100,omplexity � as a funtion of the parameter � , obtained with the semi-numerial method previously explained. Evenwith suh a \small value" of � the expeted drasti hange of value of the omplexity (namely 1:61803 ! 2:14790)is non-ambiguously seen.10In this �gure the �-axis has been disretized as M=720 (M integer) and the extra values 1/7, 1/11, 1/13 and 5/7 have beenadded.
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FIG. 2. Complexity �, for k�;�, as a funtion of � taken of the form M=720 for � = 1=100.Moreover, Fig. 2 learly shows that, besides the value � = 0 known to be integrable whatever � [26℄, the followingvalues � = 1=2, � = 1=3 and � = 3=5 are assoiated to a signi�antly smaller omplexity, at least for the disretizationin � we have investigated. From these numerial results, and by analogy with � = 0, one ould �gure out thatall the � = 1=m are also non-generi values of �. In fat a fatorization sheme analysis, like the one depited inAppendix A), shows that � = 1=4 or � = 1=7 atually orrespond to the generi (35). We got similar11 results forother values of � 6= 0. Let us just keep in mind that, besides � = 0 and � = �1, at least � = 1=2 , � = 1=3 and� = 3=5 are singled out for � 6= 0 in our semi-numerial analysis. The generi expression (for 3� 3 matries) for thegenerating funtion G(x) , namely (35), is replaed, for the \non-generi" value � = 1=2 (with � 6= 0), by :G�1=2(x) = 1 + x + x3 � x161 � 2x2 � x6 + x8 � x10 + x12 + x16 (36)= (1 + x2) � (1 + x� x2 + x4 � x6 + x8 � x10 + x12 � x14)(1� x2) � (1 � x2 � x4 � 2x6 � x8 � 2x10 � x12 � x14)For the other \non-generi" value of �, � = 1=3, the omplexity generating funtion reads :G�1=3(x) = 1 + x+ x3 � x121� 2x2 � x6 + x8 + x12 = (1 + x2) � (1 + x � x2 + x4 � x6 + x8 � x10)(1� x2) � (1� x2 � x4 � 2x6 � x8 � x10) (37)For the \non-generi" value � = 3=5, the omplexity generating funtion reads :G�3=5(x) = 1 + x+ x3 � x201� 2x2 � x6 + x8 � x10 + x12 � x14 + x16 + x20 (38)The denominator of (38) has a \ylotomi polynomial" simple form :�1� x2� � �1 � x2 � (1 + x + x2) � (1 � x + x2) � (1 + x4) � (1 + x8)� (39)11However, when varying � and keeping � �xed, new values of the omplexity � our, � being some \stair-ase" funtion of�. We will not exhaustively desribe the rather involved \strati�ed" spae in the (� ; �) plane, orresponding to the various\non generi" omplexities. 9



III. DYNAMICAL ZETA FUNCTION AND TOPOLOGICAL ENTROPYIt is well known that the �xed points of the suessive powers of a mapping are extremely important in order tounderstand the omplexity of the phase spae. A lot of work has been devoted to study these �xed points (elliptior saddle �xed points, attrators, basin of attration, et), and to analyse related onepts (stable and unstablemanifolds, homolini points, et). We will here follow another point of view and study the generating funtion of thenumber of �xed points. By analogy with the Riemann � funtion, Artin and Mazur [27℄ introdued a powerful objetthe so-alled dynamial zeta funtion : �(t) = exp 1Xm=1#�x(km) � tmm ! (40)where #�x(km) denotes the number12 of �xed points of km. The generating funtionsH(t) = X#�x(km) � tm (41)an be dedued from the � funtion : H(t) = t ddt (log �(t)): (42)If the dynamial � funtion is rational the topologial entropy log(h) is simply related to its pole h :logh = limm!1 log (#�x(km))m (43)If the dynamial zeta funtion an be interpreted as the ratio of two harateristi polynomials of two linear operatorA and B, namely �(t) = det(1 � t � B)=det(1 � t � A), then the number of �xed points #�x(km) an be expressedfrom Tr(An) � Tr(Bn). For more details on these Perron-Frobenius, or Ruelle-Araki transfer operators, and othershifts on Markov's partition in a symboli dynamis framework, see for instane [32{35℄. In this linear operatorsframework, the rationality of the � funtion, and therefore the algebraiity of the topologial entropy, amounts tohaving a �nite dimensional representation of the linear operators A and B. In the ase of a rational � funtion,h, the exponential of the topologial entropy is the inverse of the pole of smallest modulus. Sine the number of�xed points remains unhanged under topologial onjugaison (see Smale [36℄ for this notion), the � funtion is alsoa topologially invariant funtion, invariant under a large set of transformations, and does not depend on a spei�hoie of variables. Suh invarianes were also notied for the omplexity growth �. It is then tempting to make aonnetion between the rationality of the omplexity generating funtion previously given, and a possible rationalityof the dynamial � funtion. We will also ompare the Arnold omplexity � and h, the (exponential of the) topologialentropy. A. Dynamial zeta funtion for � = 0, � generiWe try here to get the expansion of the dynamial zeta funtion of the mapping k� (see (24)), for generi13 valuesof �. We onentrate on the value � = 13=25 = 0:52. This value is lose to the value 1/2 where the mapping isintegrable [26℄. One an gain an idea of the number, and loalization, of the (real) �xed points looking at the phaseportrait of Fig. 3.12If one of these numbers is in�nite the de�nition breaks down. For instane for integrable mappings there are many algebraiurves suh that all their points are �xed points of kn for some given integer n.13Neither of the form 1=m, nor of the form (m� 1)=(m+ 3).
10



-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1FIG. 3. Phase portrait of k� for � = 0 and � = 13=25. 550 orbits of length 1000 have been generated. 50 orbits start frompoints randomly hosen near a �xed point of order 5 of k� = k13=25, and 500 others orbits start from randomly hosen pointsoutside the ellipti region. Only the points inside the frame are shown.The ellipti �xed point (y0; z0) = (:24 ; �:24) is well seen, as well as the �ve ellipti points and the �ve saddlepoints of k5� . Many points of higher degree are also seen. Transformation k� has a single �xed point for any �. This�xed point is ellipti for � � 0 and loalized at (y0; z0) = ((1� �)=2; (�� 1)=2). Transformation k2� has only the �xedpoint inherited from k�. The new �xed points of k3� are (2 � � ; (��1)=2), (�1; 1) and ((1��)=2; ��2). Transformationk4� has four new �xed points. At this point the alulations are a bit too large to be arried out with a literal �, andwe partiularize � = 13=25. For k5� we have �ve news ellipti points and �ve new saddles points. The oordinates zand y of these points are roots of the two polynomials (obtained from resultants) :P (z) = z2 (25 z � 13) (1 + z)(4375 z2+ 1550 z� 89) (175 z2 + 106 z + 7) (44)� (25 z + 13)2 (25 z2 + 12 z + 1)2 (25 z + 6)3Q(y) = y (y � 1)2 (25 y � 6)5 (25 y2 � 12 y + 1)3 (25 y � 12)2 (45)� (7� 106 y + 175 y2)2 (4375 y2 � 1550 y� 89)3Among the various pairings one an onsider, some orresponds to spurious or singular points (omponents of k5� are ofthe form 0=0 ). For instane z2 (25 z �13) (1+z) (25 z+13)2 = 0 and y (y � 1)2 (25 y�12)2 = 0 orrespond to suhpoints to be disarded. After this seletion, the �ve pairings of roots of (44) and (45), giving the �ve ellipti points,are (0.530283, -0.107335), (-0.050283, -0.24), (0.372665, -0.372665), (0.107335, -0.530283), (0.24, 0.050283) andthe �ve pairings giving the �ve hyperboli-saddle points are (0.372665, -0.075431), (0.107335, -0.107335), (0.404568,-0.24), (0.075431, -0.372665), (0.24, -0.404568). This is learly seen on Fig. 3 where the ourrene of �ve \petals"orresponding to �ve ellipti points is obvious, the �ve hyperboli points being loated between the petals. Afterdisarding the spurious, or singular, points, the �xed points for k5� are (y ; z) points where z and �y are roots ofthe same polynomial P5(z). For arbitrary value of �, P5(z) reads :P5(z) = �(3 �� 1) � z2 + (�4 �2 + 14 � � 6) � z + �3 � 5 �2 + 10 �� 4� (46)��(3 �� 1) � z2 + (4 � 6 � � 2 �2) � z + 1 � 5 � + 6 �2� � �z2 + (1 � �) � z + 2 � � 1� � (2 z + 1� �)For transformation k6� , beyond the �xed points of k� and k3� , one gets two omplex saddle �xed points, i.e. trans-formation k� has two 6-yles. For transformation k7� , one obtains one ellipti real �xed point, one saddle real �xedpoint and and two omplex saddle �xed points. For transformation k8� , one obtains one saddle real �xed point andfour omplex saddle �xed points. For transformation k9� , one obtains one ellipti real �xed point, three saddle real11



�xed point and and four omplex saddle �xed points. For transformation k10� , one obtains one ellipti real �xedpoint, one saddle real �xed point and and three omplex ellipti �xed points and six saddle omplex �xed points. Thetwo ellipti �xed points of k10� (0.24, -0.874) and (0.874, -0.24) are seen as \ellipse" on Fig. (3). For transformationk11� , one obtains one ellipti real �xed point, �ve saddle real �xed point and and twelve omplex saddle �xed points.On Fig. (3) a �xed point of k12� lying on y + z = 0 is seen near y = �13=25. The polynomials, similar to (44) and(45), as well as the spei� pairing of roots, for the suessive iterates kN� , are available in [37℄.It is worth notiing, that among the 53 yles of k� of length smaller, or equal, to 11, as muh as 44 are on the liney+ z = 0, six are on the line y +�z = 0. Two of the three remaining yles are of length 11, while the last is of lengtheight. The partiular role played by the y + z = 0 line an be simply understood. Let us alulate the inverse ofthe birational transformation (24). It has a very simple form :k�1� : zn+1 = yn � (1� �) ; yn+1 = zn � yn + �yn � 1 (47)whih is nothing but transformation (24) where yn and � zn have been permuted. The yn $ � zn symmetry justorresponds to the time-reversal symmetry k� $ k�1� transformation. The y + z = 0 line is the time-reversalinvariant line.Also note that, among these 53 yles, only one of the 31 omplex yles is of the form Z0; Z1; � � �Zp; �Z0; �Z1; � � � �Zpwhere Zi = (yi; zi) and �Zi is the omplex onjugate. The 30 remaining omplex yles are atually 15 yles and theiromplex onjugates.For the � = 13=25 = 0:52 example these results are summarized in table Tab. I whih gives the number of �xedpoints, as well as their status :n 1 2 3 4 5 6 7 8 9 10 11# �xed points 1 1 4 5 11 16 29 44 76 121 199# n-yles 1 0 1 1 2 2 4 5 8 11 18# ellipti real 1 0 0 0 1 0 1 0 1 1 1# saddle real 0 0 1 1 1 0 1 1 3 1 5# ellipti omplex 0 0 0 0 0 0 0 0 0 3 0# saddle omplex 0 0 0 0 0 2 2 4 4 6 12# on y + z = 0 1 0 1 1 2 2 4 4 6 10 12# on y + �z = 0 0 0 0 0 0 0 0 0 2 0 4TABLE I. Number and status of the �xed points of kn13=25. n-yle means yle of minimum length n
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The orresponding phase portrait is very ompliated and dominated by the real �xed points [30℄ whih are allsaddle or ellipti. We note that the same properties (all points saddle or ellipti) also holds for the omplex �xedpoints.Loal area preserving property : Eventually, one observes an area preserving [38℄ property in the neighborhoodof all the �xed points of kn� : the produt of the modulus of the two eigenvalues of the Jaobian (i.e. the determinant)of kn� , at all �xed points for n � 11, is equal to 1 . This loal property is rather non trivial : the determinant ofthe produt of the jaobian over an inomplete yle is very ompliated and only when one multiplies by the lastjaobian does the produt of the determinants shrinks to 1 .Dynamial zeta funtion : The total number of �xed points of kN� for N running from 1 to 11, yields thefollowing expansion, up to order eleven, for the generating funtion H(t) of the number of �xed points :H�(t) = t+ t2 + 4 t3 + 5 t4 + 11 t5 + 16 t6 + 29 t7 + 45 t8 + 76 t9 + 121 t10 + 199 t11 + � � � (48)This expansion oinides with the one of the rational funtion :H�(t) = t � �1 + t2�(1� t2) (1� t� t2) (49)whih orresponds to a very simple rational expression for the dynamial zeta funtion :��(t) = 1 � t21 � t � t2 (50)Expansion (48) remains unhanged for all the other generi values of � we have also studied.We onjeture that :The simple rational expression (50) is the atual expression of the dynamial zeta funtion for any generi valueof �.Comparing expression (28) with (50) one sees that the singularities of the dynamial zeta funtion happen tooinide with the singularities of the generating funtions of the Arnold omplexity. In partiular the omplexitygrowth � and h, the exponential of the topologial entropy, are equal.In fat, as far as �xed points of kN� are onerned, there is also a �xed point at 1. If one takes into aount this�xed point at 1 as well, the previous de�nitions are slightly modi�ed :H(t) �! H(1)(t) = H(t) + t1� t ; and : �(t) �! �(1)(t) = �(t)1� t (51)Rational expression (50) beomes : �(1)� (t) = 1 + t1 � t � t2 (52)Let us onsider the omplexity generating funtion orresponding to the degrees of the numerators (or denominators)of the two omponents of kN� . The generating funtion of the degree of the numerator of the z omponent of kN� ,we denote gz(t), has exatly the same expression, up to 1, as (52) :1 + gz(t) = �(1)� (t) == 1 + 2 t+ 3 t2 + 5 t3 + 8 t4 + 13 t5 + 21 t6 + 34 t7 + 55 t8 + 89 t9 + 144 t10 + 233 t11 + � � � (53)One an also introdue gy(t) the generating funtion of the degree of the numerator of the y omponent of kN� , andhy(t) and hz(t) the generating funtions of the degrees of the denominators of the y and z omponents of kN� :gy(t) = t+ 2 t2 + 3 t3 + � � � ; hz(t) = t+ 2 t2 + 4 t3 + � � � ; hy(t) = t2 + 2 t3 + 4 t4 + � � �where : gz(t) = hz(t) + t1� t ; gy(t) = hy(t) + t1� t ; gy(t) = t � (1 + gz(t)) (54)One has : 13



�(1)� (t) = 1 + gz(t) = gy(t)t (55)More \anonially" realling the homogeneous transformation (25), let us denote ghom(t) the generating funtion ofthe suessive degrees of the yn, zn and tn. For generi � , one has the following relation between ghom(t) and �(1)� (t):ghom(t) + 11� t = �(1)� (t) (56)When mentioning zeta funtions it is tempting to seek for simple funtional relations relating �(t) and �(1=t). Letus introdue the following \avatar" of the dynamial zeta funtion :b�(t) = �(t)�(t) � 1 (57)Transformation z ! z=(z � 1) is an involution. One immediately veri�es that b��(t) , orresponding to (50), veri�estwo extremely simple, and remarkable, funtional relations :b��(t) = � b��(1=t) ; and : b��(t) = b��(�1=t) ; (58)or on the zeta funtion �(t) :��(1=t) = ��(t)2 � ��(t) � 1 ; and : ��(�1=t) = ��(t) (59)The generating funtion (49) veri�es : H�(�1=t) = �H�(t) (60)Cyle deomposition : An alternative way of writing the dynamial zeta funtions relies on the deompositionof the �xed points into yles whih orresponds to the Weyl onjetures [39℄. Let us introdue Nr the number ofirreduible yles of kr� : for instane for N12 we ount the number of �xed points of k12, that are not �xed points ofk�, k3� , k4� or k6� , and divide by twelve. One an write the dynamial zeta funtion as :��(t) = 1(1� t)N1 � 1(1� t2)N2 � 1(1� t3)N3 � � � 1(1� tr)Nr � � � (61)The ombination of the Nr's, inherited from the produt (61), automatially takes into aount the fat that thetotal number of �xed points of kr� an be obtained from �xed points of kp� , where p divides r, and from irreduible�xed points of kr itself (see [39℄ for more details). A detailed analysis of this yle deomposition (61) for generivalues of � will be detailed elsewhere [30℄. The previous exhaustive list of �xed points (up to order twelve) an berevisited in this irreduible yle deomposition point of view. The results of [37℄ yield : N1 = 1 ; N2 = 0 ; N3 =1 ; N4 = 1 ; N5 = 2 ; N6 = 2 ; N7 = 4 ; N8 = 5 ; N9 = 8 ; N10 = 11 ; N11 = 18 . One atually veri�es easily that(50) and (61) have the same expansion up to order twelve with these values of the Nr's. The next Nr's should beN12 = 25 ; N13 = 40 ; N14 = 58 ; N15 = 90 ; � � �Real dynamial funtions : Introduing some generating funtion for the real �xed points of kN , it should benotied that this generating funtion has the following expansion up to order eleven for � = :52 :Hreal� = t+ t2 + 4 t3 + 5 t4 + 11 t5 + 4 t6 + 15 t7 + 13 t8 + 40 t9 + 31 t10 + 67 t11 + � � � (62)This series is a quite \hekered" one. Furthermore, its oeÆients depend very muh on parameter � . In ontrastwith generating funtion (41), the generating funtion Hreal� has no simple universality property in �. This seriesdoes not take into aount the topologial invariane in the omplex projetive spae : it just tries to desribe thedynamial system in the real spae. This series Hreal� orresponds to the \omplexity" as seen on the phase portraitof Fig. (3). One sees, here, the quite drasti opposition between the notions well-suited to desribe transformationsin omplex projetive spaes, and the ones aiming at desribing transformations in real variables.
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B. Dynamial zeta funtions for � = 0, � non generiTo further investigate the identi�ation of these two notions (Arnold omplexity-topologial entropy), we nowperform similar alulations (of �xed points and assoiated zeta dynamial funtions) for � = 1=m with m � 4 and� = (m� 1)=(m+3) with m � 7 odd (see Appendix B). The alulations are detailed in the Appendix B. All thesealulations are ompatible with the following single expression of the � funtion :�1=m(t) = 1 � t21 � t � t2 + tm+2 (63)We onjeture that this expression is exat, at every order, and for every value of m � 4. Again this expressionoinides with the orresponding expression of the Arnold omplexity (see (34) with t = x2).Similar alulations an also be performed for the seond set of non-generi values of � , namely � = (m�1)=(m+3)with m � 7, m odd (or equivalently � = (n� 1)=(n+ 1) with n � 4). Comparing these rational expressions for thedynamial zeta funtion ((50), (B2), ...), and the rational expressions for the generating funtions of the Arnoldomplexity ((31), (32), (33), ...) for the generi, and non-generi, values of � , one sees that one atually has the samesingularities in these two sets of generating funtions (note that t has to be replaed by x2 sine k� is assoiatedwith transformation K2 and not K). The identi�ation between the Arnold omplexity and the (exponential ofthe) topologial entropy is thus valid, for � = 0 , for generi values of �, and even for non-generi ones. It isworth notiing that, due to the topologially invariant harater of the dynamial zeta funtion, these results are ofourse not spei� of the y and z representation of the mapping (24) but are also valid for the (u ; v) representation(22): in partiular the exat expressions of the dynamial zeta funtions (namely (50), (B2) in Appendix B), remainunhanged and, of ourse, the denominators of the omplexity generating funtions are also the same for generi, ornon-generi, values of �.The loal area preserving property in the neighborhood of all the �xed points of kn� previously notied for � = 0, �generi, is also veri�ed for these non generi values of �.C. Dynamial zeta funtions for � 6= 0This � = h identi�ation is not restrited to � = 0 . One an also onsider mapping (22) for arbitrary values of� and � and alulate the suessive �xed points. Of ourse, as a onsequene of the higher omplexity of the � 6= 0situation (the omplexity jumps from 1:61803 � � � to 2:14789 � � � ), the number of suessive �xed points is drastiallyinreased and the alulations annot be performed up to order eleven anymore. In the generi ase, the expansionof the generating funtion H(t) of the number of �xed points an be obtained up to order seven :H�� (t) = 2 t+ 2 t2 + 11 t3 + 18 t4 + 47 t5 + 95 t6 + 212 t7 + � � � (64)One has two �xed points for k�;�, no new �xed points for k2�;�, three sets of three new �xed points for k3�;� (giving3 � 3 + 2 = 11 �xed points), four sets of four new �xed points for k4 (giving 4 � 4 + 2 = 18 �xed points), ninesets of �ve new �xed points for k5 (giving 9� 5 + 2 = 47 �xed points), fourteen sets of six new �xed points for k6�;�(giving 14� 5 + 3� 3 + 2 = 95 �xed points). This expansion orresponds to the following order seven expansionfor the dynamial zeta funtion :��� (t) = 1 + 2 t + 3 t2 + 7 t3 + 15 t4 + 32 t5 + 69 t6 + 148 t7 + � � � (65)thus yielding to the following rational expression for the dynamial zeta funtion :��� (t) = (1� t2) � (1 + t)1� t� 2 t2 � t3 = (1 � x2) � (1 + x2)2(1 � x � x3) � (1 + x + x3) with : t = x2 (66)This expression an also be written : ��� (t) = �1 � t2� � (1 + t)1 � t � (1 + t)2 (67)If one ounts the �xed point at in�nity one gets :�(1)(t) = (1 + t)21� t � 2 t2 � t3 (68)15



Let us onsider again the omplexity generating funtion orresponding to the degrees of the numerators of the twoomponents of kN�;� (see (22)). The generating funtion gv(t) for the degrees of the numerators of the v omponentof kN�� , has again exatly the same expression (up to 1) as (68) :1 + gv(t) = �(1)(t)= 1 + 3 t+ 6 t2 + 13 t3 + 28 t4 + 60 t5 + 129 t6 + 277 t7 + � � � (69)The generating funtion ghom(t) of the suessive degrees of the homogeneous transformation (23) of the un, vnand tn, reads : ghom(t) = t � (3 + t� t2 � t3)(1� t) � (1� t� 2 t2 � t3) (70)Let us reall the \alternative" zeta funtion (57). It veri�es the simple funtional relation :t2 � b��� (t) � b��� (�t) = � b��� (�1=t) � b��� (1=t) (71)The new rational onjeture (66) orresponds to the following expression for H(t) :H�� (t) = t � (2 + 3 t2 + t3)(1� t2) � (1� t � 2 t2 � t3) (72)Comparing the denominators of (66) and (35), one sees that, like for � = 0, there is an identi�ation between theArnold omplexity �, and h, the exponential of the topologial entropy :� = h (73)The eulerian produt Weyl-deomposition (61) of the dynamial zeta funtion (66) orresponds to the followingnumbers of r-yles : N1 = 2 ; N2 = 0 ; N3 = 3 ; N4 = 4 ; N5 = 9 ; N6 = 14 ; N7 = 30 ; N8 = 54 ; N9 =107 ; N10 = 204 ; N11 = 408 ; N12 = 25 ; N13 = 1593 ; N14 = 3162.D. Dynamial zeta funtions for � 6= 0 with � non-generiFor a \non-generi" value of � when � 6= 0, namely � = 1=2, the expansions of the generating funtion H(t) and ofthe dynamial zeta funtion suggest the following possible rational expression for the dynamial zeta funtion :��1=2(t) = 1 + t� t71� t� t2 � 2 t3 � t4 � 2 t5 � t6 � t7 = 1 + t � �1 � t6�1 � t � (1 � t + t2) � (1 + t + t2)2 (74)This last result has to be ompared with (36). The generating funtion gv(t) is again in agreement with a relation1 + gv(t) = �(1)(t) . For another \non-generi" value of � when � 6= 0, namely � = 1=3, the expansion of thedynamial zeta funtion suggests the following possible rational expression :��1=3(t) = 1 + t1� t� t2 � 2 t3 � t4 � t5 = 1 + t1 � t � (1 + t2) � (1 + t + t2) (75)This last result with has to be ompared with (37). These results14 are again in agreement with an Arnold-omplexity-topologial-entropy identi�ation (73).The loal area preserving property in the neighborhood of all the �xed points of kn�;� previously notied for � = 0,is also veri�ed, for � 6= 0 for (22), for generi values of � generi, as well as for these non generi values of �.
14However for the non-generi value of � , � = 3=5, we do not have enough oeÆients in the expansion of the dynamial zetafuntion to atually ompare it with (38). 16



To sum up : Besides the integrable values, the other non-generi values an be partitioned in two sets :f1=m; m > 3g and f(m � 1)=(m + 1); m > 3g. In all ases the polynomials giving the omplexity growthand the topologial entropy are the same. These polynomials are listed in Tab. II.� = 1=3 � = 1=2 � = 1m m > 3 � = n�1n+1 n > 3� generi 1� t� t2 � 2t3 � t4 � t5 1� t� t2 � 2t3 � t4 � 2t5 � t6 � t7 generi see (66) (*)� = 0 N -th root of unity N -th root of unity 1� t� t2 + tm+2 1� t� t2 � t2n+1TABLE II. The polynomials giving the omplexity growth � and h , the exponential of the topologial entropy, in variousases. The symbol(*) means that � 6= 0 and � = (m � 1)=(m + 1) are not generi, however � and h are extremely lose tothe generi value, preventing us to ompute them reliably with the semi-numerial method. � 6= 0 and � = 1=m is generi form > 3.
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A few omments :� Heuristially, identi�ation (73) an be understood as follows15. The omponents of kN , namely yN and zN ,are of the form PN (y; z)=QN(y; z) and RN (y; z)=SN(y; z) , where PN (y; z) , QN (y; z) , RN (y; z) and SN (y; z) arepolynomials of degree asymptotially growing like �N . The Arnold omplexity amounts to taking the intersetion ofthe N -th iterate of a line (for instane a simple line like y = y0 where y0 is a onstant) with another simple (�xed)line (for instane y = y0 itself or any other simple line or any �xed algebrai urve). For instane, let us onsider theN -th iterate of the y = y0 line, whih an be parameterized as :yN = PN (y0; z)QN (y0; z) ; zN = SN (y0; z)TN (y0; z) ; (76)with line y = y0 itself. The number of intersetions, whih are the solutions of PN (y0; z)=QN(y0; z) = y0, grows likethe degree of PN (y0; z) � QN (y0; z) � y0 : asymptotially it grows like ' �N . On the other hand the alulation ofthe topologial entropy orresponds to the number of �xed points of kN , that is to the number of intersetion of thetwo urves : PN (y; z) � QN (y; z) � y = 0 ; RN (y; z) � SN (y; z) � z = 0 (77)whih are two urves of degree growing asymptotially like ' �N . The number of �xed points is obviously boundedby ' �2N but one an �gure out that it should (generially) grow like ' �N .� From a general point of view, rational dynamial zeta funtions (see for instane [35,40,41℄) our in the literaturethrough theorems where the dynamial systems are asked to be hyperboli, or through ombinatorial proofs usingsymboli dynamis arising from Markov partition [42℄ and even, far beyond these frameworks [43℄, for the so-alled\isolated expansive sets"(see [43,44℄ for a de�nition of the isolated expansive sets). There also exists an expliitexample of a rational zeta dynamial funtion but only in the ase of an expliit linear dynamis on the torus R2=Z2 ,dedued from an SL(2; Z) matrix, namely the at map [18,45℄ (di�eomorphisms of the torus) :A = " 2 11 1 # ; B = " 1 00 1 # ; � = det(1� z � B)det(1� z � A) = (1� z)21� 3 � z + z2 (78)Note that golden number singularities for omplexity growth generating funtions have already been enountered(see equation (7.28) in [14℄ or equation (5) in [46℄). In our examples we are not in the ontext where the knowngeneral theorems apply straightforwardly. The question of the demonstration of the rationality of zeta funtions weonjetured, remains open.In the framework of a \di�eomorphisms of the torus" interpretation, the degree of the denominator of a rationaldynamial zeta funtion gives a lower bound of the dimension g of this \hidden" torus Cg=Zg where the dynamisbeomes \linearized". On expression (B2) of Appendix B, valid for � = 0 and � = 1=m, one notes that dimensiong grows linearly with m. The iteration of some birational transformations whih \densify" Abelian surfaes (resp.varieties) has been seen to orrespond to polynomial growth of the alulations [16℄. Introduing well-suited variables�i (i = 1; � � � g) to uniformize the Abelian varieties, the iteration of these birational transformations just orrespondsto a shift16 �i ! �i + n � �i. For suh polynomial growth situations, matrix A an be thought as the Jordan matrixassoiated with this translation, its harateristi polynomial yielding eigenvalues equal to 1.IV. FROM COMPLEX PROJECTIVE ANALYSIS TO REAL ANALYSISThe modi�ation of the number of �xed points, from the \generi" values of � to these partiular values (1=m,(n� 1)=(n+1)), orresponds to fusion of some yles, or to the disappearane of other yles whih beome singularpoints (indeterminations of the form 0=0). These mehanisms will be detailed in [30℄. Let us just mention here thatthe \non-generi" values of � , like � = 1=m, orrespond to a \disappearane of yles" mehanism whih modi�esthe denominator of the rational generating funtions and thus the topologial entropy and the Arnold omplexity. In15We use here the notations of mapping (24) but they an be replaed by the (u ; v) variables of mapping (22).16This \di�eomorphisms of the torus" interpretation is quite obvious on �gure 2 of [14℄.18



ontrast, there atually exist for k�, other singled-out values of � , like � = 3 for instane, whih orrespond to fusionof yles: for instane in the � ! 3 limit, the order three yle tends to the order one yle. With the previousyle notations N3 = 1 beomes N3 = 0, whih amounts to multiplying the dynamial zeta funtion by 1 � t3. Thedynamial zeta funtion and funtion H(t) read :�3(t) = (1� t2) � (1� t3)1� t� t2 ; H3(t) = t ddt(log �3(t)) = (79)= t+ t2 + t3 + 5 t4 + 11 t5 + 13 t6 + 29 t7 + 45 t8 + 73 t9 + 121 t10 + 199 t11 + � � �One notes that suh \fusion-yle" mehanism does not modify the denominator of the rational funtions, and thusthe topologial entropy, or the Arnold omplexity, remain unhanged. However it should be underlined that � = 3is learly singled out as far as the real dynamis is onerned. The phase portrait, for � = 3, is extremely regular,like the one of an integrable mapping : it really \looks like" a foliation of the (y ; z) parameter spae in ellipti (orrational) urves. Atually, realling the generating funtion Hreal(t) (see (62)), this funtion and the orrespondingzeta funtion, �real, read simple \integrable-like" forms :Hreal(t) = t1� t ; and : �real(t) = 11� t (80)Of ourse the orbits in the � = 3 phase portrait are not ellipti urves but are atually transendental urves [30℄.The real dynamis \looks like" an integrable one, whih is in agreement with the integrable-like form (80), but themapping, seen as a omplex (projetive) mapping, is atually a haoti one, with the generi � = 0 omplexity� ' 1:618033989.Other singled out algebrai values of �, besides � = 3, orresponding to the fusion on an N -yle with the 1-yle,are for instane for N = 5 and N = 7 :�2 � 10 � �+ 5 = ��� 1� os(2�=5)1 + os(2�=5)���� 1� os(4�=5)1 + os(4�=5)� = 0�3 � 21 � �2 + 35 � �� 7 = ��� 1� os(2�=7)1 + os(2�=7)���� 1� os(4�=7)1 + os(4�=7)���� 1� os(6�=7)1 + os(6�=7)� = 0All the (algebrai) � values of the form17 : � = 1� os(2� �M=N)1 + os(2� �M=N) (81)for any integer N (with 1 < M < N=2, M not a divisor of N), do our in suh yle-fusion mehanism. In fatthe number of real �xed points of kN� , and thus the phase portrait, depend on parameter �. It is true that thesenumbers are not universal anymore (independent of � up to a zero measure set of non-generi values of �), howevertheir dependene is not a \wild one". The number of real �xed points of kN� depends on � in a \stairase" way. Theyare onstant by interval, the frontiers of the interval orresponding to algebrai values like (81). Suh a situation anbe alled \weak universality".The adaptation of the tools well-suited for topologial invariane of dynamial systems seen in omplex projetivespae, for instane the introdution of generating funtions of real �xed points or \real-dynamial zeta funtions" (orsimply plots of the number of real �xed points for kN� , for N �xed, as a funtion of the parameters of the mapping)shows that the analysis of the real dynamis of our mappings do show some nie algebrai strutures and some kindof \weak universality". We thus have a two step proedure for analyzing dynamial systems. A �rst \universal" steponentrates on the topologial entropy (or Arnold omplexity) giving a �rst general lassi�ation of the mappingsand of the various non-generi subvarieties of the parameters these mappings depend on. For instane, in our example(22), this �rst analysis shows that it is ompulsory to disriminate between the � 6= 0 and � = 0 situation, and,beyond, between the � 6= 0 and � = 1=2 ... on one side, and between the � = 0 and � = 1=m or � = (n� 1)=(n+1)situation on the other side. After this �rst general lassi�ation, the \seond step" amounts to onsidering thealgebrai strutures orresponding to study the system from the point of view of real dynamis. This seond step of17Other family of algebrai numbers our. They will be desribed elsewhere.19



analysis based on \real-dynamial zeta funtions" or real-Arnold omplexity18 generating funtions, yields, in example(22), to the emergene of a seond set of singled-out algebrai values of � whih do not modify the Arnold omplexityor topologial entropy (or equivalently the singularities of the dynamial zeta funtions) but do modify the \realArnold omplexity" or the singularities of the \real dynamial zeta funtion" denoted 1=�real :�real(t) ' XN �Nreal � tN (82)For instane, for � = 3 (for � = 0 ), the real omplexity �real , as seen on the phase portrait, is the \integrable-like"value �real = 1 (see equation (80)). It should be underlined that this �real = 1 situation does not orrespond toan integrability (foliation of the spae in ellipti or rational urves). The phase portrait \looks like" a foliation of thespae in urves. In fat there is no suh thing as a \real" integrability, or \transendental" integrability, in oppositionwith a \omplex" or \algebrai" integrability. The haoti feature of the mapping reveals through the following fat :the urves one \sees" are atually urves assoiated with divergent series [30℄. One has a foliation in terms of urvesassoiated with divergent series whih is, at �rst sight, hard to visually distinguish from a foliation in (integrable)ellipti (or rational) algebrai urves.V. COMPLEXITY SPECTRUM FOR 3� 3 PERMUTATIONSIn view of the previous rational results, and realling the whole set of rational results obtained for all kinds ofbirational transformations in [14℄, a systemati study of the 362880 (birational) transformations K assoiated withall the permutations of entries of 3�3 matries is tantalizing. This set of transformations is quite large and one wouldlike to redue it using some symmetries (equivalene lasses). One should reall that equivalene lasses, orrespondingto quite obvious rows and olumns relabeling symmetries, had already been introdued [31℄ and studied. For twopermutations in the same \relabeling" lass, the omplexities of the assoiated K's are obviously equal. This reduesthe 362880 permutations into 30462 \relabeling" equivalene lasses in [31℄. Fortunately it is possible to go a stepfurther [28℄ : some \new symmetries" have been disovered19 whih enable to de�ne new equivalene symmetry-lassesfor the 362880 permutations, reduing a systemati omplexity analysis to a areful examination of 2880 representantsof 2880 symmetry-lasses. Atually one �rst de�nes a set of equivalene relationsR(n) suh that any two permutationsin the same equivalene lass ofR(n) automatially have the same omplexity �. Heuristially, equivalene relationR(n)amounts to saying that two equivalent permutations are suh that the n-th power of their assoiated transformationsbK are onjugated (via partiular permutations whih an be deomposed into produt of row permutations, olumnpermutations and a possible transposition, see [28℄ for more details). An exhaustive inspetion has shown that theequivalene relations R(n)'s \saturate" after n = 24 : with obvious notations R(1) = R(24) . One �nds out that the\ultimate" R(1) = R(24) lasses an only have 72 or 144 elements. Among the \ultimate" R(1) = R(24) lassesone wants to separate the lasses that were already R(1) lasses, that we will denote from now on R(1)72 , or R(1)144 ,aording to their number of elements, and the other ones we will denote R(1)72 or R(1)144 . The 362880 permutationsare grouped into 2880 R(1) equivalene lasses. We have the prejudie that the R(1)72 , or R(1)144 , lasses have more\remarkable properties" than the R(1)72 orR(1)144 lasses, beause R(1) orresponds to quite non-trivial relations. In thetable below the respetive numbers of R(1)72 , R(1)144 , R(1)72 or R(1)144 lasses are displayed. Sine the omplexities donot depend on the hosen representent, we piked a representent in eah R(1) lass and performed a semi-numerialomplexity analysis taking are of these four groups.A. Semi-numerial approah : numerial growth alulationA semi-numerial approah to alulate the omplexity � has been detailed in setion (IIA) and in [29℄. Thesesemi-numerial alulations an be applied, mutatis mutandis, to homogeneous transformations K, or bK, bear-18Let us also reall that the Arnold omplexity ounts the number of intersetions between a �xed (omplex projetive) lineand its nth iterate. One ounts here the number of real points whih are intersetions between a real �xed line and its nth iterate.With this restrition to real points we have lost \most of the universality properties" of the (omplex) Arnold omplexity.19These symmetries are skethed in [28℄. They will not be detailed here. They are related to some \transmutation property"of the matrix inversion bI with two permutations of entries. 20



ing on matries, iterating an initial matrix with integer (or rational) entries hosen in a well-suited way20. Thissemi-numerial method has been applied to 2880 representants representing the 2880 symmetry-lasses. For 3 � 3matries the omplexities are neessarily suh that : 2 � � � 1 . Remarkably, instead of getting a quite om-pliated distribution, or spetrum, of values for the omplexities, we have obtained values whih are always verylose (up to the auray of the method) to a set of seventeen (besides the � = 1 integrability omplexity) values :2 ; 1:97481 ; 1:97458 ; 1:94893 ; 1:94685 ; 1:93318 ; 1:89110 ; 1:88320 ; 1:866760 ; 1:860073 ; 1:857127 ; 1:839286 ;1:75487 ; 1:61803 ; 1:57014 ; 1:542579 ; 1:46557 and of ourse the integrable value � = 1.We got the following results. Among the 2146 lasses of the R(1)144 set, we got 2145 lasses orresponding toomplexities very lose to � ' 2 and a only one lass with omplexity very lose to � ' 1:75487. Among the 660lasses of the set R(1)72 , we got 640 lasses orresponding to omplexities very lose to � ' 2, and many non trivialomplexity values (two lasses yield values lose to 1:97481 ; one gives 1:94893 ; two give 1:94685 ; ...). Among theset of fourteen R(1)144 lasses, all lasses were seen to orrespond to omplexities very lose to � ' 2.The most interesting set (for integrability diggers) is learly the set R(1)72 lasses for whih, beyond thirty threelasses orresponding to the maximal � = 2 omplexity, and beyond a few non trivial omplexity values, one disoverseighteen lasses with omplexity values numerially very lose to one. Atually it is known [31℄ that some symmetry-lasses orrespond to situations where the determinantal variables21 xn's are periodi (denoted Period. in the tablebelow). This xn = xn+N situation orresponds to situations where the birational mapping bK, itself, is of �niteorder (trivial integrability), but also to polynomial growth situations, that is, � = 1 exatly. The polynomial growthsituations without any periodiity on the xn's are denoted \Pol.gr." in the table below. With our semi-numerialapproah it is diÆult to disriminate between these two � = 1 situations [28℄ : an examination of the suessive xn'sshows that one has nine polynomial growth lasses and nine xn = xn+N periodi lasses.One remarks that most of the lasses orrespond to omplexity values numerially very lose to the upper bound� = 2 . It has also been seen that this upper bound is atually reahed for some permutations [14℄.These semi-numerial results are revisited and on�rmed in the next setion (whih provides exat fatorizationsheme alulations), all these results are summarized in the following table :� Assoiated polynomial R(1)144 R(1)72 R(1)144 R(1)72 TotalTotal 2146 660 14 60 28802 1� 2 � x 2145 640 14 33 28321.97481871 1� 2x+ x2 � 2x3 + x4 � 2x5 + x6 0 2 0 0 21.974584654 1� x� 2x2 � x3 + x4 + 2x5 + x6 0 1 0 0 11.94893574 1� 2x+ x5 � x7 0 2 0 0 21.946856268 1� x� x2 � x3 � x4 � x5 + x6 0 1 0 0 11.93318498 1� 2x+ x4 � x5 0 1 0 0 11.891103020 1� 2x+ x2 � 2x3 + 2x4 � 2x5 0 0 0 1 11.88320350 1� 2x+ x2 � 2x3 + x4 0 2 0 6 81.866760399 1� 2x+ x3 � x4 0 1 0 0 11.860073051 1 � x � x2 � x4 � 2 � x5 0 1 0 0 11.857127516 1� 2x+ x2 � x3 � x5 � x7 + x8 � 2x9 + x10 0 1 0 0 11.83928675 1� x� x2 � x3 0 2 0 0 21.75487766 1� 2x+ x2 � x3 1 0 0 0 11.61803399 1� x� x2 0 3 0 0 31.57014731 1� x� x3 � x5 0 1 0 0 11.542579599 1� x� x3 � x7 � x8 0 1 0 0 11.46557123 1 + x� x3 0 0 0 2 21 ( Pol.gr.) 1� x ; 1� xN ; � � � 0 0 0 9 91 ( Period.) 0 1 0 9 10Comments : Most of the 362880 birational transformations onsidered here do orrespond to the most haotiomplexity, namely the upper bound � = 2 : one has 2145 R(1)144 lasses, 640 R(1)72 lasses, fourteen R(1)144 lasses and20For integer entries one hooses initial matries suh that their determinants, and the determinants of the �rst reduedmatries Mn's, are as large as possible, prime numbers.21The variables xn's are de�ned by xn = det( bKn(M0) � det( bKn+1(M0) see [7{9,16℄.21



thirty three R(1)72 lasses, that is, 2145� 144 + 640� 72 + 14� 144 + 33� 72 = 359352 birational transformations.The ratio of ompletly haoti � = 2 birational transformations is r ' :99027 . If one is mostly interested by theintegrable mappings and, more generally, by the mappings with polynomial growth, one remarks that R(1)72 ontainsall the integrable, or polynomial growth, mappings and, up to one lass inR(1)72 , all the mappings suh that xn = xn+N ,inluding the situations where mapping bK, itself, is of �nite order (whih an be seen as a \trivial" integrability).B. Revisiting the spetrum though exat fatorization shemeIn order to see if this set of seventeen (plus one) values for the omplexities really orresponds to a set of eighteenvalues or if the atual omplexity values are just \lose" to eighteen values with some \spread", we have revisited allthese results and studied the fatorization sheme for eah of these representents for the various lasses, onentratingon the omplexities di�erent from the � = 2 upper limit. For that purpose we have written a driver whih buildsautomatially the fatorization sheme (see (11), (12) and the parity-dependant fatorization shemes of AppendixA) for various original matries22 till the fatorization sheme is stable and an be trusted.We just display here the two generating funtions �(x) , �(x) for only two omplexities (see [28℄ for more details).The other generating funtions an be dedued from these two, using linear funtional relations between the generatingfuntions [14℄. All these fatorization sheme alulations on�rm the results summarized in the previous table.Among many symmetry-lasses one veri�es that one atually obtains :� � ' 1:570147312 (orresponding with notations of [31℄ to permutation 164285073). The expansions of �(x) and�(x) read :�(x)3x = 1� x6 � x12(1� x2) � (1� x� x3 � x5) ; �(x) = (1 + x+ x2) � (1� x+ x2) � (1 + x)1� x6 � x12 (83)� � ' 1:839286755 (orresponding, with notations of [31℄, to permutation 417063582) :�(x)3x = 1 � x2 � x3(1� x)2 � (1 + x) � (1 � x � x2 � x3) ; �(x) = (x+ 1) � (1 � x + x4)1 � x2 � x3 (84)It should be notied that fatorization shemes an be di�erent from one representent to another one in the samesymmetry-lass, however, the omplexity � is independent of the hosen representent.Complexity � ' 1:839286755 an also be obtained with permutation23 164273085 for whih �(x) and �(x) read :�(x)3x = 1 + x + x21� x� x2 � x3 ; �(x) = 1 + x3 + x4 + x51� x6 (85)New singularities : Most of time the stability of the fatorization sheme and thus, in a seond step, the ourreneof rational generating funtions, orresponds to a simple periodiity of the exponents �n, �n or �n in the fatorizationsheme (11), (12). This periodiity is simply assoiated to the fat that the \exponent" generating funtions haveN -th root of unity poles : 1 � x2, 1 � x8 , 1 � x6 ; � � �. However one sees, on example (84), that one may have astability of the fatorization sheme an exponential growth of these exponents �n and �n. These exponent generatingfuntions, of ourse, have a growth of their oeÆients smaller than �n. This growth goes like �N where � is theinverse of the poles of �(x), �(x) or �(x), that is (for (84)), � ' 1:324717958 � � ' 1:839286755. Realling (85)for whih � = 1 and � ' 1:839286755 and (84), one sees that one omplexity value � an be assoiated to severalvalues of �. Conversely permutation 174528603 (with notations of [31℄) gives � ' 1:974584654 (assoiated with1 � x � 2x2 � x3 + x4 + 2x5 + x6 = 0) orresponding to :�(x) = x7(1� x2 � x3) � (1� x+ x2) ; � = 1� x+ x7 + x8(1� x2 � x3) � (1� x+ x2) ; � = 1� x+ x7 + 2 � x8(1� x2 � x3) � (1� x+ x2) (86)Realling (84), one sees that one \sheme-omplexity" � an atually orrespond to several omplexity growths �.22The integer entries in the original matries are hoosen in suh a way that the �rst polynomials fn's obtained at eahiteration step are, as large as possible, prime numbers.23With notations of [31℄. 22



VI. COMPLEXITY ALCHEMYLet us onsider eighteen permutations representing the seventeen plus one omplexities of the previous table, andthe assoiated birational transformations Ki = ti � I where i = 1 ; � � � 18. If one ombines one of these birationaltransformations, namely Ki , with another one, Kj , the omplexity orresponding to the \moleule" K = Ki �Kjobviously oinides with the one of Kj �Ki . However it should be notied that the omplexities of these \moleules"K do depend on the represent hosen for eah of the eighteen lasses. We have systematially performed all theombinations of these eighteen representants with themselves. Among the 182 moleules we have obtained manytimes the maximal omplexity � = 4 , however and remarkably, we got 156 moleules suh that � < 4 , and even 30moleules suh that � < 3 . The spetrum of (algebrai) omplexity values for these 182 moleules is extremely rih.When one hanges the eighteen omplexity representents, the \spetrum" of omplexities beomes even riher ...A. A \moleular" fatorization shemeLet us onsider (with notations [31℄) permutation 146237058 and its assoiated � ' 1:9748 transformation K1,and permutation 471562380 and its � ' 1:5426 transformation K2. From these two \atoms" let us build the\moleule" K = K2 �K1 (or moleule K = K1 �K2 , they obviously have the same omplexity). This example isan interesting one sine the omplexity (obtained from the previous semi-numerial alulations) of K = K2 �K1 issmaller than the produt of the two omplexities of K1 and K2 : �(K) ' 2:897 < 1:9748 � 1:5426 ' 3:0463 . Thefatorization sheme of K is of the same type as the ones desribed in [28,29℄, namely a parity-dependent fatorizationsheme (whih is a straight onsequene of the fat that one ats with K1 and then with K2 and again ...) :f1 = det(M0) ; M1 = K1(M0) ; f2 = det(M1) ; M2 = K2(M1) ; f3 = det(M2)f2 ; M3 = K1(M2) ;f4 = det(M3) ; M4 = K2(M3) ; f5 = det(M4)f32 � f4 ; M5 = K1(M4)f2 ; f6 = det(M5)f22 � f4 ; � � � (87)and for arbitrary n � 3 :det(Mn) = fn+1 � fn � f3n�2 � fn�6 � fn�8 � fn�10 � fn�12 � fn�14 � � �K1(Mn) = Mn+1 � fn�2 (88)for n even, and : det(Mn) = fn+1 � fn�1 � f2n�3 � fn�5 � f2n�7 � f2n�9 � f2n�11 � f2n�13 � � �K2(Mn) = Mn+1 � fn�3 � fn�7 � fn�9 � fn�11 � fn�13 � � � (89)for n odd. This yields for the odd and even parts of �(x) and �(x) (label \2" for even and \1" for odd) :�2(x) = 6 � x21 � 3x2 + x4 � x6 � 2x8 ; �1(x) = 3 � x � (1 � x2) � (1 � x4)1 � 3x2 + x4 � x6 � 2x8 ;�2(x) = 3 � (1 + 4x4 � 4x6 + x8)(1� x2) � (1 � 3x2 + x4 � x6 � 2x8) ; �1(x) = 6 � x � (1 + x4 � x6 + x8)(1� x2) � (1 � 3x2 + x4 � x6 � 2x8) (90)These generating funtions yield a \moleular omplexity" : � ' 2:858194057 . These generating funtions verify aparity-dependent system of funtional relations whih generalizes the one desribed in [13℄ :x � �1(x) � �2(x) = F2p(x) � �2(x) ; x � �2(x) � �1(x) = F1m(x) � �2(x) ; (91)�2(x) � 3 � 2 � x � �1(x) + 3 �G2p � �2(x) = 0; �1(x) � 2 � x � �2(x) + 3 �G1m � �2(x) = 0where :F2p(x) = x2 + 2x4 + x6 + 2 � x81� x2 ; F1m = 2x3 � x5 + x1� x2 ; G1m(x) = x3 ; G2p = x4 + x81� x223



VII. THE \SKY IS THE LIMIT"It has been seen that, ombining two di�erent (bi)rational transformations assoiated with permutations of theentries, one already gets an extremely rih set of algebrai omplexities. Obviously a straight generalization amountsto onsidering produts of three, four .... transformations of the previous table. Not surprisingly all the previousresults generalize, mutatis mutandis, yielding again new sets of algebrai omplexities. Let us now show that algebraiomplexities our in a muh larger framework, orresponding to three quite drasti generalizations. A �rst general-ization will show that there is nothing spei� with permutation of the entries. The same algebrai results \pop out"for birational transformations whih are the ombination of a linear transformation of the entries of a q�q matrix andof the matrix inversion. A seond generalization will show that there is nothing spei� with linear transformations ofthe entries, and that one still gets algebrai omplexities replaing linear transformations, by homogeneous polynomialtransformations of the entries. A last generalization will show that a random produt of birational (or even rational)transformations may yield algebrai omplexities.A. From permutations to linear transformationsLet us show that algebrai omplexities our for (generially) birational transformations, ombination of a lineartransformation of the entries of a q� q matrix and of the matrix inversion. The previous permutations of entries anatually be \merged" into families of linear transformations depending on r ontinuous parameters. Remarkably wewill see that these birational transformations, K = L �I , where L is no longer a permutation of the entries but a lineartransformation on the entries, atually exhibit fatorization shemes exatly similar to the ones previously desribedin the ase of permutations of entries : how does the fatorization sheme (whih is a rigid struture) depends on theprevious r ontinuous parameters ? Not surprisingly one an see that these fatorization shemes are, generially,atually onstant and independent of the ontinuous parameters24. Consequently, omplexity � has a universalityproperty : it is atually independent, not only of the initial25 point M0 , but also of these ontinuous parameters.Let us give here a set of generating funtions orresponding to fatorization shemes assoiated to bi-polynomialtransformations K = L � I .Linear transformations yielding the same omplexity as permutations of entries : Let us introduethe quite general linear transformation depending on twenty one parameters :L : 264 m1;1 m1;2 m1;3m2;1 m2;2 m2;3m3;1 m3;2 m3;3 375 �! (92)264 m1;1 a11m1;1 + a12m1;2 + a13m1;3 + a21m2;1 + a22m2;2 + a23m2;3 + a31m3;1 + a32m3;2 + a33m3;3 m1;3m2;1 21m2;1 + 22m2;2 + 23m2;3 m2;3m3;1 b11m1;1 + b12m1;2 + b13m1;3 + b21m2;1 + b22m2;2 + b23m2;3 + b31m3;1 + b32m3;2 + b33m3;3 m3;3 375and let us onsider the iterations of the homogeneous transformation K = L � I . They read a stable fatorizationsheme idential to one fatorization sheme already obtained for one representent of the previous table, orrespondingto the omplexity � ' 1:618033 . The fatorization sheme, up to f4 and M4, is the same as the generi fatorizationsheme (18) (for q = 3) but gets modi�ed with f5, beoming for arbitrary n, instead of (19) and (20) :det(Mn) = fn+1 � fn � (fn�1 � f2n�2) � (fn�3 � f2n�4) � (fn�5 � f2n�6) � (f2n�7 � f2n�8) � � � ;K(Mn) = Mn+1 � fn�2 � fn�4 � fn�6 � fn�8 � fn�10 � � � (93)This yields the following generating funtions :24Exept on some submanifold (probably subvariety) of this r-dimensional parameter spae, where the fatorization shemeatually beomes di�erent, assoiated with a smaller omplexity : on these subvarieties one an only expet more fatorizationsthan in the generi r-dimensional parameter spae.25Generially of ourse : on some odimension-one, or odimension-two, algebrai varieties of the spae of entries of M0 thefatorization sheme may be modi�ed yielding another (smaller of ourse) value of �.24



�(x) = 3 � (1 + x+ x3)(1� x2) � (1� x� x2) ; �(x)3x = 11� x� x2 ; �(x) = 11� x ; �(x) = x21� x2 ; �(x) = 1 + x+ x31� x2For a odimension-one subvariety V of these twenty one parameters, the linear transformation is not invertibleanymore [28℄. It is worth notiing that, even restrited to V where transformation K is not birational anymore, butjust rational, the omplexity � remains unhanged, that is equal to 1:618 � � � Let us note that we have also found [28℄linear transformations L, yielding non trivial algebrai omplexities, whih are not deformations of any permutationof entries. B. From linear transformations to homogeneous polynomial transformationsThere is nothing spei� with linear transformations. Let us onsider the following homogeneous polynomialtransformation Qr of degree r :Qr : 264 m1;1 m1;2 m1;3m2;1 m2;2 m2;3m3;1 m3;2 m3;3 375 �! 2664 mr1;1 mr1;2 mr1;3mr2;1 mr2;2 mr2;3mr3;1 mr3;2 mr3;3 3775 (94)and the assoiated homogeneous transformation Kr = Qr � I . The iteration of transformation Kr yields a stablefatorization sheme whih gives, for arbitrary r � 2 the following generating funtions :�(x) = 3 � (1 + 2x)1 + 2 � (1� r) � x� r � x2 ; �(x)3x = 11 + 2 � (1� r) � x � r � x2 ; �(x) = r ; �(x) = 1 + 2 � xC. From periodi produts of (bi)rational transformations to random produtsIt has previously been shown (see setion (II)), that the two-dimensional mapping :k� : (y ; z) �! �z + 1 � � ; y � z � �z + 1 � (95)yields (generially) a omplexity � ' 1:61803 assoiated with polynomial 1 � t � t2. The same omplexity an beobtained with the (generi) eight-parameters two-dimensional mapping :k : (y ; z) �! �a1 � z + a2 ; (a3 � y + a4) � a5 � z + a6a7 � z + a8 � (96)or even the nine parameters mapping :k : (y ; z) �! �a1 � z + a2 ; a3 � y � z + a4 � y + a5 � z + a6a7 � y + a8 � z + a9 � (97)This last example an even be generalized to :k : (y ; z) �! �a1 � z + a2 ; a3 � yn � zn + P (y; z)Q(y; z) � (98)where P (y; z) and Q(y; z) are some polynomial expressions. The generating funtion of the suessive degree of thenumerator of the z omponent of the N -th iterate of these various families of transformations (96), (97), (98) seemsto identify (as far as we have been able to hek it) with a dynamial zeta funtion �(t) and reads :1 + gz(t) = 1 + t1� t� t2 = �(t) (99)This generating funtion remains unhanged if one onsiders the sequene produt of two (generi) transformations(95) : k�1 � k�2 � k�1 � k�2 � k�1 � � �, or even the sequene assoiated with the iteration of a \moleule" KM produt of25



M di�erent (generi) transformations k�. Of ourse if one prefers to onsider diretly GM , the degree generatingfuntion of KM , one gets for M = 2 ; 3 ; � � � :1 + G2(T ) = 11 � 3 � T + T 2 ; 1 + G3(T ) = 1 + T1 � 4 � T � T 2 ; 1 + G4(T ) = 1 + T1 � 7 � T + T 2 ; (100)1 + G5(T ) = 1 + 2 � T1 � 11 � T � T 2 ; 1 + G6(T ) = 1 + 3 � T1 � 18 � T + T 2 ; 1 + G7(T ) = 1 + 5 � T1 � 29 � T � T 2 ; � � �and for arbitrary M :1 + GM (T ) = 1 + G(M) � T1 � F (M) � T + (�1)M � T 2 ; where : F (M) = F (M � 1) + F (M � 2) and :G(M) = G(M � 1) +G(M � 2) with : F (2) = 0 ; F (3) = 4 ; G(2) = 0 ; G(3) = 1 (101)When omparing (99) and (100) or (101) the variable T must be seen as T = tM . Sine these results are valid forany produt of M transformations k�, they are, in partiular, valid in the limit where the k�'s are all equal, whihamounts to replaing k� into K = kM� . The generating funtion amounts to \extrating", in the series expansion of(99), the oeÆients of every M -th power of t . For instane the denominators of (100) are just the resultant (in t)of 1 � t � t2 and tM � T . One has for any integer M :1 + GM (tM ) = 1 + 1M �M�1Xn=0 g(!N � t) ; where : !M = 1 (102)More generally, generating funtion 1 + gz(t) in (99) remains unhanged if one onsiders a random produt oftransformations in the family (96) or even (97). Furthermore relations (54) and (55) are still valid. It seems that oneeven has a relation 1 + gz(t) = �rand(t) for some dynamial zeta funtion suitably de�ned for random produts.All these mappings an also be seen as reursions. For instane (96) beomes :zn+2 = �a3 � (a1 � zn + a2) + a4� � a5 � zn+1 + a6a7 � zn+1 + a8 (103)A \stohasti evolution" orresponding to random reursions (103) is thus seen to atually yield an algebrai omplexitynamely � ' 1:618033::. VIII. COMMENTS AND SPECULATIONSIn pratie it is numerially easier to get the Arnold omplexity generating funtions than getting the dynamialzeta funtions. If one assumes the rationality of the dynamial zeta funtion and the identi�ation between Arnoldomplexity and (exponential of the) topologial entropy, getting the Arnold omplexity generating funtions may beseen as a simpler way to \guess" the denominator of the dynamial zeta funtions.Among the various omplexity growth generating funtions some seem to be more \anonial" and to identifyexatly with the � funtion (see (55)).The denominators of all the rational zeta funtions enountered here are of the form : 1 � t � Y (t) where Y (t) isprodut of ylotomi polynomials [47,48℄. This is partiularly obvious on expressions (33) and also on expressions(32), or (C1), or even (B2). We do not have any l-adi ohomology interpretation (see for instane [39℄ page 453) ofthis ylotomi polynomial \enoding" of the zeta funtions or of the omplexity funtions G(q; x) . Most of theserational expressions for zeta funtions satisfy very simple funtional relations and one also expets, for (C1) or (C2)for instane, more involved but, still simple, funtional relations, may be similar to the ones obtained by Voros in [49℄.Many of the generating funtions G(q; x) an also be seen to satisfy simple funtional relations relating G(q; x) andG(q; 1=x). This will be detailed elsewhere26.The analysis developed here an be applied to a very large set of birational transformations of an arbitrary number ofvariables, yielding again rational generating funtions [14,28℄. Moreover, these generating funtions are always simplerational expressions with integer oeÆients (thus yielding algebrai numbers for the Arnold omplexity). Most have26For instane the generating funtion of the degrees g(x) given by equation (5) in [46℄ veri�es g(x) + g(1=x) = 1.26



the previously mentioned \ylotomi enoding" [14℄. At this point the question an be raised27 to see if the iterationof any birational transformation of an arbitrary number of variables always yields rational generating funtions forthe Arnold omplexity.It has also been shown that same results hold, mutatis mutandis, for rational transformations whih are not birationalanymore (also see (7.7) and (7.28) in [14℄) or whih are ombination of homogeneous polynomial transformations ofthe entries of a q� q matrix, together with the matrix inversion, yielding again new algebrai spetrum independentof a large number of ontinuous deformation parameters : any proof of the rationalities of these generating funtionsshould not depend to heavily on a simple reversibility of the mapping [50℄, or on the fat that the transformationsshould be rational transformations with integer oeÆients.One thus gets rational generating funtions for quite arbitrary produts of rational transformations whih arenot invertible anymore, and may depend on many ontinuous parameters. The set of birational transformations isa \huge" one, and the set of rational transformations is even \larger". One an imagine (if one believes in \some"universality of dynamial systems) that \most" of the dynamial systems ould be very losely \approximated" by suhtransformations having algebrai omplexity values. It will be important to try to de�ne, for a given disrete dynamialsystem, what is the \best" approximation of this system in terms of birational, or even rational, transformations.IX. CONCLUSIONTransformations generated by the omposition of permutations of the entries and matrix inverse, naturally emergein the analysis of lattie statistial mehanis symmetries [16℄, and provide a set of eÆient new tools to study lattiestatistial models (and beyond disrete dynamial systems).The Yang-Baxter equations have been seen as a \laboratory" to elaborate these onepts. In return, these toolsprovide a systemati way to �nd integrable symmetries of the parameter spae of the lattie model, whih is a�rst (and ompulsory) step to �nd Yang-Baxter integrable models. Beyond the narrow framework of Yang-Baxterintegrable models, the \birational approah" gives a way to \lassify" non-integrable lattie statistial models andbeyond, disrete dynamial systems, providing a lassi�ation of these systems aording to their more or less haotiharater. ACKNOWLEDGMENTSOne of us (JMM) would like to thank P. Lohak and J-P. Maro for illuminating disussions on dynamial systems.We thank M. Bellon and C. Viallet for omplexity disussions. We thank B. Grammatios and A. Ramani fordisussions on the non generi values of �. S. Boukraa would like to thank the CMEP for �nanial support.APPENDIX A: FACTORIZATION SCHEME FOR � = 0, � GENERICFor matrix M0 = 264 4785 1305 �22212175 9570 1305�18270 3480 �16054 375 (A1)whih orresponds to � = 0 and � = :52 , the generi (� 6= 0 ) fatorization sheme (18) beomes28 :f1 = det(M0) ; M1 = K(M0) ; f2 = det(M1)f1 ; M2 = K(M1) ; f3 = det(M2)f21 � f2 ; M3 = K(M2)f1 ;f4 = det(M3)f1 � f2 � f3 ; M4 = K(M3) ; f5 = det(M4)f21 � f22 � f23 � f4 ; M5 = K(M4)f1 � f2 � f3 ;27After [14℄.28These results an straightforwardly be generalized to q � q matries, they are just a bit more involved.27



f6 = det(M5)f1 � f22 � f3 � f4 � f5 ; M6 = K(M5)f2 ; f7 = det(M6)f21 � f2 � f23 � f24 � f25 � f6 ; M7 = K(M6)f1 � f3 � f4 � f5f8 = det(M7)f1 � f2 � f3 � f24 � f5 � f6 � f7 ; M8 = K(M7)f4 ; f9 = det(M8)f21 � f22 � f23 � f4 � f25 � f26 � f27 � f8 ; � � �and for arbitrary n :det(Mn) = fn+1 � (fn � f2n�1 � f2n�2 � f2n�3) � (fn�4 � f2n�5 � f2n�6 � f2n�7) � � � (A2)K(Mn) = Mn+1 � (fn�1 � fn�2 � fn�3) � (fn�5 � fn�6 � fn�7) � � �for n even and : det(Mn) = fn+1 � (fn � fn�1 � fn�2 � f2n�3) � (fn�4 � fn�5 � fn�6 � f2n�7) � � � (A3)K(Mn) = Mn+1 � fn�3 � fn�7 � fn�11 � fn�15 � fn�19 � � �for n odd.The exat expressions of the generating funtions �(x) and �(x) read29 :�(x) = 31 + x + 3 � �(x)1� x2 ; where : �(x) = 3 � x � �1 + x+ x3�1 � x2 � x4 = � 3 + 3 � (1 + x)=(1� x2 � x4) (A4)These generating funtions give a omplexity � ' 1:272019649 . It is important to note that fatorization sheme(A2), (A3) is atually stable, but of a slightly more general form, ompared to (18), or the ones desribed in [14℄ :realling the generating funtions �(x) and �(x) of the exponents that our in the fatorization sheme (see setion(IA) or equations (8.6) and (8.10) in [14℄), one must now introdue two sets of suh exponents generating funtions,�1, �1, �2, �2, in order to keep trak of the parity of n, and even split these four funtions into their odd and evenparts : �i2 = (�i(x) + �i(�x))=2 ; �i1 = (�i(x)� �i(�x))=2 ; �i2 = � � � i = 1 ; 2We must also deompose �(x) and �(x) in odd and even parts: �1(x) = (�(x) � �(�x))=2 ; �2(x) = (�(x) +�(�x))=2 ; �1(x) = (�(x) � �(�x))=2 ; �2(x) = (�(x) + �(�x))=2 , namely :�2(x) = 3 � x2 � �x2 + 1�1� x2 � x4 ; �1(x) = 3 � x1� x2 � x4 ;�2(x) = 3 � (1 + 2x2 + 2x4)(1� x2) (1� x2 � x4) ; �1(x) = 3 � x � �2 + x2 + x4�(1� x2) (1� x2 � x4) (A5)Instead of funtional relations (8.6) and (8.10) in [14℄, one now has the following relations :�1(x) � 2 � x � �2(x) + 3 � x � (�12(x) � �2(x) + �11(x) � �1(x)) = 0 ;�2(x) � 2 � x � �1(x) � 3 + 3 � x � (�22(x) � �1(x) + �21(x) � �2(x)) = 0 ;x � �1(x) � �2(x) � (�21(x) � �1(x) + �22(x) � �2(x)) = 0 ;x � �2(x) � �1(x) � (�11(x) � �2(x) + �12(x) � �1(x)) = 0 (A6)where the odd and even part of the exponents generating funtions �1(x), �1(x), �2(x), �2(x), read :�12(x) = x21� x4 ; �11(x) = x1� x2 ; �22(x) = 0 ; �21(x) = x31� x4 ;�11(x) = x � �2x2 + 1�1� x4 ; �12(x) = 2 x21� x2 ; �21(x) = x1� x2 ; �22(x) = x2 � �2x2 + 1�1� x4 ;29Result (A4) orresponds to a very simple expression for �(x) (see for instane equation (8.12) in [14℄).28



Period four in the fatorization sheme (A2), (A3) orresponds to the ourrene of a 1 � x4 = 0 singularity forthese exponents generating funtions.The \stability" of fatorization sheme (18) orresponds to the following (n ! n + 1)-property : the exponentsof the fn's ourring at the m-th step of iteration are also the one's at (m + 1)-th step of iteration the fn's beinghanged into fn+1 : at eah new iteration step one only needs to �nd the exponent of f1 (if any). The \stability" offatorization sheme (A2), (A3) is a straight generalization mod.2. of the previous property : the exponents of thefn's ourring at the m-th step of iteration are also the one's at (m+ 2)-th step of iteration the fn's being hangedinto fn+2. Let us now note that the initial matrix :M0 = 264 1 3 x5 2 3�4 8 �x� 3 375 (A7)whih orresponds to � = 0 and � = �22=25 for any x , do not yield the same fatorization sheme as (A2), (A3),but still the same singularity assoiated with polynomial 1 � x2 � x4. One atually gets the following generatingfuntions: �(x) = 3 � (1 + 2x+ 2x2 + 4x3 + 2x4 + x5)(1� x2 � x4) (1� x2) ; �(x) = 3 � x � (1 + x) � (1 + x2)1 � x2 � x4 (A8)Note that the \even" generating funtions �2(x) and �2(x) are the same as in (A5). The \odd" generating funtions�1(x) and �1(x) read :�1(x) = 3 � x � (2 + 4x2 + x4)(1� x2 � x4) � (1 � x2) ; �1(x) = 3 � x � (1 + x2)1� x2 � x4 (A9)It is orresponds to the fatorization sheme :det(Mn) = fn+1 � (fn � fn�1 � fn�2 � f2n�3) � (fn�4 � fn�5 � fn�6 � f2n�7) � � � (A10)K(Mn) = Mn+1 � fn�3 � fn�7 � fn�11 � fn�15 � fn�19 � � �for n even and : det(Mn) = fn+1 � (fn � f2n�1 � f2n�2 � f2n�3) � (fn�4 � f2n�5 � f2n�6 � f2n�7) � � � (A11)K(Mn) = Mn+1 � (fn�1 � fn�2 � fn�3) � (fn�5 � fn�6 � fn�7) � � �for n odd. This fatorization sheme is the same as (A2), (A3) where odd and even parity are permuted. Thegenerating funtions verify the funtional equations :�1(x) � 2 � x � �2(x) + 3 � x41� x4 � �1(x) = 0 ;�2(x) � 2 � x � �1(x) + 3 � � x31� x4 � �1(x) + x21� x2 � �2(x)� � 3 = 0 ;x � �1(x)� �2(x) � �x �2x2 + 1�1� x4 � �1(x) + 2 x21� x2 � �2(x)� = 0 ;x � �2(x)� �1(x) � �x2 �2x2 + 1�1� x4 � �1(x) + x1� x2 � �2(x)� = 0 (A12)This fatorization sheme is a slight modi�ation of the previous one (the �ij 's and �ij are just permuted : �2j $�1j and �2j $ �1j ). In fat ondition � = 0 fatorizes into several odimension-one varieties [29℄. Thesesubvarieties yield the same omplexity but not the same fatorization shemes.1. Fatorization sheme for � 6= 0, � non generiLet us ome bak to � 6= 0 with the non-generi value � = 1=2. We onsider here � = 396=6095 ' :06497128.Up to the thirteenth iteration one has the previously desribed (n ! n + 1)-property, but this property is broken29



with f15 in favor of the (n ! n + 2)-property previously enountered. The previously introdued odd-even-paritydependent exponents generating funtions �ij(x) and �ij(x) now read :�12(x) = x2 + x6 + x10 + x12 ; �11(x) = x3 + x7 + x11 + x151� x4 ;�22(x) = x2 + x6 + x10 + x141� x4 ; �21(x) = x3 + x7 + x11 ;�11(x) = x+ 2x3 + 2x7 + x9 + 2x11 + x5 + 2x13 ; �12(x) = (1 + 2x2) � x141� x4 + x2 + 2x4 + x6 + 2x8 + x10 + 2x12 ;�21(x) = x+ 2x3 + 2x7 + x9 + 2x11 + x5 + (1 + 2x2) � x131 � x4 ; �22(x) = x2 + 2x4 + x6 + 2x8 + x10 + 2x12from whih one dedues, from relations (A6), the rational expressions of the �i's and �i's :�2(x) = 3 � x2 � (1 + x2)(1� x2) � (1� x2 � x4 � 2x6 � x8 � 2x10 � x12 � x14) ;�1(x) = 3 � x � (1 + x2) � (1 + x4) � (1 + x8)1 � x2 � x4 � 2x6 � x8 � 2x10 � x12 � x14 ;�2(x) = 3 � 1 + 2x2 + 5x4 + 4x6 + 5x8 + 4x10 + 5x12 + 5x14 + 3x16(1� x2) � (1� x2 � x4 � 2x6 � x8 � 2x10 � x12 � x14) ;�1(x) = 3 � x � (2 + 4x2 + 4x4 + 5x6 + 4x8 + 5x10 + 4x12 + 4x14)(1 � x2) � (1� x2 � x4 � 2x6 � x8 � 2x10 � x12 � x14) (A13)yielding the rational expressions (36) for �(x).These results have also been heked, using the previously depited semi-numerial omplexity growth evaluationmethod, for � = 1=2 and � = 396=6095 ' :06497 � � � . The following value for the omplexity has been obtained :� ' 1:46199 , in good agreement with the exat algebrai value dedued from (A13), namely : � ' 1:46188 � � � (tobe ompared with the generi algebrai value of � , � ' 1:4655 � � � assoiated with 1� x� x3 = 0 ).The singularities of (A13) are in agreement with the dynamial zeta funtion alulated for these values of � and �:�(t) = 1 + t� t71� t� t2 � 2 t3 � t4 � 2 t5 � t6 � t7 = 1 + t � �1 � t6�1 � t � (1 � t + t2) � (1 + t + t2)2These alulations an also be performed, for � 6= 0, for the other non-generi value of � : � = 1=3. As far asthe fatorization sheme is onerned one gets exatly the same senario as the one for � = 1=2, the breaking of the(n ! n+1)-property and the ourrene of a (n ! n+2)-property taking plae with f11 instead of f15 previously.For � = 1=3 and, for instane, for � = 237=6095 ' :038884 � � �, one gets expressions (37) for �(x) :�(x) = 3 � x � (1 + x2) � (1 + x � x2 + x4 � x6 + x8 � x10)(1� x2) � (1� x2 � x4 � 2x6 � x8 � x10) (A14)Again these results have been ompared with the omplexity growth dedued from the semi-numerial method, for� = 1=3 and � = 237=6095 ' :038884 � � �. We have obtained the following value for the omplexity : � ' 1:44865in good agreement with the exat algebrai value dedued from (A14), namely : � ' 1:44717 � � �.The singularities of (A14) are in agreement with the dynamial zeta funtion alulated for these values of � and �:�(t) = 1 + t1� t� t2 � 2 t3 � t4 � t5 = 1 + t1 � t � (1 + t2) � (1 + t + t2)APPENDIX B: DYNAMICAL ZETA FUNCTIONS FOR � = 0 WITH � NON-GENERICTo further investigate the identi�ation of these two notions (Arnold omplexity-topologial entropy), we nowperform similar alulations (of �xed points and assoiated zeta dynamial funtions) for � = 1=m with m � 4 and� = (m � 1)=(m+ 3) with m � 7 odd. The alulations have been performed for � = 1=m for m = 4 ; 5 ; 7 and9, giving the expansion of H�(t) up to order eleven : 30



H1=4(t) = t+ t2 + 4 t3 + 5 t4 + 11 t5 + 10 t6 + 22 t7 + 29 t8 + 49 t9 + 71 t10 + 111 t11 + � � �H1=5(t) = t+ t2 + 4 t3 + 5 t4 + 11 t5 + 16 t6 + 22 t7 + 37 t8 + 58 t9 + 91 t10 + 144 t11 + � � �H1=7(t) = t+ t2 + 4 t3 + 5 t4 + 11 t5 + 16 t6 + 29 t7 + 45 t8 + 67 t9 + 111 t10 + 177 t11 + � � �H1=9(t) = t+ t2 + 4 t3 + 5 t4 + 11 t5 + 16 t6 + 29 t7 + 45 t8 + 76 t9 + 121 t10 + 188 t11 + � � � (B1)All these expressions are ompatible with this single expression of the � funtion :�1=m(t) = 1 � t21 � t � t2 + tm+2 (B2)We onjeture that this expression is exat, at every order, and for every value of m � 4. Again this expression is inagreement with the polynomial expression giving the Arnold omplexity (see (34)). If one ounts the point at in�nitythe zeta funtion (51) beomes : �(1)1=m(t) = 1 + t1 � t � t2 + tm+2 (B3)Let us onsider again the omplexity generating funtion orresponding to the degrees of the numerators of the twoomponents of kN� . The generating funtion gz(t) for the degrees of the numerators of the z omponent of kN� , for� = 1=m , has again exatly the same expression (up to 1) as (B3) :1 + gz(t) = �(1)1=m(t)Note that relations (54) are still valid.The generating funtion ghom(t) of the suessive degrees of the homogeneous transformation (25) of the yn, znand tn, reads : ghom(t) = 1� tm+3(1� t) � (1� t� t2 + tm+2)As far as funtional relations relating �(t) and �(�1=t) are onerned, realling (57), one immediately veri�es thatb�(t) , orresponding to (B2), veri�es the simple funtional relation :tm+1 � b�1=m(t) = b�1=m(1=t) ; or : �1=m(1=t) = tm+1 � �1=m(t)tm+1 � �1=m(t) � �1=m(t) + 1Atually b�1=m(t) has a very simple n-th root of unity form :b�1=m(t) = 1� t2t � (1� tm+1)Also note that when m is odd, and only in that ase, b�1=m(t) also satis�es the funtional relation :tm+1 � b�1=m(t) = � b�1=m(�1=t)No simple funtional relation, similar to (60), an be dedued on H1=m(t).Similar alulations an also be performed for the seond set of non-generi values of � , namely � = (m�1)=(m+3)with m � 7, m odd. For m = 7, that is � = 3=5, one gets, up to order eleven, the same expansion as the one for� = 1=7 : H3=5(t) = t+ t2 + 4 t3 + 5 t4 + 11 t5 + 16 t6 + 29 t7 + 45 t8 + 67 t9 + 111 t10 + 177 t11 + � � �yielding again, if this equality of expansions is still true at higher orders, the dynamial zeta funtion :�3=5(t) = 1 � t21 � t � t2 + t9 or : �(1)3=5 (t) = 1 + t1 � t � t2 + t9Again the generating funtion of the numerator of the z omponent of kN� , gz(t), has exatly the same expression,up to 1, as �(1)3=5 (t) : 31



1 + gz(t) = �(1)3=5 (t) = gy(t)t == 1 + 2 t+ 3 t2 + 5 t3 + 8 t4 + 13 t5 + 21 t6 + 34 t7 + 55 t8 + 88 t9 + 141 t10 + 226 t11 + � � �For m = 9, that is � = 2=3, one gets :H2=3(t) = t+ t2 + 4 t3 + 5 t4 + 11 t5 + 16 t6 + 29 t7 + 45 t8 + 76 t9 + 121 t10 + 177 t11 + � � �A ompatible zeta funtion ould be30 :�2=3(t) = 1 � t2 � t11 � t12 � t131 � t � t2 + t11 (B4)Rational expression (B4) is not the same as (B2), however it has the same pole. Note that relations (54) are still validfor � = 2=3 and � = 3=5. At the order where the iterations have been performed, a relation like 1 + gz(t) = �(1)2=3 (t)is not ruled out. One gets, however, a very simple expression for gy(t)=t :gy(t)t = 1 + t1 � t � t2 + t11whih rules out a simple �2=3(t)1 = gy(t)=t relation (see (55)).APPENDIX C: DYNAMICAL ZETA FUNCTIONS FOR � 6= 0 WITH � NON-GENERICFor a \non-generi" value of � when � 6= 0, namely � = 1=2, the expansion of the generating funtion H(t) and ofthe dynamial zeta funtion read respetively :H�1=2(t) = 2 t+ 2 t2 + 11 t3 + 18 t4 + 47 t5 + 95 t6 + 198 t7 + � � ���1=2(t) = 1 + 2 t+ 3 t2 + 7 t3 + 15 t4 + 32 t5 + 69 t6 + 146 t7 + � � �A possible rational expression for the dynamial zeta funtion is for instane :��1=2 = 1 + t� t71� t� t2 � 2 t3 � t4 � 2 t5 � t6 � t7 = 1 + t � �1 � t6�1 � t � (1 � t + t2) � (1 + t + t2)2 (C1)This last result has to be ompared with (36).The generating funtion gv(t) orresponding to the degrees of the numerators of the v omponent of kN�;1=2 reads :1 + gv(t) = 1 + t� t7(1� t) � (1� t� t2 � 2 t3 � t4 � 2 t5 � t6 � t7)= 1 + 3 t+ 6 t2 + 13 t3 + 28 t4 + 60 t5 + 129 t6 + 275 t7 + � � �This expression is again in agreement with a relation 1 + gv(t) = �(1)(t) .For another \non-generi" value of � when � 6= 0, namely � = 1=3 the expansion of the generating funtion H(t)and of the dynamial zeta funtion read respetively :H�1=3(t) = 2 t+ 2 t2 + 11 t3 + 18 t4 + 42 t5 + 83 t6 + 177 t7 + � � ���1=3(t)(t) = 1 + 2 t+ 3 t2 + 7 t3 + 15 t4 + 31 t5 + 65 t6 + 136 t7 + � � �A possible rational expression for the dynamial zeta funtion is for instane :��1=3(t) = 1 + t1� t� t2 � 2 t3 � t4 � t5 = 1 + t1 � t � (1 + t2) � (1 + t + t2) (C2)30The series are not large enough to on�rm this form. A set of simple and quik alulations seem to give for the nextoeÆients � � �+ 296 t12 + 469 t13 + 785 t14 + � � � in agreement with (B4).32



A possible generating funtion gv(t) orresponding to the degrees of the numerators of the v omponent of kN�;1=3reads : 1 + gv(t) = 1 + t+ t5 � t6(1� t) � (1� t� t2 � 2 � t3 � t4 � t5) == 1 + 3 t+ 6 t2 + 13 t3 + 28 t4 + 60 t5 + 125 t6 + 262 t7 + � � �
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