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Abstract The symmehy groups, generated by the inversion relations of latrice models of 
statistical mechanics on triangular lattices, are analysed for vertex models and for the standard 
scalar Potfs model with two- and three-site interactions. These groups are generated by three 
inversion relations and are seen to be generically very large ones: hyperbolic groups. Two 
situations far which the representations of these groups degenerate into smaller ones, hopefully 
compatible with integrability, are considered. The first reduction for the vertex triangular model 
corresponds to the situation where the vertex of the triangular model coincides with the left- 
or right-hand side of a Yang-Baxter relation. In this case the representation of the group is 
isomorphic. up to a semi-direct product by a finite group, to Z x Z. The second reduction for 
q-state POUS models occurs for particular values of q ,  the so-called 'hue-Beraha numbers. For 
this model, algebraic varieties. including the known ferromagnetic critical variety, happen to be 
invariant under such large groups of symmetries. 

As a byproduct, this analysis provides nice birational representations of hyperbolic Coxeter 
groups. 

1. Introduction 

In previous papers [ 1,2] it has been shown that there exist non-trivial, nonlinear symmetries 
acting on the parameter space of lattice models of statistical mechanics generated by the 
so-called inversion relations [3-6]. These nonlinear groups of symmetries appeared as 
powerful tools to study integrable models in lattice statistical mechanics, for instance to 
find the critical varieties of their phase diagrams [7]. These symmetry groups can also be 
seen as symmetries of the Yang-Baxter equations (or star-triangle equations, when dealing 
with spin models) and their higher-dimensional generalizations. It is important to note 
that these groups exist as symmetry groups of lattice models even when one is no longer 
restricted to an integrableframework [8,9].  

In this point of view, the straight, but tedious, analysis of a three-dimensional model 
through transfer-matrix formalism, or any other classical method of lattice statistical 
mechanics is replaced by an analysis of the transformations corresponding to the symmetries, 
acting in the parameter space and therefore. at first sight, less sensitive to the lattice space 
and of course even to the dimension of the lattice. 

However, in both cases, integrable or not, known in the literature, a drastic difference 
s e e m  to appear between two- and threedimensional models, suggesting a way to 
understand the obsuuction for three-dimensional integrability associated with generic 
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three-dimensional symmetry groups, and also suggesting giving an algebraic definition 
to the notion of the dimension of the model. In this framework the dimension of 
the lattice re-emerges through the ‘size’ of the symmetry group. As far as two- 
dimensional models are concerned, the symmetry groups known in the literature are 
either finite groups [lo, 111 or groups isomorphic to products of 72 up to a semi-direct 
product by a finite group [8,11.121. Whereas for lattice models of dimension three, 
these symmetry groups are much larger: generically they are free groups with three 
generators. With such symmetry groups, the very existence of solutions of the tetrahedron 
equationst having a ‘generic three-dimensional symmetry’ Seems problematic [ 121: the 
only possibility for solutions of the tetrahedron equations are probably cases where the 
representations of such ‘large’ groups degenerate into products of 2 or even into finite 
groups [16,17]. 

It will be shown here that the analysis of the symmetry group of models on triangular 
lattices weakens this opposition between dimensions two and three. More precisely, 
this study suggests that the coordination number of the lattice could be a parameter 
more relevant for the structure of the symmetry group than the lattice dimension. In 
the following, we will analyse a vertex model on a triangular lanice, and the standard 
scalar q-state Potts model with two- and three-spin interaction [18]. Generically, their 
symmetry groups are free groups with two generators. One recovers a situation similar 
to the one encountered in dimension three; these models on a hiangular lattice thus 
provide examples giving hints for the analysis of such large symmetry groups in dimension 
three. 

Moreover, these hyperbolic Coxeter groups of symmetries can actually degenerate into 
more ‘reasonable’ groups leaving room for integrability in two cases: one corresponding to 
a 2-invariant-like situation [19] and another one, reminiscent of the occurrence of Tiitre- 
Beraha numbers [ZO]. 

Finally we will consider the consequences of these symmetries, with a special emphasis 
on criticality conditions. Actually, many criticality conditions have been conjectured in the 
literature of lattice models of statistical mechanics, and of course all these conjectures 
were algebraic [21,9,22]. However, when exactly proved, they were always related 
to some integrability of the model, the algebraicity thus being a consequence of the 
integrability [23]; with a noticeable exception: the (self-dual) critical variety given by 
Wu [18,24], on the two- and three-site Potts model on the triangular lattice, which we 
revisit here. 

Here we will analyse this algebraic variety, which is a critical condition in some 
‘ferromagnetic region’ [24], but is not related to any simplei ‘Yang-Baxter-like integrability’. 
Moreover, we will discuss the status of other remarkable varieties emerging from this 
algebraic study. 
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2. Symmetries of lattice models 

Let us recall the symmetry group generated by the inversion relations for lattices of 
coordination number six, first on the cubic three-dimensional vertex model [16,17] and 
then on the triangular lattice. 

i Generalizations of the Yang-Baxter equations in dimension three [8,13-15]. 
$ If a Yang-Baxter integrability exists for this model it cannot be simply parametrized in terms of the elliptic or 
rational curves one is used to in exactly solvable models, or even surface products of curves (see the solution of 
the str--triangle for the chiral Pons model [lOD One would have a much more involved parametrization ns far 
as effective algebraic geometry is concerned. 
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2 . I .  Inversion relations and the group rjD 

Let us consider a vertex model on a three-dimensional cubic lattice of size M x M .  With each 
bond is associated a variable with q possible states. A Boltzmann weight w(i ,  j ,  k, 1. m, n) 
is assigned to each vertex configuration [E], and can be represented pictorially by 

The q6 homogeneous weights w( i ,  j ,  k, I ,  m, n )  are first arranged in a q3 x q3 matrix R of 
entries: 

R L t  = w ( i ,  j ,  k, I ,  m, n ) .  

One may [17] introduce an involution I which transforms R into I R  according to 
i l i 2 h  RY1!2% = A at1 #,3 11 I2 13 c ('R)cZta2m$ IC1713 

UI.DIZ.W 

where A is an arbitrary multiplicative factor. This relation can be represented pictorially: 

The inversion transformation I amounts to taking the inverse of the q3 x 9) matrix R. One 
also introduces the partial transpositions t l ,  t 2  and t3 with 

iliA - j , i j  
(tlR)jlj2j9 - Ri,hj3 

and similar definitions for t z  and r3.  
For three-dimensional vertex models, one has four such involutions acting as symmetries 

of the R-matrix [17]: 
12 = I (2.1) 

These four involutions generate an infinite discrete group r 3 D  [17]. Let us note that the full 
transposition is nothing but the product t = t,tzr3. 

Considering the parameter space as a projective space (the entries of the R-matrix are 
homogeneous parameters), the elements of the group r 3 D  have a nonlinear representation 
in terms of birationai transformations. This group of symmetry of the parameter space of 
the model is very large. This is in fact a hyperbolic Coxeter group [26-311. 
Remark. coming back to integrability, it has been shown that the tetrahedron equations 
(generalization in three dimensions of the Yang-Baxter equations [9,13,14,32]) do have 
an infinite group of symmetry generated by four involutions KI, Kz, K3, K4 [171. They 
satisfy various relations, for instance (KIKzK3K4)' = I d ,  where I d  denotes the identity 
transformation. This group of symmetry of the tetrahedron equation is quite 'monstrous' 
since the number of elements of length smaller than 1 is of exponential growth with respect 
to I ,  unlike the symmetry group of the Yang-Baxter equations which identifies with the 
&ne Coxeter group A;') [16,17,27]. 

I ,  = t ,  I rz t3 14 = tz I t3 tl I, = t3 I t ,  tz . 
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2.2. Inversion relations on the triangular lattice 

For the triangular lattice the vertex Boltzmann weight [IS] also reads w(i,  j ,  k ,  I ,  m,  n )  and 
can be represented by 
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Similarly to the cubic vertex model [16,17], the weights may be arranged in a q3 x q3 
matrix. However, for the triangular model there are only three inversion fransfonnations, 
I,, 12, 13, which actually coincide with three of the four of the cubic lattice (2.1). The 
fourth transformation 14 corresponds to a non-planar picture, which is meaningless for the 
triangular lattice. Let us denote rMq the symmeny group generated by I ] ,  12,13. As will 
be shown in the following, using the equivalence between vertex and spin representation 
for this model [IS], this group also has generically an exponential growth. 

Let us recall the results obtained by Baxter, Temperley and Ashley on the triangular 
vertex and spin models [IS]. They noticed that the integrable case discovered by Kelland 
for a triangular vertex model (a 20-vertex model) [33], actually corresponds to the following 
situation: the vertex Boltzmann weight can alternatively be seen as either a left- or right-hand 
side of a Yang-Baxter equation (more generally this refers to the Z-invariance concept) [ 191: 

In the framework of this very model, they brought out the correspondence between such 
a vertex model and the standard scalar q-state Pons model for anisotropic triangular 
lattices with hvo- and three-site interaction (only on up-pointing triangles) through the Lieb- 
Temperley algebra [ 18,341. In terms of the two- and three-site interaction spin model, these 
integrability conditions correspond to~having no three-spin interaction and also to being af 
the transition temperature [IS]. 

In the following. the symmetry group of both vertex and spin models on triangular 
lattice will be analysed. 

3. Triangular vertex model 

As far as the triangular vertex model is concerned, an interesting subcase pops out, for which 
the group no longer has exponential growth. It occurs when the vertex of the triangular 
model spreads out into three square vertices ( A ,  E ,  C) (i.e. the left- or right-hand sides of 
a Yang-Baxter relation): 
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This model is a generalization of model (2.2), without assuming any Yang-Barter 
integrability condition. 

In order to write the three inverse transformations 11, 12, l3 restricted to this subcase 
(3.1), let us introduce I and J, tile two inverse transformations on the square lattice 
vertex model [ 171. A Boltzmann weight w( i ,  j ,  k ,  I )  is assigned to each square vertex 
configuration [Z]: +. 
The q4 homogeneous weights w( i ,  j ,  k ,  1 )  are first arranged in a q2 x q2 matrix R: 

Rij  - i H -  ( , j , k . O .  

We introduce (see [1,16,17]) the inverse I by 

and the other inverse J by 

Similarly to the situation occurring for the cubic lattice, I and J are two involutions related 
by a partial transposition (denoted fl in [35]) of the indices: J = 21 It!. Namely, tl reads 
(tl R i )  = R:/. 

The three inverse transformations 1,'s read 

I1 ( A ,  E ,  C) = (IA, JC,  JB) 
12 ( A ,  5 ,  C) = (JC, IB, J A )  
13 (A,  E ,  C) = (JB, JA, IC) 

as shown in the following picture: 

= , / \ .  mc r----l 
Let us now introduce the following transformations il = 12 13, iz = f, 11, i 3  = 11 Iz, which 
are generically of infinite order: 

i l  ( A ,  B ,  C) = (K-IC, KA, E )  
iz ( A ,  B ,  C) = (C, K-IA, KB) 
i , ( A , B , C ) = ( K C , A , K - ' B )  

where K =  I J .  

Obviously group rmag is also generated by i l ,  i2, i3, up to a semi-direct product by a finite 
group. These new generators do not commute, but they only differ from the generators 
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ZI, Zz, Z3. which commute two by two, by the 3-cycle, r ( A ,  B ,  C) = (C, A ,  E ) .  These 
three generators ZI, Zz, 5 act on a triplet ( A ,  E ,  C) as follows: 
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Z, ( A ,  B .  C) = ( A ,  K- 'B ,  KC) 

&!(A, B ,  C) =(U, B ,  K-IC) 
1 3  ( A ,  8, C) = (K-IA, KB, C) , 

One easily notes the following relations: 

Z l r = i z  r Z r = i 3  Z z r = i 3  r Z z = i l  Z , r = i ~  r Z 3 = / 2 ,  

Because of the commutation of its generators, the group generated by Z,,&.Z3 is, at first 
sight, the following group: 

(Z;' e, (nl ,  nz, n3) E iz x Z x Z}.  
Since Z,Zz Z, = identity, one has nl + nz + n3 = 0. Thus the group generated by I , ,  Z,, Z3 
is isomorphic to Z x Z. As a direct consequence rtnwg is isomorphic to Z x Z upto the 
semi-direct product by afni te  g m p  [7,36]. 

Heuristically, one can understand this subcase as follows: the symmetry group r~iianp 
of the 'six-legs' Boltzmann weight, R, becomes quite similar to the symmetry group of the 
Yang-Baxter equations, which is known to be isomorphic to A;)  [17]. 

4. Wangular spin model 

4.1. Notationsfor the spin model 

Let us now consider the standard scalar q-state Potts model on a triangular lattice with 
nearest-neighbour interaction and three-spin interaction only on the up-pointing triangles: 

The partition function of the models reads: 

The first three products denote the product over the edge two-site interaction Boltzmann 
weights along the three directions of the triangular model, and the last product denotes the 
product of all up-pointing triangles of the three-site interaction Boltzmann weights. The 
sum is taken over all spin configurations. 

In this framework one can now introduce the following notations: 
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Of course for q = 2, the model degenerates into the nearest-neighbour interaction triangular 
king model since the three-site interaction becomes irrelevant. Therefore one will not 
consider this q = 2 case in the following (even if most of the results one will get are also 
valid in this very case). 

4.2. Duality transformation 

Let us recall that on this model a duality trmfonnation does exist [IS, 241. With notations 
(4.2) this duality, denoted D ,  reads 

x i  - 1 x i + x f = l + q -  

(4.3) 

x i  - 1 

Y 
xi + x f  = 1 + q - 

x; + xz' + x ;  - 2 + q Z / y  
x; xz' x; (4.3) D :  x + x * =  

y + y * = - ,  q2 

This duality is associated with a rotation of 180" of the corresponding vertex model on a 
triangular lattice through the correspondence detailed in [18]. D is an involution. 

Introducing well suited homogeneous variables, the duality transformation D can be 
represented as a linear transformation Dh (see section (4.6)), which satisfies the relation 
Di = q 2 Z d ,  where Zd denotes the identity transformation. The hyperplanes stable by Dh 
correspond to eigenforms associated with eigenvalues zkq. The eigenspace corresponding 
to q is of dimension four, the associated eigenplanes reading 

(4.4) 
(4.5) 

x X I  x z X 3  - ( X I  +xz + x 3 )  + q  + 2 = 0 
X X I  x z x 3  - x i  + x j  + xk + q - 2 = 0 with [ i .  j ,  k }  = (1,2,3). 

The eigenform associated with eigenvalue -q reads 

X X ]  X 2 X 3  - ( X I  + x a  + x 3 )  + 2 - q = 0. (4.6) 

The two self-dual varieties symmetric under permutations of 1 , 2  and 3 ((4.4) and (4.6)) 
have already been introduced in [18,  241. They can respectively be written as follows: 

y = - q  and y = q .  

Hyperplane (4.6) is a subvariety of the critical manifold in some ferromagnetic region [24], 
whereas (4.4) has no such property. Let us notice that hyperplane (4.6) is the only variety 
stable point by point by duality D. 

Note that the well known case, of no three-site interaction, (that is, x = 1) is not stablei 
under D .  Namely, variety x = 1 becomes 

(XI x2 + x z x 3  + X 3 X I  - X I  - x 2  - x 3  - X X I  x 2 x 3  + 1) y 
+q ( x 1  - l ) ( X Z  - 1)(xg - 1) = 0. (4.7) 

4.3. Disorder solutions 

Disorder varieties are algebraic varieties for which dimensional reductions occur for vertex 
or spin models, thus enabling us to calculate exactly physical quantities such as partition 

t In particular, one does not rKover for x = 1 the Kramen-Wannier duality for Ports models [22l: h e w  
Wannier duality maps the triangular lattice onto the honeycomb lattice. 
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functions, correlation functions . . . [36,371. A straightforward calculation, using a ‘disorder 
criterion’ explained in [38], yields the following disorder conditions: 
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x x ~ x ~ ~ ~ - ( x ~ f ~ ~ + ~ ~ ) + 2 - q + q x ~ = O  i = l . 2 , 3 .  (4.8) 

When there is no three-site interaction ( x  = 1) one recovers the known disorder conditions 
of the two-site nearest-neighbour triangular Potts model [38, 391. 

One directly sees that these disorder conditions are nothing but the vanishing conditions 
of the xf ’s .  

As should be the case [36], these three disorder varieties have no intersection with the 
ferromagnetic critical variety (4.6). 

4.4. Inversion relations 

The inversion relations [7,36] for the two- and three-site interaction spin model can be 
represented pictorially as follows: 

which means analytically that 

(4.9) 

The Boltzmann weight w(or. B ,  y )  of model (4.1) is invariant under a common shift of each 
spin a,  p and y .  Therefore, y can be fixed in a particular colour, namely zero. Thus the 
Boltzmann weight can be represented by a q x q matrix (or being the column index, and B 
the row index), with entries w(or, p ,  0). Equation (4.9) thus becomes the following matricial 
relation: 

W I ( W )  = hZdq 

where Zd, denotes the q x q identity matrix, and the q x q matrix Boltzmann weight W 
reads 

x x ,  x 2 x 3  xz  X l  .. . ... x2 
x ,  1 1 ... 1 

1 . . .  1 X I  

using a ‘Z9-j Fourier transformation’ [40,41], this q x q matrix can be block-diagonalized 
into one 2 x 2 block and a (q - 2 )  x (q - 2) matrix proportional to the identity matrix, 
( x I  - 1) x Zd9+ Then one can easily obtain the matrix inverse / (W).  Note that I(W) is 
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of the same form as W ,  x ,  X I ,  x2, x3 ,  being changed according to the following biratioml 
transformation I :  

I :  , 

x x : + x x 1  (q - 3) - q  + 2  X l ( X  - 1) 
X I  --" - 

x2 - = 2 - q  - X I  + 
x x 1 -  1 x j x - 1  (4.10) 

X I  - 1 

x3 @ X I  - 1) 
X I  - 1 

x3 - I x2 ( X X I  - 1 ) '  
Obviously, permutations of indices 1.2 and 3 are also symmetries of the model. Introducing 
pu the permutation of x2 and x3, and similarly p31 and p12, one can define the three 
following transformations: 

11 = p z 3 1  = I p z  
12 = P31 PI2 I P l 2  = PI2 I P12 P31 

13 = PI2 p31 I p31 = p31 I P31 Pi2 

corresponding to the threet inversion transformations of the model [42]. 

4.5. The symmetqj group 

Inversion I ,  permutations of X I ,  x 2 ,  x3, and duality relation D (defined by (4.3)) generate a 
symmetry group of the parameter space of the model, denoted rupr in the following. 

At this point it is worth noticing that duality transformation D ,  does actually commute 
with I ,  and also with the group of permutations S3. This commutation property enables us 
to see rupt as a hyperbolic Coxeter group generated by two infinite-order transformations, up 
to the semi-direct product by a finite group. These generically infinite-order transformations 
read 

J1 = I ,  12 J2 = I1 13 53 = 12 I1 . (4.1 1) 

By definition, the Jz's  satisfy relation 

J3 J2 Jl = Zdentity . (4.12) 

Two of these Ji's generate rupr. up to the semi-direct product by a finite group. 
Let us recall that for generic values of q.  when x = 1, rupi is isomorphic to Z x Z up to 

a semi-direct product by a finite group and degenerates into ajnite group for Tune-Beraha 
numbers [20] (q = 2 - 2 cos(kJrfN)). In fact for x = 1, the J6's do commute and the 
elements of group rupt read 

y = J;' JP 1;' where (YI = 0, 1 .  

Generically nl and nz are relative integers. For q a Tutte-Beraha number associated with 
N ,  nl and n2 run into (0,. . . , N - 11, the group rvpr being therefore isomorphic to the 
product ZN x ZN K 232. 

t This existence of three involutions singles out the triangular lanice among the bi-dimensional models, from 
the symmetry-group alalysis point of view, Let us notice that even for involved models, like the checkerboard 
Potts model with multispin interactions. one still gels two involutions and therefore a representation of the infinite 
dihedral group. 
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In order to analyse the general case (x # 1). let us introduce the 3-cycle c = p31 p12, and 
let us write the Ji’s in term of c and a only one (generically) infinite-order transformation, 
namely (c I)? 

JI = c (C 1)’ C’ 52 = C’ (C I)’ c 53 = (C I)’  . (4.13) 

4.5.1. Transformation (c I)’. For the sake of simplicity, one will consider transformation 
( c l ) ’  as a homogeneous transformation, introducing xo = X X I  ~ 2 x 3  and a fifth 
homogenization variable t , One can then define a homogeneous inverse &, (corresponding 
to (4.10)): 

Transformation c Ih then reads 

xo + -x, - (q - 2) 1 

X O f  - x2 x3 I :i+x2 X I  - t  

One notices that u3  = x,  + xz + (q - 2) t and u3 = x3 - xo are permuted by transformation 
c I h :  u3 cf y .  With these new variables, one also has: 

Transformation (c I h ) *  then reads 

U 3  -+ U 3  

03 -+ U3 

(c lh)’ : X I  -+ U3 - X I  - (4 - 2) t 
x3 + ug -x3 - (q - 2 ) F o t  I t + Fo Fl t 

where Fl = FO(C l h )  is the same expression as Fo, where lve :en replace ’Y 
their images by c I*.  

One can now define the successive iterates of Fo by transformation c l h ,  which will be 
called F,, in the following: = Fn(c Ih). One can also introduce new variables A, 
defined as the successive products of the Fa’s: 



( C l * ) Z n  : 

One can then show recursively that 

x2 - x i  A, - 1 = a .  ( A ,  - 1)+b ,  (q - 2 )  

the no's and b,'s satisfying the following recurrences: 

an+i = ((4 - 2)' - 1 )  a, - (q  - 2)'bn + 1 
b,+l = a, - 6 , .  

One can initiate these recurrences with a0 =bo = 0 (that is, A0 = I). One then gets 
1 

4 (4 - 4) 

4 (4 - 4) (q - 2)  

a,  = (A; + h l  - 2)  

- 1  
-112 + A"'/Z + (q - 2))  b, = (A+ 

U 3  + U3 
U 3  -+ U3 

X I  + ( - - l ) " X i  + 
a-1 1 - (-1)- 

1 - (-1)" 
2 

~ 3 + ( - I ) " ( q  - 2 ) t  x ( - l ) k A k  

Y + ( - l Y ( q  - 2 ) t  z ( - l ) * A k F z k  

k=O 
a-I 

k=O 
x3 + (-1)"x3+ 

. f - t A , f .  

(4.14) 

(4.15) 

(4.16) 

where A+ are the roo& of the quadratic polynomial z2 + (2  - (q  - 2)') z + 1 ,  

Remark One has to consider q = 0 and q = 4 separatelyt. Solutions of recurrences (4.15) 
now read 

a,, = n b , = $ n ( n - l ) .  

Equation AN = 1 has no other solution than n = 0, therefore transformation (c  I)' is of 
infinite order. Moreover, recalling the x = 1 limit, one gets that this transformation is 
equivalent to some translation in the variables 1/(1 + x i ) .  

4.5.2. Tuffe-Beraha numbers. Let us recall that, when there is no three-site interaction 
(that is, x = l), there does exist particular values of q, the so-called Tune-Beraha 
numbers [ZO, 431, for which transformations Ji's ,  or equivalently transformation (c lh)', 
become finiteorder transformations. Introducing q*, the roots of the second-order equation 
zz + (q - 2)  z + I ,  q corresponds to a Tutte-Beraha number when q: are Nth-root of unity. 
In the x = 1 case, it has been shown that for these values$ of q the Ji's are tramformations 
of order N [7, 421. Amazingly, this situation sfill holdsfor the generic case (with x # I). 

In fact, one notices that h+ = q:, so one has to calculate transformation (c In)' when 
h: = 1 .  In this case, relations (4.14) and (4.16) yield 

a,q = b ~  = O  and AN = 1 .  (4.17) 

t At first sight, one should also consider q = 2 as a particular case. In fact only a, is relevant and it is actually 
given by relation (4.16) with q = 2. 
$ One considers only N > 2, since for N = 1 (that is q = 0 or q = 4) transformation (e I ) *  is of infinite order 
(see remark in the previous section). 
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Straightforward calculations yield 

(4.18) 

and these relations (4.18) enable us to get 

Finally, one notes that X I  is invariant by ( c  as well as variable f (see equation (4.17)). 
At first sight, one should also verify that xj  is preserved by transformation (c I , ) 2 N ,  in  fact 
in the following (see section (4.6)) one will see that there exists a rational invariant under 
the whole group rupt. Since this invariant involves variable x3, it is not necessary to perform 
this last calculation: the invariance of xg under (c I#N is a straightforward consequence 
of the invariance of ug, ug, X I  and t .  

One has thus established for q = 2 - 2 cos(kz/N) (a TutteBeraha number) that 
transformation (c reduces to identity, that is equivalently: 

J y = Z d  with i = 1 , 2 , 3 .  (4.19) 

Renlark. Such Coxeter groups can be seen as the fundamental group of a surface of genus 
g minus k points [311. Here one has a genus-zero Riemann surface minus three points. At 
this step the Coxeter group one has to deal with is reminiscent of the Schwarz's triangular 
groupst. Considering a geodesic triangle of angles z / n l ,  z / n 2 ,  zing, and considering 
S I ,  S2,  SI the symmetries with respect to the edges of the triangle, and defining the 
'rotations' 

R I  = Sz S3 R2 = S3 Si A'S = SI Sz 

the Ri's verify 

RI' =Zd with i = 1 , 2 , 3  

and 

RI Rz Rj = Z d .  

In the study of these triangular groups, three different cases have to be distinguished: 
depending on I /n l  + l /nz  + 1 / n 3  greater, lower or equal to 1. 

= n2 = n3 = N. 
The only Euclidean case is N = 3, the other values of N yielding hyperbolic triangles and 
hyperbolic geometries. 

N = 2 corresponds to q = 2, that is, the king subcase of the model (for which the 
three-site interaction becomes irrelevant). 

Thus, the first interesting case is N = 3, that is, q = 1 or q = 3. 

Because of symmetry of ow triangular Potts model we have here 

t Such groups have been obtvned from the analysis of the ratios of solutions of second-order differential equations 
ramified in three points. 
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Figure 1. lh-dimensional projection of an orbit of uansformation (c I ) ’ .  for 9 = 3.5. 

4.5.3. The Euclidean case: q = I or q = 3. In this section we will restrict N to N = 3 

GP = PPI JP pz3 

Introducing the well suited transformations 

GI = P I Z  JI P ~ I  Gz = p23 Jz pi2 (4.20) 
we will show that for N = 3, rupt is not a group with an exponential growth anymore but , 
reduces down to Z x Z up to a semi-direct product by a finite group (like the Affine Coxeter 
group A t )  [161). 

First, one notices that the Gi’s do satisfy a relation similar to relation (4.12): 
G 3 G z G 1 = Z d .  (4.21) 

Let us first study the group G, generated by GI,  G2 and G3. With relations (4.11) and 
(4.11) the Gi’s can be written in terms of transformation I and of the 3-cycle c: 

Using (c I ) 6  = Zdentity, GI Gz reads 
2 (4.22) G i = c 2 1 c 2 i c 2  G z = l c  2 I C  G ~ = c I c  I. 

G I  Gz = c2 I c 2 i  cZ I C z  I c = C ~ ( C ~ ) - ~ C ~  = cz ( C I ) ~ ~ ~  = I c I c2 
= G z G i .  (4.23) 
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Thus, the Gi’s actually commute. From relations (4.21) and (4.23), i t  is clear that a generic 
element of G reads: 

J-M Maillard and G Rollet 

g = CY‘ GT 
where nl and n2 are relative integers, which explicitly means that g is isomorphic to Z x Z, 

Let us now show that Tup is isomorphic to G up to a semi-direct product by a finite 
group. 

rvpt can be seen to be generated by I and c, up to some semi-direct product by a finite 
group. From relation (4.22), one gets at once 

c I c i  = G;‘ c2 
IC I c = G;’ c2 

Thus r,, is isomorphic tog, up to a semi-direct product by a finite group, that is, isomorphic 
to Z x Z up to a semi-direct product by a finite group. 

4.54. Numerical analysis. For 0 < q e 4 the infinite set of points of the orbits of the 
automorphy group is dense in an algebraic curve while, in the other case, they accumulate 
to fixed points. This situation has already been noticed [44] in the x = 1 subcase. Therefore 
in this section, we will restrict our study to 0 < q < 4. 

To complete the analysis of the symmetry group, one has to study its generically infinite- 
order generators’(the J i ’ s ) .  We will draw here their orbits in the four-dimensional parameter 
space (CP4) of the model. From relation (4.13), it is clear that the iterations of the Ji’s 
amount to performing the iteration of transformation (c I)*. For generic values of q (of 
course different from TuteBeraha numbers, see section (4.5.2)), the iteration of ( c  1)’ 
yields curves. Figure 1 shows such a curve obtained for q = 3.5 (which is not a Tutte- 
Beraha number). (In all figures, xg = 2, XI = 3, XI = 4, x )  = 1.5, N = 100000.) 

For Tune-Beraha numbers, since the J;’s are finite-order transformations, one has to 
consider other elements of the group. As far as the Euclidean case is concerned (q = 1 
or q = 3). let us recall that the Gi’s are the commuting generators of the symmetry group 
isomorphic to 22 x Z. Figure 2(a) illustrates the iteration of GZ for q = 3. Remarkably one 
again gets curves. Of course, iterating G3 for q = 3 also yields curves, as can be seen in 
figure 2(b). Considering one orbit of the symmetry group generated by the G,’s, we get, as 
we should, a suface which can clearly be seen in figure Z(c) as the product ofcurves like 
?.(a) and (b). This last figure gives a nice illustration of the iZ x Z structure of the group. 
One gets similar results for the other Euclidean case q = I :  figure 2(d) shows the surface 
corresponding to one orbit of the whole symmetry group generated by the Gi’s .  

Amazingly, the Gi’s which no longer commute when q is no longer equal to 1 or 3, do 
yield curves, as can be seen on figure 3, which represents the iteration of G2 for q = 0.5 
(which is not a Tutte-Beraha number). 

All these examples are remarkable: if one consider the iteration of more involved 
elements of the group, one generically gets quite chaotic figures (except for q = 1 or 
q = 3). Figure 4(a) shows such a ‘chaotic’ orbit for a Tutte-Beraha number (q = 2 + fi)  
and figure 4(b) for q = 3.5 (which is not a Tune-Beraha number). Both figures 4(a) and 
(6) correspond to the iteration of J1 J:. 

These last figures and the study of many other orbits not given here give a good hint 
of the complexity of these infinite Coxeter groups. They are generically of exponential 
growth, even when additional relations occur (see relation (4.19)). 

This numerical study indicates that for generic values of q,  the generators of the 
symmewy group (the Ji’s) seem integrable since their iterations yield curves apparently in the 

c l  c21 = G3 
IC I $  = G;’ 

c2 I c l  = G,‘ 
I c2 I C  = Gz 

c2 Ic2 I = G I  c 
IC’ I c2 = Gzc,  
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Figure 3. Two-dimensional projection of an orbit of transformation GI for q = 0.5 

whole parameter space. Moreover. the Gi’s seem to satisfy the same property for any value 
of q, though they emerged from the analysis of the Euclidean case (4 = 1 or 4 = 3). A way 
to verify this assumption is to give the algebraic equations of these curves. For this purpose, 
in the next section we will seek algebraic varieties invariant under the Ji’s and the Gi’s. 

4.6. Group invariants 

Let us first remark that there exist three (homogeneous) polynomials, of degree 1 ,2  
and 3 respectively, invariant under permutation of x 1 . x ~  and x3, and covariant under 
transformation I .  These three polynomials read 

DI = XI + xz + ~3 - xo + (q - 2) t 
Dz = t ( X I  + xz + xg + xo - t )  - ~t xz - xz X )  - ~3 X I  

D3 2 t xo - X I  ~ 2 x 3 .  

Let us note that the cofactor (under the action of I )  of D3 is the product of the respective 
cofactors (under the action of I )  of DI and 4. 
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As a consequence, one directly gets an invariant under the group generated by I and 
the permutations of 1,2 and 3: 

(4.24) 

This provides, for arbitrary q ,  a canonical foliation ofthe parameter space ( W 4 )  by co- 
dimension-one algebraic varieties. 

It has been seen in the previous section that the iterations of the Ji’s yield curves in the 
whole parameter space. In order to prove that these curves are actually algebraic, one has 
to exhibit two other algebraic invariants for these transformations. From relations (4.13), it 
is clear that one can restrict the study to transformation ( ~ 1 ) ~ .  One can show that the two 
polynomials 

E I  = X I  +XZ - x3 + xo + (4 - 2) f 

E2 = t ( X I  + X Z  - x 3  - X O  - t )  - X I  X2 + X 2 ~ 3  + X ~ X I  

are actually covariant under the action of ( ~ 1 ) ’ .  These expressions happen to have 
respectively the same cofactors (under transformation (cl)’) as D1 and Dz. This provides 
immediately two additional algebraic invariants under (~2)’: 

Curves like figure 1 are thus given as intersections of cubics, quadrics a i d  hyperplanes, 
namely 

A = S  AI  =St A2 = 62 (4.25) 

where the 8’s denote arbitmy constants. 
Such algebraic curves, with an infinite number of automorphisms, are either elliptic 

or rational curves [23]. Amazingly, eliminating xg  and x3 from relations (4.25) one gets 
(coming back to inhomogeneous variables) 

(SI + 1) (62 + 1) (x1 x2 - 1) = 
(4818~8(X1+X2-2)+(81 - 1 ) ( 8 2 -  1)) ( X i + X z - 2 + q )  

which proves that these curves are actually rational curves. 
The previous numerical analysis indicated remarkable occurrence of curves, when 

iterating the Gi’s for any value of q. Let us for instance consider G3. One notices that 
polynomials 

FI = ~3 

F4 = (XI ~3 + ~2 x3 - x3 t - xo t )  (XI xz + (4 - 3) xo t - (4 - 2) XO ~ 3 )  

are actually covariant under the action of G B .  The values of the cofactors of these Fi’s 
enable us to get two G3 invariants 

Figures like ?,(a), 2(b) or 3 are thus algebraic (elliptic) curves given by intersections of 
cubics, hyperplanes and quartics. 

Let us recalI that for q = 1 or q = 3, these Gi’s do commute and that: G3 Gz G I  = Zd.  
We have just seen that each of the G,’s generates algebraic elliptic curves. Therefore for 
q = 1 and q = 3, the orbits of the group generated by the Gi’s yield algebraic surfaces 
which are producfs of fwo elliptic curves, as clearly seen on figure 2(c). Since this surface is 
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stable under permutations of X I ,  xz and xg. it is natural to give its equation without refemng 
to two of the Gj’s, that is, without having any direction singled out. For q = 3 an additional 
polynomial 

J-M Maillard and G Rollet 

D5 = --XI x2x3 (xi t X :  t X: t X: -Iz) +x0  t X : X ~  +A$.:) 
is symmetric under permutations of 1 ,2  and 3 and covariant under 1.  Symmetric invariant 

together with invariant (4.24) thus give symmetric equations of these algebraic surfaces. 
SimilarJy for q = 1, polynomial 

0; = xo 0 2  

is a symmetric covariant under the action of I ,  yielding the following symmetric invariant: 

Let us now recall that duality transformation D,  defined i n  section (4.2), is also a 
symmetry of the model, which commutes with transformation I and with permutations of 
1.2 and 3.  Let us notice that D is actually a linear transformation when written in terms 
of homogeneous variables: 

xo -+ xo + (q - 1) (XI + xz + x g  + (q - 2)r) 
X I +  ( q - I ) x 1 + * 0 - x ~ - x ~ - ( q - 2 ) r  

x3 -+ (4 - 11x3 +xo -xz - X I  - (q - 2 ) r  
Dh : Xz -+ (4 - 1 ) X 2 + X g  - X I  - X 3  - (4 -2)t I f -+ xo - x ,  - xz - x3 + 2 t .  

Considering the previous covariant polynomials, one notices that five of them are ‘eigen- 
polynomials’ of the duality transformation: 

DI -+ -4 D1 
D2 + q2 Dz 
E1 -+ qEi 
E2 -+ 4’ E z  I D ; + q 2 D ; .  

As far as the other covariant polynomials are concerned, one has to barter them for new 
homogeneous polynomials, namely 

D3d = 2 q D 3  - DI 0 2  

F1.j = 2 q  X 3  - Dl 
F u  = 2 q  F4 - (4’ - 3 q  + 1) DI (Ds - x g  Dz) 
D5d = 2 q 3  D5 - Di Dz 

to get the self-dual covariants. 
Algebraic varieties D1, DZ and D3d are actually remarkable since they do have 

covariance properties with respect to the whole gmup rupir which is (generically) a 
hyperbolic group. From the point of view of effective algebraic geometry, it provides 
examples of algebraic varieties with very large groups of automorphisms. Moreover these 
varieties also provide examples of algebraic varieties with an infinite number of rational 
points (when q is rational itself). This is a direct consequence of the representation of the 
hyperbolic group rupi in terms of birational transformations with integer coeflcients with 
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respect to the xi’s and q. This situation can straightforwardly be generalized to algebraic 
numbers. 

In the next section, we discuss the actual status of these algebraic varieties. 

4.7. Remarkable algebraic varieties 

Let us first recall that critical manifolds have to be compatible with all the symmetries of 
the lattice model. The self-dual variety (4.6) is already known as the critical variety of 
the Potts model for arbitrary q in some ferromagnetic region [24]. It is also known that 
this variety is, as it should be, stable under the whole hyperbolic Coxeter group [42]. One 
recovers this result, noticing that this symmetric self-dual variety (4.6) is nothing but variety 
D, = 0. Conversely, the same argument confirms that the self-dual variety (4.4) cannot be 
critical since it is not stable under rupt. 

Moreover in the previous section, other algebraic varieties have been shown to be stable 
under the whole infinite Coxeter group, namely the vanishing conditions of the expressions: 
Dz,  D3d and also 0 5 6  when q = 3. We do not consider here 0; = 0 (for q = 1) since it  
reduces to the previous DZ = 0 case and to condition xg = 0 for which the analysis of the 
model becomes of a more ‘combinatorial’ nature and deserves a specific study. 

Variety D2 = 0 was not previously known in the literature: it is a good candidate for 
being a critical variety, Unfortunately, the x = 1 limit of this variety is singular for rupI 
and is thus of no help to decide the status of this variety. New Monte Carlo calculations 
will be performed to answer this question. 

Moreover, in the x = 1 limit another algebraic variety has already been introduced 
in [45]. Monte Carlo calculations of the q = 3 isotropic limit of the model have 
been performed on this subvariety [46]. These studies confirmed the existence of 
an antiferromagnetic critical point (in addition to the well known ferromagnetic one) 
probably corresponding to a first-order transition. Though very close to this variety in 
the x = 1,q = 3 isotropic region, this antiferromagnetic critical point is definitely 
different [46]. This negative result does not rule out the existence of an extension of 
this variety to some x # 1 domain as a critical variety in some region of the parameter 
space which could depend on the value of q .  This question will be addressed in further 
publications. 

Variety Dsd = 0 is also a good candidate for criticity. Unfortunately, no partial results 
are available in the literature. If one comes back to D3 = 0, which is not self-dual, this 
condition corresponds to the vanishing of the three-spin interaction (x = 1). Variety x = 1 
is well known [36] and plays a special role: the symmetry group rupt is isomorphic to Z x Z 
(up to some semi-direct product by a finite group). Since duality D commutes with rupt, 
the dual variety of x = 1 also corresponds to the degeneracy of rupI into a group isomorphic 
to Z x Z (up to some semi-direct product by a finite group). This remarkable variety (4.7) 
also reads 

D; = q2 (q - D ,  oZ) = o or equivalently A = q . (4.26) 

Finally for q = 3, the vanishing condition of the self-dual expression D5d. as well as 
condition Ds = 0 and its dual variety, also requires further studies. 

Clearly one needs further Monte Carlo simulations, with a particular emphasis on 
the Euclidean case q = 3. One will try to see if, besides the known variety D1 = 0, 
others of the above-mentioned algebraic varieties are actually critical. As far as phase 
diagrams are concerned, the intersections of these algebraic varieties could play a special 
role (multicritical points ?. . .). Note that D1 = 0 and D2 = 0 do have intersection points 
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in the ferromagnetic domain. 
Let us recall that other remarkable varieties have been mentioned in section (4.3): the 

disorder varieties (4.8). The analysis of the action of the hyperbolic group on these varieties 
has also to be performed, in order to generalize the analysis already achieved in the x = 1 
limit [38]. 

.I-M Maillard and G Roller 
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5. Conclusion 

The symmetry group generated by inversion relations has been analysed for vertex triangular 
lattice models and for the standard scalar Potts model with two- and three-site interactions 
on the triangular lattice. The group generated by three involutions is seen to be generically 
a very large one, like a free group. Two situations for which the representations of 
this group degenerate into smaller ones, hopefully compatible with integrability, have 
been considered. The first reduction for the vertex triangular model corresponds to the 
situation where the vertex of the triangular model coincides with the left- or right-hand 
sides of a Yang-Baxter relation. The representation of the group is isomorphic, up to a 
semi-direct product by a finite group, to Z x Z. The second reduction for 9-state Pons 
models occurs for particular values of q,  the so-called TutteBeraha numbers [20,43]. 
For these values of q, some of the (generically infinite-order) generators are of finite 
order. However, even with such additional relations on the generators, one still gets 
groups an with exponential growth, except for 9 = 1 or 3. Nevertheless such additional 
relations on the generators occur on particular algebraic varieties, yielding a degeneracy 
of the group into products of Z. We have seen in this paper that x = 1 and its dual 
variety (4.26) are such varieties. It would be interesting to search systematically for these 
varieties. 

As far as this Potts model is concerned, a set of algebraic varieties stable under 
hyperbolic Coxeter groups has emerged. In particular, one recovers the self-dual algebraic 
vm.ety, known as critical in some ferromagnetic region. These new results strongly suggest 
further Monte Carlo calculations to clarify the phase diagram of the model. 

As a byproduct. this analysis provides nice birational representations of hyperbolic 
Coxeter groups and also algebraic varieties having such large groups of automorphisms. 

This first analysis of hyperbolic Coxeter symmetry groups for lattice models, including 
degeneracy subcases, should help us to better understand the symmetries of three- 
dimensional models and the occurrence of true three-dimensional integrability. 
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