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Abstract 

We analyze free-fetion conditions on vertex models. We show - by examining examples of vertex models on square, 
triangular, and cubic lattices - how they amount to degeneration conditions for known symmetries of the Boltzmann weights, 
and propose a general scheme for such a process in two and more dimensions. 

1. Introduction 

We consider vertex models in D dimensions. As is 

standard, the bonds of the lattice carry variables tak- 
ing q values (colors). The model is determined by 
attributing Boltzmann weights to the various possible 
bond configurations around a vertex [ 11. These homo- 
geneous weights are arranged in a matrix, which we 
denote by R. The size and form of the matrix R vary 
according to the number of colors, and the coordina- 

tion number of the lattice. Typical examples we will 
consider are the 2D square lattice, the 2D triangular 

lattice, and the 3D cubic lattice: 
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I j 
2D square 

j k 

2D triangular 

R 

3D cubic 

If the number of colors q is 2, and we will restrict 
ourselves to this case, then the R-matrices are of sizes 
4 x 4, 8 x 8, and 8 x 8 respectively. The difference 
between 2D triangular and 3D cubic for example does 
not show in the size nor the form of the matrix. It 
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will, however, appear in the operations we define on 
the matrices, 

We shall use a number of elementary transforma- 

tions acting on the matrices. These transformations 
come from the inversion relations and the geometri- 

cal symmetries of the lattice, in the framework of in- 
tegrability [ 2-51, and beyond integrability [ 61. They 

generically form an infinite group Ilattice [ 451. 

-he grows rhttk have a finite number of involutive 

generators. The first one, denoted I, is non-linear and 
does not depend on the lattice: it is the matrix inversion 

up to a factor. The other generators act linearly on R, 
actually by permutations of the entries, and represent 

the geometrical symmetries of the lattice. 

For the square lattice, we have two linear transfor- 

mations, the partial transpositions tl and t, [ 51: 

(t!R)$. = R;‘, (t,R);, = R;;; 

i,j,u,u = 1 . ..cI (1) 

The product tit, is the matrix transposition (1 stand 
for ‘left’ and Y stands for ‘right’ in the standard tensor 
product structure of R) . 

For the triangular lattice, we have three linear trans- 

formations 71, 7,, rr: 

(r/R),,o,,. - iJk - R;?, (@);+w = Rc; 

(T~R)~& = R$ (2) 

Finally, for the cubic lattice, we have three linear 
transformations ti, t,,z, tr [5]: 

(t/R)ucrw - ilw, 
ijk _ Rujk 

(t,nR);::, = R$ 

(t,R)$ = R;:; (3) 

and the product tl t,,, t, of the three partial transposi- 

tions is the matrix transposition. 

All the generators are involutions. All products tll, 
t,,I and t,Z are of infinite order when acting on a 
generic matrix, as are 711 and G-J. On the contrary r,,, 
and I commute and (~,,1)~ = 1. 

It is straightforward to check that: 

I[ I t/ = T[ 171 and t, I t, = r, I r, (4) 

so that essentially Ihang appears as a subgroup of 

ICUbiC, up to finite factors. 
It is important to keep in mind what the “size” of 

the groups I are. All three IsqUare, Iuiang, and Icubic 

are infinite, but Isquare has one infinite order genera- 

tor, Itriang has two, and ICUbiC has three. The last two 

groups are thus hyperbolic groups [7], and studying 

the triangular lattice can be a good test-case for the 

more involved tridimensional cubic lattice. 
The groups I are the building pieces of the group of 

automorphisms of the Yang-Baxter equations and their 

higher dimensional generalizations, and solve the so- 

called “baxterization problem” [ 4,5]. These equations 

form overdetermined systems of multilinearequations, 
of which the possible solutions are parametrized by al- 

gebraic varieties [ 81. The overdetermination increases 
very rapidly with the dimension of the lattice. At the 

same time, the size of I also explodes. When look- 

ing at solutions of the Yang-Baxter equations and 
their generalizations to higher dimensional lattices, 
one faces a conflict between having a more and more 
overdetermined system and a larger and larger group 
of automorphisms for the set of solutions. We will 

show how this conflict is resolved in some 2D and 
known 3D solutions by a degeneration of the effective 

realization of the group I, which becomes finite. 
The content of this letter is the description of a 

mechanism for such a degeneration, obtained by the 

linearization of specific elements of I. 

We first show how the free-fermion condition on 
the asymmetric eight vertex model [9] falls into this 

scheme. 
We then describe the group Itriang for the 32-vertex 

model on the triangular lattice. We show that the free- 
fermion conditions given in [ IO,1 I] amount to lin- 

earizing the inverse I and make the realization of Ihang 

finite. 
We finally write and discuss similar conditions for 

the 32-vertex model on the cubic (3D) lattice, by ana- 
lyzing solutions of the tetrahedron equations [ 12-141. 

One of the results we obtain is that free-fermion 
conditions should always appear as quadratic condi- 
tions, whatever the size and form of the matrix R is, 
and in particular whatever the dimension and geome- 
try of the lattice are. 

There already exists an important literature about 
free-fermion models. We may refer to [ 15-171, where 
an exploration of the use of grassmannian variables, 
both for the construction and the resolution of the 

models, can be found. This work also motivated the 
interesting 3D construction of [ 181. 

Our approach is based on a direct study of the matrix 
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of Boltzmann weights, concentrating on the action of 
the symmetry group I’, and provides another view on 
this class of models. 

2. Some notations 

At this point it is useful to introduce some notations 
we will use in the sequel. 

We will denote the equality of two matrices R and 
R’ up to an overall factor by R N R’. 

We always denote by t the full matrix transposition. 
We will use various gauge transformations (weak 

graph dualities) [ 191, that is to say the conjugation 
by invertible matrices which are tensor products, also 
defined up to overall factors, i.e. transformations of 
the type 

Define the matrices 

u,=(:, y), u,=(; A) 

u2=(; ;I)> u3=(:, ol) (5) 

and the matrices (T~,~~...~~ of size 2k x 2’ (k will be 
2 for the square lattice, 3 for the triangular and cubic 
lattice, and so on) by 

~a,a2...a,, =U,,@u(ToZ@,..uali 

We denote by &,42...(1~ the conjugation by u~,~~...~~. 
Clearly both t and I commute with all Ca,a2...(2t, 

up to an irrelevant sign. Moreover, from the fact that 
u, ub = f Ub ua, va, b = 0, 1,2,3, the gauge trans- 
formations ); satisfy 

s ~a,al...at ~b,b2...bil = =t~b,bz...b~ &I,(IZ...(IL 

meaning that they commute up to a factor. 
Particular gauge transformations of interest are 

r = x33-.3 

and some transformations acting just by changes of 
sign of some of the entries, and denoted E, (cu = 
1, m, r, . ..). 

If k = 2 (square lattice), then (Y = 1 or r, and 

El = 230, l r = x03 

If k = 3 (triangular and cubic lattice): 

El = z3m EnI = 80307 Er = ho3 

3. Free-fermion asymmetric eight-vertex model 

The matrix R of the asymmetric eight-vertex 
model [20] is of the form 

/a 0 0 d’\ 

(6) 

Notice that this form is the most general matrix satis- 
fying 7~ R = R. 

The free-fermion condition [ 91 (see also [ 211) is 

aa’ - dd’ -t bb’ - cc’ = 0 (7) 

A matrix of the form (6) may be brought, by similarity 
transformations, to a block-diagonal form 

with 

R, = and R2 = 

If one denotes by Sr = aa’ - dd’ and by S2 = bb’ - cc’ 
the determinants of the two blocks then the matrix 
inverse I written polynomially (namely R -+ det( R) . 
R-‘) just reads 

a -+ a’ . 62, a’ -+ a . 62 

d ---) -d . cY2, d’ + -d’ . a2 

b --$ b’ . S,, b’ --f b . 8, 

c --f -c . 61, c’ --t -c’ .iq 

The condition (7) may be written as ps( R) = 0 with 
the notations of [ 61, and is consequently left invariant 
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by rquare. It is straightforward to see that condition 
(7) is St = -62 and has the effect of linearizing I into 

a --+ a’, a’ -+ a, d + -d, d’ + -d’ 

b + -b’, b’ + -6, c + c, c’ -+ c’ 

The group r is then realized by permutations of the 

entries, mixed with changes of signs, and its orbits 

are thus jnite. The commutators of partial transposi- 
tions and inversion, in the sense of group theory, i.e: 
t~itim’I-’ = (t11)2 and t,It;‘I-’ = (t,Z)2 reduce 

to a change of sign of the non-diagonal entries of R. 
These commutators are typical infinite order elements 
of r, when acting on a generic matrix, and their de- 
generation is a key to the finiteness of the realization 

of r. 

If we introduce the grading gr 

/a 0 0 d’\ 

which operates by changing the sign of the entries of 
only one of the two blocks, say R2, then, for any R 
satisfying (7)) the action of the inverse reduces to 

Z(R) = tXngr(R) (8) 

where t is matrix transposition. In other words we have 

defined, on all matrices satisfying r(R) = R, a linear 
operator 

l,, = tJ212gr 

such that the free-fermion condition (7) reads 

Z(R) = Z,(R) 

or equivalently 

(9) 

R . Z,,(R) E unit matrix (10) 

The linear transformation l,,, the definition of which 
is not unique, satisfies a number of relations: 

lfq = id, 1, t = t i,, 

ISYt,ISqtn=E,, a=l,r (11) 

Such relations ensure that the orbit of R under r is 

finite, as is readily checked, and specify the changes 
of signs to which (tl I)’ and (t, Z) 2 reduce. 

Conversely the finiteness of the orbit of r does not 
imply free-fermion conditions: for the asymmetric 8- 

vertex model, there exists an infinite number of codi- 

mension 1 algebraic varieties where the orbit of r be- 
comes finite. 

4. Free-fermion conditions for the 32-vertex 
model on the triangular lattice 

We consider the free-fermion conditions for the 32- 

vertex model on a triangular lattice, and use the nota- 

tions of [II]: 

- f0 o 0 f23 0 fI3 $12 0 

0 f36 f26 0 f16 0 0 f4S 

0 f3s f25 0 fis 0 0 f46 

R= f56 0 0 114 0 j;,, f34 0 

o f34 f24 0 f14 0 0 fS6 

f46 0 0 f,S 0 f2S f3S 0 

f4S 0 0 716 0 f26 j.36 0 

0 0 0 0 - f12 J13 f23 fo 

(12) 

This matrix may be brought, by a permutations of lines 

and columns, into a block diagonal form: 

with 

fo f13 f12 f23 _ - _ 

RI = f46 f2S f3S flS 

[ -1 f4S ?26 f36 f16 - _ _ 
fS6 f24 f34 f14 

(13) 

(14) 

The inverse Z written polynomially is now a transfor- 
mation of degree 7. If one introduces the two determi- 
nants A 1 = det( RI ) and A2 = det( R2), then each term 
in the expression of Z ( R) is a product of a degree three 
minor, taken within a block, times the determinant of 

the other block. 
Denoting ft2 = f3456 and so on, the free-fermion 

conditions of [ 10,l l] are: 
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fofijkl = fijfkl - fikfjl + filfjkr 

Vi,j,k,I= l,..., 6 (15) 

fo_?o = f12f12 - f13A3 + fM_Gl - fiS.f~S 

+ f16.716 (16) 

What is remarkable is that, not only the rational 
variety V defined by ( 15)) ( 16), is globally invariant 

by Inians, but again the realization of I on this variety 
is finite. This comes from the degeneration of I into a 
mixture of changes of signs and permutations of the 
entries, as was the case in the previous section. 

When relations ( 15), ( 16) are satisfied, the action 
of I simplifies to 

l(R) = L(R) 

with 

(17) 

1 TV = lx121 N tZlll Em (18) 

Since we have the prejudice that all free-fermion 
conditions should be invariant under Iaims, as ( 15), 
( 16) are, one should complement ( 17) with 

171(R) 2 Lr1 (R) 

IT,(R) N &rr (R) 

We may list some useful relations: 

(19) 

(20) 

Tl~abc=~ocb~1, rrn xabc=xcba7m 

Tr %zbc = xbac Tr (21) 

tT,=r,t Qa,b,c=0,1,2,3, Qa=l,m,r (22) 

(%rpry)2 =id Va,P,y=l,m,r (23) 

7p,7, I = I7[7,7,, TIT,71 I = I 7[7,7/ (24) 

The linear transformation l,, satisfies in addition: 

li = id, 1,t = tl, (25) 

kr tl Ml = eI, lt, t, latm = id 

lt, I, l,t, = Er (26) 

Using relations (21) to (26), it is possible to show 
that the completed system ( 17), ( 19), (20) is left 
invariant by the action of the group Ihang. 

The system is also invariant under the gauge trans- 
formations leaving the form ( 12) stable. (Hint: The 

gauge transformations leaving the form ( 12) stable 
satisfy ‘Y&c y N &,c when a, b = 1,2). 

Moreover the generic 32-vertex invertible solutions 
of the completed system ( 17)) ( 19)) (20) satisfy the 
free-fermion conditions ( 15)) ( 16). 

It is clear from (17), (19), (20) and (21) to (26) 
that the realization of the group lYuj,,s is finite, when 
conditions ( 15), ( 16) are fulfilled. 

One should also notice that any linearization con- 
dition of the type of (17) is a set of quadratic condi- 
tions, whatever the size of the matrix is. Indeed they 
mean that the matrix product of R with some linear 
transformed C(R) of R is proportional to the unit ma- 
trix, i.e: 

R . L(R) z unit matrix (27) 

and this is a set of quadratic conditions. 
Remark: The invertible solutions of (17) form a 

group for the ordinary matrix product, since I I, is 
an automorphism of the group of invertible matrices 
of the form (12), i.e. Z(Z,(Rl . R2)) = I(&(Rl)) . 
Z(l,J R2)). The extra conditions added when com- 
pleting the system break this in such a way that the 
ordinary matrix product of three solutions is another 
solution. In other words, if RI, R2, R3 E V, then 
RI . R2. R3 E V, while RI . R2 4 V. This was actually 
already the case for solutions of (7)) but the mech- 
anism is more subtle here as conditions ( 15)) ( 16) 
imply At = +A2. 

5. 32-vertex model on the cubic lattice 

We now turn to a solution of the tetrahedron equa- 
tions [ 14,22,23]. Let R be of the form 

R= 

d 0 0 -a 0 -b c 0 

0 w x 0 y 0 0 z 

0 x w 0 2 0 0 Y 
-a 0 0 d 0 c -b 0 
0 -y z 0 w 0 0 -x 
b 0 0 c 0 d a 0 
: 0 z 0 

-y 
0 b -x 0 a 0 d 0 w 0 I 

(28) 
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The form of (28) is stable 3 under the group Icubic, 
and it is natural to look for invariants of I in the space 

of parameters {a, 6, c, d, x, y, z, w} [24]. There exist 

five algebraically independent quadratic polynomials 

in the entries, transforming covariantly, and with the 
same covariance factors under all generators of Icubic. 

They are: 

block, say {x, y, Z, w}. Notice that the definition of 1, 
is not unique, due to the very specific form of (28). 
Notice also that Q = 0 is one of two quadratic condi- 

tions ensuring the equality of the determinants of the 

two blocks of R (see (13)). The other one is not sta- 
ble under I. 

The linear transformation 1, satisfies 

ax, by, cz, dw 

We thus have four algebraically independent invariants 

of Icubic, say for example 

lf = id, 1, t = t 1, (32) 

I, la I& = ear VCY = 1, m, r (33) 

Any matrix of the form (28) with Q = 0 obeys 

x1=2, x2=$, 
CZ Q 

x3=z> xo=z 

A complete analysis shows that there is no other alge- 

braically independent invariant of Icubic. A numerical 

and graphical study [25], shows how “big” the real- 
ization of I is for generic values of the above invari- 

ants. 

I(R) = G(R) (34) 

It,(R)--I,&(R) Va=l,m,r (35) 

Using (32)) (33)) it is straightforward to show that the 
complete system (34), (35) is invariant under Icubic 

and that the orbit of R is finite.4 

These invariants are completely specified in the so- 

lution [ 141, for which 

The study of the additional conditions (29) would 
take us beyond the scope of this letter, but we may 

make a few remarks. 

x1 = x2 = x3 = 1 (29) 

x0 = 0 (30) 

Out of the four invariants, ~0 plays a special role. if 

~0 = 0, then the action of I linearizes quite in the 
same way as in the previous cases. Notice that, strictly 
speaking, condition (30) is not so much an assign- 
ment of value to the invariant ~0 but rather a van- 
ishing condition for the covariant quantity Q. Recall 
that assigning a definite value to an invariant object is 
meaningful whatever this value is. On the contrary co- 
variant objects cannot be assigned a value unless this 

value is zero. 

Since among conditions (29)) (30)) only (30) has 

to do with the finiteness of the realization of I, (29) 

may have nothing to do with free-fermion conditions. 

When Q = 0, one gets 

It is interesting to note that because conditions ( 15), 

( 16) defining V come from the expansion of expo- 
nentials of a quadratic form in grassmannian variables 
(see [ 17]), they are sensitive only to the coordination 

number of the lattice. They are consequently identical 
to the free-fermion conditions given in [ 181 for the 
cubic lattice, up to normalization (see Eq. ( 1.1) of 
[ 171) . They are not verified in general by (28)) even 
if (29), (30) hold. However the algebra-geometric 
structure of the solution we examine here is very rem- 
iniscent of the one of the so-called rank 2 type of solu- 
tions of the Yang-Baxter equations described in [ 291 

(see the sequel). 

I(R) = l,(R) (31) 

The linear transformation I, may be written 

1, = r X030 gr 

where t is transposition and gr is a grading chang- 
ing the sign of the entries of R belonging to the same 

Conditions (29) are additional constraints making 
the resolution of the tetrahedron equations possible, 
and this may be understood as follows. 

The tetrahedron equations are in essence a com- 
patibility condition for the existence of non-trivial 
solutions of the “propagation properties” [ 271 (alias 
“Zamolodchikov algebra*’ [28], alias “vacuum 

1 Notice that the form (28) is not stable by the circular permu- 4 This is also the case for the bidiagonal solution of the “constant” 

tation of the three spaces {I, m, r}. tetrahedron equations of [ 261. 
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curves” [ 29,221, alias “pre-Bethe Ansatz” equa- 
tions [ 6,30 ] ) : 

(36) 

What conditions (29)) (30) ensure is the existence, 

for fixed R, of a one-parameter family of solutions 
of (36). In the case we consider here, the family hap- 
pens to be parametrized by a curve of genus Zarger 
than one. 

By eliminating {q, q’, r, r’} (resp. {p,p’, r, r’} or 

{I), p’, q, q’}) from (36)) one gets conditions relating 
p, p’, (resp. q, q’ and r, r') . Such relations are gener- 
ically of degree 8 (biquartics). One effect of (29), 

(30) is that they all reduce to asymmetric biquadratic 
relations, defining three genus one curves of the form 

XJY2 - 1 + (y2 - X2) Kx? = 0 (37) 

with 

bc ( d2 - a2) ac(b2 + d2) 
K,@ = 

ad ( b2 - c2) ’ 
I(& = - 

bd (a* + c*) 

ab(c2 - d2) 
Krr’ = 

cd (a2 - b2) 

These three elliptic curves have different (alge- 
braically independent) moduli. Their asymmetric 
character may be an obstacle to the use of (36) in the 
construction of the Bethe Ansatz states’ , since the 

composition of relations of type (37) reproduces the 

same type of relations, but alters the value of K by 

1 
K-- 

2 (38) 

Exceptional values of K ( fl, co), yielding a rational- 
ization of (37), are fixed points of (38). For these 
exceptional values, in particular K = 00, obtained with 
d = 0, the construction of a 3D Bethe Ansatz may be 
envisaged. 

5 R.J. Baxter, private communication. 

6. Conclusion 

We have shown, through specific examples, how 
free-fermion conditions turn into degeneration condi- 

tions of our groups I: the generically non-linear (ra- 

tional) infinite realization of l? becomes a finite group, 
some a priori infinite elements of I being represented 

by permutations and changes of sign of entries. 
We believe this is a characteristic feature of 2D free- 

fermion models. 
We have shown that the known vertex solution of 

the tetrahedron equations does have such a feature. 
An appealing issue is to decide whether or not such 
a statement can be made about other 3D and higher 

dimensional models. Of course the full answer will 

come from linking directly the phenomenon we de- 

scribe with explicit calculus using grassmannian vari- 
ables. The particularly simple form of the conditions 
(combinations of products of entries with plus and mi- 

nus signs), and the linearization process of the inverse 

should stem from elementary properties of exponen- 
tials of quadratic forms in anticommuting variables. 

Producing new solutions of the tetrahedron equa- 

tions is another challenging problem. What could be 
done is to look for forms of the matrices R enjoying 
the linearization property we have described. This is 

a rather simple way to produce “reasonable” Ansatze 
for R. 

The next step would then be to study the so-called 

propagation properties (see above) rather than con- 
fronting directly the tetrahedron equations themselves. 

Indeed these simpler equations, because they govern 
the construction of Bethe Ansatz states - a basic in 
the field - underpin 2D, 3D, and higher dimensional 
integrability. 
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