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Abstract
We present a recursive method to generate the expansion of the lattice Green
function of the d-dimensional face-centred cubic (fcc) lattice. We produce a
long series for d = 7. Then we show (and recall) that, in order to obtain the
linear differential equation annihilating such a long power series, the most
economic way amounts to producing the non-minimal order differential
equations. We use the method to obtain the minimal order linear differential
equation of the lattice Green function of the seven-dimensional fcc lattice. We
give some properties of this irreducible order-eleven differential equation. We
show that the differential Galois group of the corresponding operator is
included in SO (11, C). This order-eleven operator is non-trivially homo-
morphic to its adjoint, and we give a ‘decomposition’ of this order-eleven
operator in terms of four order-one self-adjoint operators and one order-seven
self-adjoint operator. Furthermore, using the Landau conditions on the inte-
gral, we forward the regular singularities of the differential equation of the d-
dimensional lattice and show that they are all rational numbers. We evaluate
the return probability in random walks in the seven-dimensional fcc lattice.
We show that the return probability in the d-dimensional fcc lattice decreases
as d* as the dimension d goes to infinity.
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1. Introduction

Many remarkable n-fold integrals arise in physics. The lattice Green functions are such
integrals and they occur in many problems. The number of the integration variables is the
dimension and the lattice may be simple, body-centred, face-centred, etc. For a review, see [1]
and the references therein. We focus here on the face-centred cubic (fcc) lattices. The cor-
responding three-dimensional and higher-dimensional lattice Green functions have been
analyzed in [1-5].

The d-dimensional lattice Green function of the fcc lattice reads

LGE,(x) = / f dlk‘ - 'x o )

where A, is the structure function:

g :( ) z Z cos ( cos(k ) 2

i=1 j=i+1

For d = 2, the integral is the complete elliptic integral of the first kind K
LGF,(x) = 2F1( [1/2, 1/21, 11, x2) = K(x2). 3)

For d = 3, Joyce [6] has shown that LGF;(x) can be written as a square of the elliptic
integral K with a pullback

LGFs() = A - (K( kg))z, @
with

A =3"2-3+0 (2-0-n"), (5)

ki = 1_ g CG+ )2 (4x + 3 -l - x)1/2)_ )

For higher values of d, no closed form expression for (1) is known. The integral being
D-finite [7, 8], it is possible to study some of its properties via its linear differential
equation (ODE).

The linear ordinary differential equation annihilating the integral (1), for d = 4, was
obtained by Guttmann [1]. By a change of variables and integration, he succeeded to elim-
inate two variables, and was left with a two-dimensional integral which was expanded as a
power series in the variable x, and integrated term-by-term. The linear ODE (the corre-
sponding operator is denoted GfD ¢y is of order four and is a Calabi-Yau equation (number
366 in the list of Almkvist et al [9]).

To obtain the linear ODE for d = 5, Broadhurst [4] expanded the integrand in (1) as a
power series, then used the multinomial theorem to re-expand the powers of the structure
function. The integration of each term is straightforward, but the computation demands nine
summations. The linear ODE (associated with operator G fe¢) is of order six, but we do not
have the presence of maximum unipotent monodromy (MUM)’.

Koutschan [5] used the method of creative telescoping [13—15], and was able to find the
ODE for d = 6. This linear ODE (associated with operator Gg oD fcc) is of order eight, and lacks

3 Maximum unipotent monodromy [1, 9-12] means that the local exponents at, e.g., the origin are all equal.
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MUM. Koutschan seemed pessimistic in [5] on the possibility of obtaining the linear ODE for
d =7 with the current methods (of creative telescoping) and computational ressources.

In the sequel, we give the linear differential equation for the seven-dimensional lattice
Green function of the fcc lattice with some of its properties. We focus on some properties
(singularities, order, differential Galois groups,...) shared by the linear ODE of the d-
dimensional lattice Green function of the (fcc) lattice, d < 7.

The paper is organized as follows. Section 2 contains the method of generation of the
series corresponding to (1) for any d. This amounts to using a recursive relation which is less
‘summation consuming’ than the direct expansion using the multinomial theorem. Ford =7 a
long series is obtained. Section 3 recalls some tools on how, and why, a linear ODE can be
obtained with series of fewer terms than the one necessary to find the minimal order ODE.
These tools have, in previous works, allowed us to obtain many linear ODEs of quite high
orders, requiring very long series of some multifold integrals of the magnetic susceptibility of
the Ising model [16—19], or some integrals of the ‘Ising-class’ [20, 21]. Section 4 presents the
order-eleven linear differential equation annihilating (1) for d = 7 with some of its properties.
Section 5 deals with some analysis previously [22] carried out on the linear differential
operators G65D fe¢ and GP™*, for the five and six-dimensional fcc lattices, showing that the
differential Galois groups of these operators are, respectively, included in the SO (6, C) and
Sp (8, C) groups. As a consequence these operators have a ‘canonical decomposition’ [23].
The order-eleven operator for the seven-dimensional fcc lattice Green function is seen to be
non-trivially homomorphic to its adjoint, and we give a decomposition of this order-eleven
operator in terms of four order-one self-adjoint operators and one order-seven self-adjoint
operator. The singularities of the multifold integral (1), for arbitrary d, can be obtained with
‘Landau conditions method’, and are the subject of section 6. Some comments and spec-
ulations are given in section 7, and we finally sum-up our results in section 8.

2. The seven-dimensional fcc lattice: series generation

A straightforward way to get LGF;(x) would be to expand the integrand in the variable x - A4

L _ Y (7)

I—X'ﬂ.d =0

and to use the multinomial theorem to re-expand A;, leading to (d + 1)(d — 2)/2
summations.

We present, in the sequel, how we have generated our series. Let us define the variable
1 d

-1
1=5x ( 2) , and the symbol { - ) to mean that the integration on the variables k ;, occurring

in the integrand, has been performed (with the normalization z¢).
We define

i
-MQ
M=

d
os (k;) - cos (kj), o4 = Z cos (k;), (®)
i=1
and introduce

Ty(n, ) =44 (L) - o), ©
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in terms of which LGF,(x) will be given by

LGFy(x) = Y.2" - (#¢}) = Y'2" - Ty(n, 0). (10)
n=0 n=0
The intermediate variables {; and o, have the obvious coupled recursions
o= Ca1+ cos (kg) - 64-1 (11)
04 = 04—1 + COS (kd) (12)

The right-hand sides of both (11), (12) are substituted into (9) to give

Ty, j) = 4 i‘,%(;)(iﬁ)( i afr) - {cos (kP (13)

m=0 p=0

where the integration

. —j+p/2—m/2 P
< cos (kd)zj_p+m> = (1 + (—1)”+’"> e ,2] pm (14)
2 Jj—p2 +m/2

is straightforward, and where
1
< Fa Uj’_ﬁm> = 4n—p/2mi2 Zd_l(n - m, Y P+ m)) (15)

is a consequence of the definition.
The recursive relation giving T, (n, j) reads

L 2j 2n+2j —2p -2
Td<n,j>=22("]( ’ )[”“ g q]-Td_I@,q>, (16)

r0geg \PI\2¢+p—n){ n+j-p-gq

@ =[n=p+ D72, q=[n-p+2)72] a7

where [x] is the integer part of x. To start the recursion, one needs:

P> . .
n ) = Z(zpp)( 2j ]( 2n + 2 ZP), (18)

sy 2p —n n+j—p
P = [(n+ 1)/2], P, = [(n + 2)/2]. (19)

Note that the summation on p in (18) can be carried out to obtain a closed form expression of
T (n, j), in terms of binomials, 4F3 and 5F; hypergeometric functions with unity as argument.

While the use of the multinomial theorem leads to (d + 1)(d — 2)/2 summations, there
are only 2d — 3 summations in the recursive relation (16).

To obtain, with recursion (16), the coefficient of x" in LGF,(x), one remarks that one
needs all the quantities Tj(p, q) of the lower dimensions d < d, with p, ¢ < n. The
recursion (16) is still clearly superior compared to the direct expansion. For instance, to
generate 106 terms necessary to obtain the operator G65 Dice ' several CPU days of calculations
are mentioned in [4]. With our recursive method, this requires only 31 seconds on a desk
computer.

For d = 7 we have generated 460 terms:

LGRm =1+ L2y O o4 208 4, 135
84 1764 197568 2074464

T4 (20)
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To generate 460 terms our recursive method has required some 12 hours on a desk
computer.

3. Recalls: minimal order ODE versus non-minimal order ODE

To find the linear ODE annihilating a series S (x), like the expansion of (1), we write the linear
ODE as [18]:

0 D d )
LQD= a,~~xj (x—) (21)

With the condition agy # 0 (respectively agp # 0), we automatically satisfy the
requirement for x = 0 (respectively x = o0) to be a regular singular point. Note that since
S(x) is the expansion of an integral with algebraic integrand, the ODE will be globally
nilpotent and therefore Fuchsian [24].

The polynomials in front of the (homogeneous) derivative x % have all the same degree
D, and the problem amounts to solving the linear set of equations Lyp(S(x)) = 0 in the
coefficients a;;. This method is called by some authors ‘guessing method’.

The linear differential operator Lgp, defined by Lop (S (x)) = O for a given S (x), is not
unique if one does not require Lop to be of minimal order. The advantage of seeking for
the non-minimal order Lop is that the number of unknown coefficients to be found can
drop dramatically [17]. Among all these linear ODEs, one is of minimal order ¢ and it is
unique (its corresponding degree will be denoted by D,,). In terms of linear differential
operators, the minimal order differential operator appears as a right-factor in the factor-
ization of the non-minimal order linear differential operators. The minimal order linear
ODE may contain a very large number of apparent singularities, and can, thus, only be
determined from a very large number of series coefficients (generally
N, = (g + D)(D,, + 1) terms are needed). Other (non-minimal order) linear ODEs, because
they carry polynomials of smaller degrees, may require fewer series coefficients in order to
be obtained.

The order of the minimal order ODE can, in fact, be obtained, from the non-minimal
order ODEs, from a remarkable formula, that we reported in [25], for which we have no
proof, but which has been found to work for all the cases we have considered. This ‘ODE
formula’ reads:

N=m-Q+q-D-C=@Q+1)-D+1)—f. (22)

The ‘ODE formula’ (22) should be understood as follows: for a long series S (x) we use
three (or more) sets of (Q, D) and solve Lop (S (x)) = 0. From this we obtain, for each pair
(Q, D), the value of the parameter f, which is the number* of independent solutions (if
f> 0, otherwise we increase Q and/or D) for each pair (Q, D). These values (Q, D, f) are
then used to determine m, ¢ and C in (22). In all cases we have investigated, the parameter
q is the order of the minimal order linear ODE that annihilates S (x). The parameter m is the
number of singularities (counted with multiplicity) excluding any apparent singularities,
and the singular point x = 0 which is already taken care of by the use of the homogeneous
derivative xi. The parameter C is related to the degree Dy, of the polynomial, in front of
the highest derivative of the minimal order ODE, carrying the apparent singularities. D,

4 Solving Lop (S (x)) = 0 (e.g. by term by term) will fix all the coefficients but leaves f coefficients unfixed among
the (Q + 1)(D + 1) ones. These are all independent ODE solutions for given Q and D.
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reads [18]:
Dypp=(m—-1)-(gq—-1)-C~-1. 23)

This formula is a direct consequence of (22) and is obtained for the values Q = ¢,
D =m+ Dy, and f = 1 which define the minimal order ODE. The degree of the
apparent polynomial is known even if the underlying minimal order ODE has not been
produced.

For a non-minimal order ODE (Q > ¢g), there is a degree D such that
No=(@Q+ 1)(D + 1) is less than N,,. Among all these non-minimal ODEs, there is
one requiring the minimal number of terms to be found, and which we call the ‘optimal’ ODE
(in a ‘computational sense’). For instance, for ;?(5), the ‘ODE formula’ reads [18, 25]:

N=T720+33D-887=Q@+1D-D+1)—-f. 24)

The ‘optimal’ ODE, i.e. the linear ODE that requires the minimum number of terms in the
series to be found, has the triplet (Qy, Do, f) = (56, 129, 8) which corresponds to the
minimum number Ny = 7402. The minimal order ODE corresponds to the triplet
(33, 1456, 1), and requires N,, = 49537 series terms.

If we compare both numbers of series terms (for the optimal ODE and the minimal order
ODE) for the known lattice Green function of the fcc lattice, one obtains that the minimal
order ODE (respectively optimal ODE) requires 40 (respectively 40) terms for d = 4, 98
(respectively 88) terms for d = 5 and 342 (respectively 228) for d = 6. The ODE formula for
the d = 6 fcc lattice ODE reads

N=120+8D -51=Q+1)-D+1) —f, (25)

which gives with (23) an apparent polynomial of degree 25. The gain in the number of series
terms required to find the ‘optimal’ linear ODE, instead of the minimal order linear ODE, is
114. The drop in the number of terms is a consequence of the disappearance of the apparent
singularities. We expect D,pp,, and the gain, to be higher for the linear ODE of the seven-
dimensional fcc lattice.

Note that, once the optimal ODE has been obtained, we may produce enough terms of the
series to get’ the minimal order ODE. The calculations are performed modulo various primes,
and the minimal order ODE is obtained by rational reconstruction [18, 26-29].

Having recalled the tools that allow us to produce the linear ODE with the fewer number
of terms in the series, we now look for the linear ODE that annihilates the generated ser-
ies (20).

4. The seven-dimensional fcc lattice: differential equation

With the generated 460 terms, we seek (modulo a prime) for a linear ODE by solving
Lop (S (x)) = 0, steadily increasing Q and/or D (with (Q + 1)(D + 1) < 460) until we get a
positive answer (the parameter f > 0). When this happens, we produce four ODEs, i.e. we
have four sets (Q, D, f), that we use in (22), to obtain the ‘ODE formula’:

N=150+11D-9%=Q+1)-D+1) -/ (26)

3 It is obvious that the minimal order ODE is the greatest common right divisor (gcrd) of all the non-minimal order
ODEs. However, this can hardly be used for the large order ODEs, especially that, for efficient computations, the
non-minimal order ODEs are obtained modulo primes.
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The minimal order ODE (underlying our non-minimal order ODEs) is of order eleven and has
fifteen singularities (with multiplicity). The degree of the apparent polynomial is 45. With this
formula, one knows® that the optimal ODE corresponds to Qg = 16, Dy = 22, f, = 3, and
requires 391 terms to be found. We have then 69 terms as a check. The parameter f; = 3
means that we have three independent linear ODEs with order Qy = 16 and degree Dy = 22.

Even if this ‘optimal’ linear ODE is only known modulo primes, and is of non-minimal
order, one may recognize the singularities, and compute the local exponents at any singular
point. At x = 0, the local exponents are p = 0 seven times, p = 1 three times and p = 3. The
five extra and ‘spurious’ solutions have no local exponents over the rationals. The ‘ODE
formula’ shows that (with Q = 11 and f = 1) the minimal order linear ODE needs 732 terms,
which is rather higher than our generated series of 460 terms. The ‘optimal’ ODE (of order
16) is used to generate the terms necessary to obtain the minimal order linear ODE. This
process (i.e. use the series of 460 terms known in exact arithmetic, obtain the ‘optimal’ linear
ODE modulo a prime, then the minimal order ODE) is repeated for many primes until the
linear ODE can be reconstructed in exact arithmetic’. We call the corresponding linear
differential operator G} (with D, the derivative d/dx)

11

G/’ = 0c(x) - B(x) - Df, @7
k=0

with

0@ =x8-x+D*a =D +3NE+2DE + 149G +x)(x - 21)
X (5x +72x + 7)2x + 21)(5x + 63)(3x — 7), (28)

and

Qio(x) = x7(x + 7)°, Qo(x) = x°(x + 7%, Qg(x) = X°(x + 7),

07(x) = x*, Os(x) =x3,  0Os(x)=x2,  Q4(x) =nx,
Qj(x)=1, j=0,-, 3. (29)

The polynomials By, Ry,-:-, Ry are respectively of degree 45, 57, 58, 59, 60, 60, 60, 60, 60,

59, 58, 57. The polynomial R(x) is given in the appendix. The other polynomials P;(x) are

too large to be given here. The differential operator G17,D fe¢ and the series LGF(x) up to x*%,

are provided in an online supplementary data file available from stacks.iop.org/jpa/48/
035205/mmedia

The indicial equation, at the singularity x = 0, is p’- (p — 1)*- (p — 2) = 0. The local
exponents, at the singularity x = =7, are p = 3/2, p =5/2, three times p =2 and
p=0,1, 3,---, 6. At x = oo, the local exponents are p = 7/2 and p = 1, 2,---, 10. At all
the other regular singularities, the local exponent are p = 5/2 and p = 0, 1,-:-, 9. The roots
of the degree-45 polynomial R; are apparent singularities with local exponents
p=0, 1,-, 9, 11

The formal solutions of the order-eleven operator G;;”" are as follows. There is one
solution beginning as x> + ---,

S Run through the integers Q > ¢ = 11, D > m = 15 with > 0, in (26) to obtain the minimal value of N.
7 The polynomial of degree 45, carrying apparent singularities, required 23 primes, and 33 primes were sufficient to
reconstruct all the other polynomials.
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493 34 360763 146728781 5

S, =x% — X x* - X (30)
2970 2910600 13335840000
Three solutions come as
S 1n (x)? + [xz] In (x) + [x3],
S1In (x) + [x3],
S = x 55 , + 10097 5 + 296669 + 514600171 . G1)

- X X X X
1008 190512 85349376 67212633600

and seven solutions as

SoIn () + [x]1n () + [x]In (0)* + [x] In (x)? + [x2] In (x)? + [x2] In (x) + [x3],
SoIn (¥ + [¥1n (0 + [ In (07 + [ #2] In (@2 + [ 4] In @) + [ 2],

SoIn (0)* + [x]In (x)° + [x2] In (x)? + [xZ] In (x) + [x3],

Soln (0 + [x*]In 2 + [ ]I (o) + [ ],

Soln (@) + [x*]In (o +[ ],

Soln (x) + [x3],

Sy =l iy S, 263 4 1355

x° + X X7 4 e, (32)
84 1764 197568 2074464

where the notation [x¥] indicates an analytical series that begins as x* + .-

There are three (analytical at 0) solutions. The series Sy corresponds to LGF7(x) and has
the ‘integrality property’ [30], i.e. it becomes, with the rescaling x — 84 x, a series with
integer coefficients®. With the rescaling 84 which is the number of nearest neighbors in the
lattice, the generating function counts the excursions in the fcc lattice. In contrast the series S,
and §; are not globally bounded [30, 31]: they cannot become series with integer coefficients
up to a rescaling.

The occurrence of more than one non-logarithmic solution, at any regular singularity,
may be an indication that the linear differential operator factorizes. This is neither necessary
nor sufficient.

Since G;P™ is obtained with the series (20) which is the series in front of the log with
the maximum power, if G,?™ factorizes, it should have a left factor of order seven.

To factorize large order linear differential operators, we make use of the method sketched
in section 4 in [18] (see also section 6 in [32]). This amounts to ‘following’ the series
pertinent to a specific local exponent at a given singular point. For instance, we translate
G/P fc to the point x =— 7, and seek for the linear ODE corresponding to the series that
begins as t> + --- or as 1> + --., where = x + 7. Linear combinations of series with
different local exponents are considered as well, like the series 2 + --- and the series
32 + ... at the point x = —7.

Here we take the expansion around x = 0, where we have the combination of three
solutions to consider. In this method, we produce the general (analytic at 0) solution of G, >
which begins as

8 This ‘integrality property’ is expected, the series LGF7(x) being the diagonal of a rational function, it is globally
bounded [30, 31].
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2 ( 8401 5581 493 ) ;
ag+ay x + a; x° + aop a) — a| -
1746360 127008 2970
( 208069 70601 360763 ) y
ay — agp a |- x

20321280 488980800 2910600
( 903332869 146728781

128024064000 ' 13335840000

878428781 ao) e 33

1120210560000

The expansion of LGF;(x), given in (20), corresponds to the values ag =1, a; =0,
ap = 1/84. The series S, corresponds to ag = 0, a; = 0, a; = 1, and the series S; corresponds
to ap =0, ag =1, ap = —-55/1008. The computation being done modulo a prime, the
coefficients of the combination are in the finite range [1, p.], p. being the prime.

The ‘optimal’ linear ODE corresponds to the triplet (Qy = 16, Dy = 22, f; = 3). For a
given combination of the a;, the series (33) is used to obtain the ODE. If the parameter f is
found such that f> f; = 3, this means that there is a right factor to G [Pc. If, for any
combination of solutions (i.e. the coefficients ag, a; and a, have been fixed to any value in the
range [1, p]), one obtains f = f, there is no right factor over the rationals. All the combi-
nations have given the ‘ODE-formula’ (26).

We have also shifted G,?™° to the point at infinity x = 1/t = co. Producing the series
that begins as t’2- (1 + ---) we find that the linear ODE is of minimal order eleven.
Similarly, at the point x = —7, we find that the series beginning as (with t =x + 7),
>+ (1 + --+), which corresponds to the local exponent p = 23, as well as the combinations of
2. (1 + -)and 5% - (1 + ---), all require the linear differential operator G,;”*°. For all the
other regular singularities, the non-analytical local exponent is p = 5/2. This includes the
point x = 1, for which the linear ODE is shifted, and the corresponding series requires a linear
ODE of order eleven. We conclude that the order-eleven linear differential operator G,"’™° is
irreducible over the rationals. Similar calculations show that GZ?™ and G are also
irreducible. For these two cases, we have carried out the check only with the analytical
solutions around the point x = 0.

Besides the irreducibility of all the known linear ODEs of the fcc lattice Green functions,
one remarks that their singularities ‘proliferate’ on the real axis as d increases, and these
singularities are all rational numbers. All the series LGF;(x), (d < 7) have unity as con-
vergence radius, and all the singularities of the linear ODE are, besides x = 1, outside the unit
circle x| = 1. We may wonder: do these properties continue for the next d’s? In section 6, we
will show that it is not necessary to actually obtain the linear ODE to get the answer. In the
following, we show another property shared by the known linear ODE of the fcc lattice Green
functions.

5. Canonical decomposition of the irreducible operator G;2>*°

In a previous paper [22], we have shown, for many operators, the equivalence of two
properties: the homomorphism of the operator with its adjoint, and the occurrence of a
rational solution for the symmetric (or exterior) square, or a drop of order of the symmetric
(or exterior) square. The operators with these properties are such that their differential Galois
groups are included in the symplectic or orthogonal differential groups. The differential

9
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Galois groups of the differential operators GO and GS”**° are included, respectively, in the

SO (6, €C) and Sp (8, C) groups.

In a recent paper [23] we forwarded a ‘canonical decomposition’ for those operators
whose differential Galois groups are included in symplectic or orthogonal groups. These
linear differential operators are homomorphic to their adjoints, and a ‘canonical decom-
position’ of these operators can be written in terms of a ‘tower of intertwiners’ [23].

For the differential operator GZP™, this canonical decomposition reads (see equation
(41) in [22]),

G’ = (V- Vi+ 1) n(x), (34)

where 7 (x) is a rational function, and where V, and V| are self-adjoint operators of order,
respectively, one and five.
The canonical decomposition of the operator G86D fee is (see equation (61) in [22])

G = (Wo- Wi+ 1) - n(x), (35)

where 7, (x) is a rational function, and where W, and W] are self-adjoint operators of order,
respectively, two and six.

In the sequel, we address this issue for the order-eleven linear differential operator
G,[Pc. Note that using the formal solutions of the linear differential operator G, ", it is easy
to show that its symmetric square is of order 65 instead of the generically expected order 66.
The operator G;” is in the differential Galois group SO (11, C).

We find that the order-eleven linear differential operator G,}”
decomposition:

fe¢ has the following

GP*=Us-Uy-Us-Up- Ui+ Us- Uy - U+ Us - Ur - Uy
+U5'U4'U3+U3'UZ'U1+U1+U3+U5)'V(X), 36)

where r(x) is a rational function, where U,, U;, U, and Us are order-one self-adjoint
operators, and where U is an order-seven self-adjoint operator. The U,’s are too large to be
given here.

The formula (36) occurs because G, >

is non-trivially homomorphic to its adjoint
adjoint(Lyp) - G/ = adjoint( GP**) - Ly, (37)

and the decomposition is obtained through a sequence of Euclidean rightdivisions. Denoting
G,[Pfee = Lis) and Lyg = Ly, one has

Lisy=Us- Ly + Liz;, Ly =Us- Ly + Ly, Ly =Us- Ly + Ly,
Ly =U, - Ly + Loy, Ly = U - r(x), Lig) = r(x). (38)

A simple substitution gives the decomposition (36) in terms of the five self-adjoint
operators U,.

From the decomposition (36), and since the self-adjoint operator U is of odd order
greater than one (see [23] for the details), one can understand why the symmetric square of
the order-eleven linear differential operator G,[”™° is of order 65 instead of the generically
expected order 66. The symmetric square of the self-adjoint order-seven operator U is of
order 27 instead of the generically expected order 28.

From the decomposition (36) one can also deduce that the symmetric square of the
adjoint of the order-eleven linear differential operator G,}”*° has a rational solution that is the

square of the solution of the adjoint of the order-one operator Us.

10
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One can also see the second intertwining relation between the order-eleven linear dif-

ferential operator G,1”*° and its adjoint
G - Ly = adjoint(Ly) - adjoint( G"*). (39)

Again, one can consider the homomorphisms of L, with its adjoint, and the homo-
morphisms of Ly with its adjoint, getting this way a ‘tower of intertwiners’ (see [23]). In
terms of the U,’s, they read

Ly= ~(U2~U3-U4~U5+U2'U5+U2'U3+U4'U5+1)’ (40)
and
Lio=(Us-Us-Uy- U+ Us- U+ Uy - Us+ U - Uy + 1) - r(x). (41)

These two intertwiners have ‘special’ differential Galois groups, included in SO (4, C) and
SO (10, €) for respectively L4 and L.

The symmetric square of L, has a rational solution corresponding to the square of the
solution of Us. The symmetric square of the adjoint of L4 annihilates a rational solution which
is the square of the solution of the adjoint of U,.

The symmetric square of L;( has a drop of order: it is of order 44, instead of the order 45,
generically expected for an order-ten operator. The symmetric square of the adjoint of L is
of the generic order 45 and annihilates a rational solution which is the square of the solution
of the adjoint of Uj.

6. Landau singularities

There is an analytical approach to obtain the singularities of functions, defined through n-fold
integrals, which amounts to imposing conditions on the integrand. These conditions on the
integrand are called Landau conditions [20, 21, 33-39], and the singularities obtained this
way are called Landau singularities.

The singularities of the linear ODE, annihilating the d-dimensional fcc lattice Green
functions, are obtained by solving, in the variables cos (k;), the Landau equations9 corre-
sponding to (1)

d
(1 — cos (kj)z) . Z cos (k;) = 0, j=1, 2, d, (42)

and plugging in:

X, = (j)/[i é cos (k;) - cos (k;) |- (43)

i=1j=i+1

It is straightforward to solve the system (42) for any value of d. When all cos (k j)2 =1,
the system of equations (42) is verified, and one obtains the singularity x; = 1. For
cos (k))> = 1 and cos (k j)2 # 1, j # 1, the system (42) becomes linear, and one obtains a set
of singularities. The next step is to consider cos (k;)> =1, cos(k;)> =1 and
cos (kj)2 # 1, j> 3, a set of singularities (that may include some of the first set) is

° See section 2 in [20] for an example of Landau equations for a simple integrand as in (1).

11
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obtained, and so on. At each step, the problem amounts to solving a linear system where the
coefficients are O and 1.
The set x; of singularities read

xs:(d).;.’ (44)
2) &, k)
where
L dP—(k+ 4+ 1) d+ 4+ k+ 4k
£, k, j)= ( v+ D J k.
21 =k
with k=0, 2,3,--, d-1, j=0,-, [(d-k)2], (45)
and where [x] is the integer part of x.
For d = 4, we obtain the regular singularities x; = —8, —6, —3, =2, 1, which, indeed,
occur in the linear differential equation obtained by Guttmann [1]. For d = 5, the regular
singularities are x; = —15, —10, -5, =5/3, 1, 5, in agreement with the linear differential

equation obtained by Broadhurst [4]. One also has agreement with the singularities of the
linear differential equation obtained by Koutschan [5] for d = 6: our Landau singularities read
xg = =24, =15, -9, -60/7, -15/2, =5, -4, —15/4, =3/2, 1, 3.

For d =7, our Landau singularities (44) are in agreement with the singularities occurring
in the linear ODE and given in (28).

The Landau singularities corresponding to LGF;(x), and given by (44), are, obviously,
all rational numbers, and are all such that lx,| > 1, except for the singularity x, = 1.

As the dimension d goes higher, the number of the singularities goes as d>. For each
dimension d, the minimal value of the singularities is given by Syin = —d - (d — 2), while
the maximum value Sy,,x of the singularities depends on whether the dimension d is (or how
far it is from) a perfect square. For instance,

JVd = integer, Smax = d - (Vd = 1), (46)

N

Jd + 1 = integer, Sax = % d-1)- (\/d+ 1 - 1), (47)

d — 1 = integer, Shax = % d-Nd-1, 48)
vJd + 2 = integer, Shax = % d-d-1), 49)
1 d-(d- 1)~(2\/d—2 - 1)
d — 2 = integer, Shax = — . (50)
2 4d-9

To show the deviation from the perfect square, we define the parameter d as
d:n2+p, 0< p<2n. (G2))

From inspection on many S,,.x, we infer

(n2+p)'(n2+p—1)

3n—p+§+(—l)p~(n+%)’

Smax = (52)
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Table 1. The local exponents p at x = 0, x = o and x = 1. For the last two points,
only the non-analytical exponent is given.

d x=0 x=00 x=1
3 0° 32 12
4 ot 22 12
5 051 5/2 3/2
6 0° 12 32 22
7 0LB,2 2 5/2

Table 2. The number of terms N,, (and Ny) needed to obtain the minimal order ODE
(and the optimal order ODE) annihilating LGF,(x). The numbers in the row for d = 8
are estimates.

d Nm N() Nn — No Qopt - Qmin
4 40 40 0 4-4=0
5 98 88 10 7-6=1
6 342 228 114 11-8=3
7 732 391 341 16 -11=5
& (1650) (672) (978) 20-14=6)

which corresponds to the singularity (44), with (45) evaluated for kK = 0 and the following
value of j

(33)

7. From facts to speculations

7.1. The order of the linear ODE of the d-dimensional fcc lattice

Let us consider the local exponents at the three singularities x = 0, oo, 1, common to all the
linear ODE for d = 3,---, 7. One remarks'® (see table 1) the simple pattern at x = co and
x = 1, which depends on the parity of d. This leads to imagine, for d = 8, that one may have,
respectively, p = 4> and p = 3%. More important is the pattern at the regular singularity
x = 0, which, if well guessed, should give p = 08, 1*, 22, for the next d = 8. This would
give an order-14 linear ODE for d = 8. For d = 9, the pattern may give p = 0°, 1, 23, 3,
indicating an order-18 linear ODE, and for d = 10, it may be p = 0'°, 1°, 2% 32 ie. an
order-22 linear ODE, etc.

If all this is correct, the order of the ODE of the d-dimensional fcc lattice should read:

> d 17 (=)
=— -4+ — - —.
4 2 8 8

For the linear ODE of the eight-dimensional fcc lattice, if we assume the order to be 14,
the number of the singularities given by (43) as 19 (omitting the multiplicity), and the degree
of the apparent polynomial twice the degree of B, one obtains the estimates given in table 2.

(54)

10 The notation (e.g.) 2% means that p = 2 occurs twice.

13
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Table 3. The return probability as a function of the dimension.

d R, (ten digits)

1

0.256 318 236 5
0.095 713 154 1
0.046 576 957 4
0.026 999 878 2
0.017 563 245 0

NN kW

7.2. The differential Galois group of the linear ODE for LFG4

We have seen that the differential Galois groups of the linear differential operators for the fcc
lattice Green functions in five, six and seven dimensions, namely G6SD fee, G86D fec and G17ID fee
are respectively included in the SO (6, C), Sp (8, C) and SO (11, C) group. From the previous
speculations on the minimal-order ODEs for the d-dimensional fcc lattice Green functions,
one could imagine that the differential Galois groups of the linear differential operators for the
fcc lattice Green functions in eight and nine dimensions, namely G184D fec and GlggD ¢ would be
included respectively in Sp (14, C) and SO (18, C).

It has been underlined in [23] that the right-most self-adjoint operator in the ‘canonical
decomposition’ of these operators with ‘special’ differential Galois groups plays a selected
role: the rational solutions of the symmetric (respectively exterior) square of these operators
(or the drop of order of these squares) does not depend on the other self-adjoint operators of
the decomposition but only on this right-most self-adjoint operator (multiplied by the rational
function r (x) of the decomposition). This right-most is V; for G2 (see (34)), W; for GEPe¢
(see (35)), and Us for G17lD fec (see (36)). Let us remark that the right-most self-adjoint operators
of the linear differential operators for the fcc lattice Green functions in five, six and seven, are
respectively of order five, six and seven. It is, thus, tempting to imagine that the linear
differential operators for the fcc lattice Green functions in eight and nine dimensions, will
correspond to a decomposition generalizing (36) (see [23]), involving three order-two self-
adjoint operators and a right-most self-adjoint operator of order eight, and that the decom-
position for the operator associated with the fcc lattice Green function in nine dimension will
correspond to nine order-one self-adjoint operators and a right-most self-adjoint operator of
order nine. A similar ‘ansatz’ can be made for fcc lattice Green functions in any dimension d:
we could imagine decompositions in terms of a right-most self-adjoint operator of order d and
q — d order-one self-adjoint operators for d odd, and (¢ — d)/2 order-two self-adjoint
operators for d even, where ¢ is given by (54).

7.3. Return probability

The latttice Green functions arise in the study of random walks in probability theory. Here the
value at x = 1 of LFG,(x) = P;(1) gives the return probability

Ri=1—-——— (55)

which is the probability for a walker, starting at the origin, to return to the origin.
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For the d = 3 fcc lattice, the return probability is known in closed form [40]

1/3_4
Ry=1- 1647” (56)
9r(1/3)°
while, for d = 4,---, 6, only the numerical values are obtained. With the recursion of the

order-eleven ODE annihilating LGF;(x), one computes the number of terms of the series
necessary to evaluate R~ to the desired accuracy. The value'' of R; completes the Table given
in [5], which shows a dependence on the dimension of the lattice. The values of Ry, in table 3,
shows a decrease, as d goes higher, that can, for instance, be of the form d~%, with @ > 0.

The recursive method of generation of series of section 2 allows us to produce the first 60
terms of the series up to the dimension d = 40, from which we infer the expansion of (1) for
the generic dimension d up to x3°. The first eight terms of LGF,(x) read:

! JEI C ) B
2d-1)-d d-1)?*-d?
3'(10d2—38d+39)

LGF,(x) =1 +

8d3(d — 1)°
.\ d-2)- (34d2 — 1484 + 183) p
2d* - (d - 1)*
.\ 5- (302 d* —2824d3 +10357d> — 17417d + 11176) p
16d° - (d — 1)°

3(d — 2)( 1646 d* — 17868 d°> + 77749 d* — 158367 d + 125870)
" 8d® - (d — 1)°
xT e 57)

and has the form
Cp_r(d
LGF,(x) = Zﬁ - X, (58)

n

where the C,(d)’s are polynomials in d of degree n.
For large values of d one can deduce from LGF,(x), a series expansion in 1/d, namely

= 2 1,2 L2 2 . L
LGE,(x) =1 + + 2 Qx4+ D+ (1074 2) -
1

+%2'(34)63—6162—2x+1)'d5

+ o (59)

where the fact that coefficients of 1/d” in (59) are polynomials is a straight consequence of the
fact that the (rational functions of d) coefficients of x" in (57) behave as 1/d" for large d.
One deduces with (59), the expansion, for large values of d, of the return probability R;:
_ 1,3 4 12 37 1219
2d* 2d4° d* d° 8d° 8d’
which has the ‘integrality property’, i.e. it becomes a series with integer coefficients with the
rescaling d — d/2.

+ e (60)

Ry

"' R, = 0.017 563 245 036 917 347 782 481 698 942709 061 089 911 556 997 564 570 73---
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The series (60) is a divergent'” series, and shows the trend in d~2 for large values of d.

Remark: The fact that the coefficients of x" in (57) behave as 1/d" for large d, does
suggest to introduce the rescaled variable y = 2x/d, into the series (57) to obtain a series in y
with rational coefficients in d. In the d — oo limit this series becomes a (divergent) series
with integer coefficients:

14292+ 83 + 60 y* + 544 y5 + 6040 y© + 79008 y7 + 1190672 y& + --- (1)

which is actually solution of a second order linear non-Fuchsian ODE' with the two
solutions

1 31 y+1
+ )12 12 g1t F [_]’ [_]’ Cem12ly
o+1 y Al |5 5 %

8. Conclusion

In this paper we presented a recursive method to generate the series coefficients of the lattice
Green function of the d-dimensional fcc lattice. The series for d = 7 has been obtained to some
length and thanks to the idea that many linear ODEs, of order larger than the minimal one,
may be obtained with fewer terms, we have obtained the linear ODE that annihilates the
lattice Green function of the seven-dimensional fcc lattice.

The (minimal-order) linear differential equation for the seven-dimensional fcc lattice is of
order eleven and is irreducible. We show that the differential Galois group of the corre-
sponding operator is included in SO (11, C). This order-eleven operator is non-trivially
homomorphic to its adjoint, and we found a decomposition of this operator in terms of four
order-one self-adjoint operators and one order-seven self-adjoint operator.

As far as the singularities are concerned, we show that the singularities of G;”™° follow
the scheme observed for the linear ODEs of lower d. With the Landau conditions approach,
we showed that the singularities, for any d, are all rational numbers, which are, beyond
x = 1, outside the interval [—1, 1].

As the return probability in random walks in (fcc) lattice may be of interest, we also
evaluated the return probability R; of the seven-dimensional fcc lattice. The recursive method
of generation of series terms of LGF;(x) is sufficiently effective to let us produce short series
for many values of d. With these results, we inferred that the return probability R; behaves as
d~? for large values of d.

The linear differential operators whose differential Galois groups are included in the
symplectic or orthogonal groups have a ‘canonical decomposition’ in terms of self-adjoint
operators [23]. For the known linear differential operators GZP™¢, GSP™ and G,/P™¢, some
observations on the specific ‘ansatz’ form of their ‘canonical decompositions’ in terms of self-
adjoint operators are sketched in section 7.2. These speculations are a strong incentive to
perform the calculations for the fcc lattice Green function, in the higher dimensions'®.

12 As far as it is safe to make the conclusion with a series of only 34 terms.

13 The corresponding  order-two  linear  differential  operator has the unique factorization
(d/dy + Gy + 2/ + 1) - (ddy + 2y> = DAYy + 1))

14 For d = 8, the time needed to generate 50, 100 and 150 terms is respectively 4, 59 and 331. To generate 672 terms
(see table 2) plus 100 terms for the check, the time can be estimated as at least 82 hours on a desk computer.
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Appendix. The apparent polynomial of G2'°

B =4033844291292160512572197716389040432464926556160000000
— 76716614566403110639033419440712752789656370047488000000 x
+ 1036105712621875785358061549706636065154061705507660800000 x2
+ 16582552474758671672601408908172980846455437334039680000000 x3
+ 92528281358446684721054852304052021993648722856652790720000 x*
+ 63191344208515083154464238671792397457218673838108305673600 x>
— 1028373259267414517632638438252917863677228096786073040753280 x°
— 3875346880791921428013321015467132142892901930768457490486272 x”
— 6920318399426800817887962016170406919476899714148547999153088 x®
— 8154471373075656935436312555783320414633120129789847214836048 x°
— 6245702881422338462232184489205592634805720476083959916954720 x1©
— 2376232682826675746826787210063813304210071338288106265892144 x!!
+ 409323467347919017193444730250431709768180749972825987763968 x12
+ 1094294121359871591653112881632669129584109878287736283862304 x!3
+ 752324466393615486137798566063739247640534078467948502617792 x'4
+ 369596809799205895313185288244531423864737167506726868047424 x13
+ 173462105486017718670525285173642124785703042463376755656000 x1©
+ 81585560140780999074640514392799621227191196083376547520384 x!7
+ 30039869312248151750092120565576302197789247371702033184576 x!8
+ 3352864878089336012143385345711247821224483161365521297536 x'°
— 5269157075175728093621430002781092748292821974628349580736 x20

— 5003037996223007820302755774000779739244471692540950704576 x*!
— 2724443564627932817554684016950743167044585588150372246848 x2?
— 1099950431710329286006976673908885512918136416974142913472 x3
— 354827676457302481549017891474813922001077928917049120576 x*
— 94649380054954516698535249719599292251951455673840066208 x>

— 21283773506777832888307450022897921617853237366966188416 x26

— 4083520971052879322404793887394253941827038658791531616 x?’

— 673847982635093459687405322938556215952418650082540224 x28

— 96232684263265628624960727707621390080193285430960000 x%°

— 11983439352062136145880401362426806595412251158557632 x°



J. Phys. A: Math. Theor. 48 (2015) 035205 N Zenine et al

— 1321477574928217810528106035645553007130680877071168 x3!
— 133756126413404887811038857155026506627716809584192 x32
— 13277030500839992506125996150534276486354892529664 x33
— 1384266419715171016988616613973267638084553135424 x3*

— 151391595348867999321027885040943286501123115008 x

— 16057106216119177077113061732259948384006651712 x3°

— 1518287617204750975914622379591236350411307968 x37

— 121212363333027580459494623106043808245269312 x38

— 7904889970969434550214545179960157702136640 x>

— 410180899572074649344019059013918950937600 x*°

— 16438739943524974573089152060006574677904 x*!

— 488014173372889647550579109740889580576 x*2

— 10039688420130121713386066606706194160 x*

— 126636870801841392088882506641659200 x**

— 727932992011727859393396784221600 x*°.
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